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Abstract. In this paper, we consider the problem of inserting points in a
square grid, which has many background applications, including halftone
in reprographic and image processing. We consider an online version of
this problem, i.e., the points are inserted one at a time. The objective
is to assign the points as uniform as possible. Precisely speaking, after
each insertion, the gap ratio should be as small as possible. In this paper,
we give an insertion strategy with the maximal gap ratio no more than
2
√
2 ≈ 2.828, which is the first result on uniformly inserting point on grid.

Moreover, we show that no online algorithm can achieve the maximal gap
ratio strictly less than 2.5 for a 3× 3 grid.

1 Introduction

In this paper, we consider the problem of online inserting points in a square grid
such that the distribution of the inserted points is as uniform as possible. In the
real world, there are many applications needing the uniform distribution for some
value in a given area, e.g., halftone, distribution of chain stores in an area.

Halftone is a very important technique in image processing, which simulates
the actual continuous image by discrete dots such that in the view of human’s eyes,
this kind of simulation is almost same as the original image. To achieve better
performances, e.g., higher resolutions, dithering method [3] is often applied in
halftone. One of the most important parts in dithering is how to generate the
dither matrix, on which the quality of simulation heavily depends. Each element
in the dither matrix represents a threshold value of the grey level between black
and white. For example, let’s consider the dither matrix in Figure 1, an absolutely
dark spot with the grey level of 32 will be able to meet all the threshold values of
the dither matrix, thus, all the 64 elements (pixels) will be black; similarly, a grey
level is 0 will have all white pixels. As for any of the remaining grey level x, only
those matrix elements (pixels) whose values (thresholds) are equal to or below
x will turn black, e.g., for grey level = 10, only 10 elements (pixels) are black
and these elements have to be distributed uniformly inside the matrix. Since the
uniformity has to be applied to all grey levels, this reduces to our problem which
is online inserting points uniformly in a square grid. Figure 1 gives an example of
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a dither matrix in [3] and the simulation depends on this matrix. Formally, the
dither matrix is a n×n matrix, the value of each element is from 0 to n2−1, and
the values up to each i (0 ≤ i ≤ n2 − 1) are uniformly distributed.

1 17 5 21 2 18 6 22

25 9 29 13 26 10 30 14

7 23 3 19 8 14 4 20

31 2715 11 32 16 28 12

2 18 6 22 1 17 5 21

26 10 30 14 25 9 29 13

8 24 4 20 7 23 3 19

32 16 28 12 31 15 27 11

B =

(a) dither matrix (b) original graph and its simulation

Fig. 1. A simulation based on a dither matrix

Another motivation is the distribution of chain stores in an area. A famous
chain store has planned to establish its business in a district by establishing a
number of stores at the road junctions in a city with Manhattan-like road net-
work one by one. Assume the clients are distributed uniformly, and each client will
be served by its nearest store. In order to minimize the unnecessary competition
among its own stores, the established stores at any time should be distributed as
uniformly as possible while the stores once established cannot be dismantled or
relocated.

In this problem, we consider the insertion of the points in an online man-
ner, i.e., the points are inserted one by one, and the algorithm does not know
the number of inserted points in advance. After the insertion of each point, the
uniformity is guaranteed, the uniformity is a measurement of how uniform the
inserted points distributed. There are several ways to define the uniformity of a
set of points. Some studies define the uniformity by the minimal pairwise distance
[5, 7]. In discrepancy theory [4, 6], the uniformity is defined by the ratio between
the maximal and minimal number of points in a fixed shape within the area. In
this paper, the uniformity is defined by the gap ratio, i.e., the ratio between the
maximal gap (the diameter of the largest empty circle) and the minimal gap (the
minimal pairwise distance).

Problem Statement
Let S2 be an m×m unit square grid in the 2-dimensional square R2 such that the
four corners of S2 and R2 are located at the same position. Let P = {1, 2, ..., n}
be a point request sequence. In the initial state, the four corner grid positions in
S2 are assigned. Each request must be assigned on some grid position in S2, and
each grid position can satisfy at most one request, thus n ≤ (m+1)2 − 4. Denote
pi to be the grid position in satisfying the i-th request, and Si = {p1, ..., pi}

∪
S0

is the configuration in S2 after inserting the i-th point, where S0 consists of the
four corner points of S2.

Define the maximal gap at step i to be Gi = maxp∈R2 minq∈Si 2d(p, q), the
minimal gap at step i to be gi = minp,q∈Si,p̸=q d(p, q), where d(·, ·) is the Euclidean

2



distance, and define the i-th gap ratio as ri = Gi/gi. The maximum gap and the
minimum gap imply the diameter of the largest empty circle4 and the minimum
pairwise distance, respectively.

The objective of this problem is assigning points into the grid as uniform as
possible, i.e., minimize the maximal gap ratio (minmaxi ri) after each insertion.

For the m×m square grid, let (0, 0) represent its up-left-most point a. Each
grid point p can be represented by (i, j), where i is the difference between the
x-coordinate of a and p, j is the difference between the y-coordinate of a and p.
We say a square or rectangle is of size i× j if the lengths of two connected edges
of the square or rectangle are i and j respectively. Let R be the circumradius of
a triangle UVW , we have |R| = uvw

4∆ , where u, v and w are the length of edges of
the triangle and ∆ is the area of the triangle.

Now we give an example to show the maximal gap, minimal gap, and gap
ratio. At the initial state, there are only four assigned points at the four corners
a, b, c and d as shown in Fig. 2, the maximal gap G0 =

√
2 ·m while the minimal

gap g0 = m, the gap ratio r0 =
√
2. If the first point p1 is inserted at the center of

the square, the current maximal gap G1 = m while the minimal gap g1 =
√
2·m/2

and the gap ratio r1 =
√
2.

a b

c d

p1

p2

p3

p5

p4

m

m

Fig. 2. An insertion of five points in a grid.

Related Works:
Uniformly inserting points in a given area is studied in some papers. If the points
can be inserted at any position in the given area, Teramoto et al [8] and Asano et
al [2] showed that the greedy algorithm (voronoi insertion) has uniformity 2. In
one dimensional case, if the algorithm knows the number n of the inserted points,
an insertion strategy with maximal gap ratio 2⌊n/2⌋/(⌊n/2⌋+1), which is slightly less
than 2, can be achieved. Moreover, they gave a local search heuristic for uniformly
inserting points on two dimensional square, the experimental results showed that
the maximal gap ratio is less than 2 if the number of inserted points is not large.
If the point must be assigned at grid point, Asano [1] gave an insertion strategy
with uniformity 2 for one dimensional case.

Our Contributions:
To uniformly insert the points into a square, an intuitive idea is to insert each

4 Since we only focus on the area R2, the center of the largest empty circle must be
within R2.
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point at the center of the largest empty circumcircle of a triangle within the
square. But this idea is not a good strategy when implementing on the square
grid. For example, consider a 6×6 square grid as shown in Figure 2, if each point
is inserted at the center of the largest empty circumcircle, the first 5 points must
be inserted as shown in Figure 2. No matter where the next point is inserted, the
gap ratio will be no less than 3.

In the following part of this paper, we give an insertion strategy for the problem
of inserting points in a square grid with the maximal gap ratio no more than
2
√
2 ≈ 2.828. For the problem of uniformly inserting points, this is the first result

on inserting points at grid position. Moreover, we show that no online inserting
strategy can hold the maximal gap ratio strictly less than 2.5 for 3× 3 grid.

2 Inserting Method

Inserting each point at the center of the largest empty circle is a good strategy if
the size of the grid is some power of 2, i.e., m = 2k. In this case, insertion at the
center can always hold the gap ratio to no more than 2. Another observation is
that once a point is inserted, the grid will be somewhat partitioned into regions
which can be handled independently and locally. In the following, we devise our
heuristic based on these observations, to achieve good performance. Instead of
inserting each point at the center of the largest empty circle, we choose a proper
position which partitions the grid into several parts: some of them are square
grids whose sizes are some power of 2; some are square grids with sizes similar to
the above ones; the others are rectangles with sizes between the above two types
of square grids. Assigning the point at such position can guarantee the maximal
gap ratio is not large.

Our strategy is done phase by phase. The order of inserting points on some grid
positions is based on the current configuration of assigned points. At the begining
and end of each phase, the square grid can be partitioned into four disjoint parts:
the up-left part is the combination of small square grids of the same size 2k

′ ×2k
′
;

the down-right part is a square grid of size m′ ×m′; the up-right and down-left
parts are combinations of rectangle grids of size 2k

′ ×m′, as shown in Figure 3(a).

a b

c d

2
k
′

2
k
′

2
k
′

2
k
′

m
′

m
′

(a) before phase i

a b

c d
(b) after phase i

Fig. 3. the configuration of the square grid before and after a phase of insertion

When starting to insert points in a phase, if the small square grids of the
up-left part are larger than the down-right square, we insert some points into the
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center at each small square grids; otherwise, the down-right part is larger, then
we insert points into the down-right square. According to the following insertion
strategy, we can insert some points such that either the size of the small square
grid in the up-left part is decreased, or the up-left part is enlarged. From the
analysis of the strategy, the gap ratio is bounded by 2

√
2 after each insertion.

The configuration after a phase of insertion from the configuration in Figure 3(a)
is shown in Figure 3(b).

2.1 The First Phase

In the initial state, there are only four assigned points located at the four corners of
the square grid. To assign the first point, we must determine the (x, y)-coordinate
for p1. Find the integer k such that 3 · 2k−1 ≤ m < 3 · 2k. Insert the first point p1
at (2k, 2k).

Case 1: 3 · 2k−1 ≤ m < (2 +
√
2) · 2k−1

In this case, we insert p2 at (2k−1, 2k−1), p3 at (2k, 0), p4 at (0, 2k), p5 until
p12 are assigned as shown in Figure 4.

a b

c d

p1

p2

p3

p4 p5

p6

p7

p8 p9 p10

p11

p12

Fig. 4. Case 1 of the first phase.

a b

c d

p1

p2

p3 p4

p5

Fig. 5. Case 2 of the first phase.

Let m = (1+x)× 2k, we have 1/2 ≤ x <
√
2/2. Now we analyze the gap ratio

after each insertion.

Lemma 1 In case 1: 3 · 2k−1 ≤ m < (2 +
√
2) · 2k−1, the gap ratio is no more

than 2
√
2 after each insertion according to the strategy. (Proof is in Appendix.)

After this insertion phase, the up-left part is the combination of small square
grids of size 2k−1 × 2k−1, the down-right part is a square grid of size (m− 2k)×
(m− 2k), the up-right and down-left parts are combinations of rectangles of size
2k−1 × (m− 2k).

Case 2: (2 +
√
2) · 2k−1 ≤ m < (2 + 1/

√
2) · 2k

In this case, insert p2 at (2k, 0), p3 at (0, 2k), p4 at (m, 2k), and p5 at (2k,m),
which are shown in Figure 5.

Let m = (1 + x)2k, we have
√
2/2 ≤ x ≤ 1 +

√
2/2. Now we analyze the gap

ratio after each insertion.
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Lemma 2 In case 2: (2 +
√
2) · 2k−1 ≤ m < (2 + 1/

√
2) · 2k, the gap ratio is

no more than 2
√
2 after each insertion according to the strategy. (Proof is in

Appendix.)

After this phase, the up-left part is a square grid of size (2k, 2k), the down-
right part is a square grid of size (m − 2k,m − 2k), the up-right and down-left
parts are rectangles of size (2k,m− 2k).

Case 3: (2 + 1/
√
2) · 2k ≤ m < 3 · 2k

In this case, we insert p2 at (2k+1, 2k+1), p3 at (2k, 0), p4 at (0, 2k), p5 until
p12 are assigned as shown in Figure 6.

a b

c d

p2

p1

p7

p9 p11

p12

p3

p4 p8 p5

p10

p6

Fig. 6. Case 3 of the first phase.
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k

Fig. 7. Before insert points in next phase.

Let m = (1 + x) × 2k, we have 1 +
√
2/2 ≤ x < 2. Now we analyze the gap

ratio after each insertion.

Lemma 3 In case 3: (2 + 1/
√
2) · 2k ≤ m < 3 · 2k, the gap ratio is no more than

2
√
2 after each insertion according to the strategy. (Proof is in Appendix.)

After this phase, the up-left part is the combination of small square grids of
size (2k, 2k), the down-right part is a square grid of size (m−2k+1,m−2k+1), the
up-right and down-left parts are combinations of rectangles of size (2k,m−2k+1).

2.2 The Following Phases

After the first phase, the square grid is partitioned into squares and rectangles.
There are three types of such square or rectangle, i.e., the small square grids in
the up-left part, the square grid in the down-right part, and the rectangles in
the up-right and down-left parts. The only square grid in the down-right part is
adjacent to the other two types of square grid and rectangle.

For clarity, we shall only consider the insertion of points in four of the squares
and rectangles; specifically, the square at the down-right part, the rectangle im-
mediately to its left, the rectangle above it and the square in the top-left part
that has a common grid-position with it . Consider the configuration shown in
Figure 7, we only focus on the insertion in the square grid a′b′c′d. In such configu-
ration, a′, b′, c′, d to i are assigned, the down-right part is the square ehid, which
is adjacent to a′fge, fb′eh and gec′i. If a point is to be inserted in a square grid
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or a rectangle according to the strategy, the actual processing is inserting points
one by one at the same position in the square grids or rectangles of the same
type until all such positions are assigned. For example, in Figure 7, there are four
small square grids in the up-left part, if the strategy assigns a point in square grid
a′fge, the actual assignment is inserting four points into the four small grids in
square ajke.

Now we consider the insertion in configuration as shown in Figure 7. In this
configuration, points a to i are already assigned. The up-left part is a square grid
of size 2k

′ × 2k
′
, the down-right part is a square grid of size m′ × m′, the up-

right and down-left part are rectangles of size 2k
′ ×m′. When inserting the first

point in the down-right square, we use the same strategy as in the first phase,
i.e., find the value k′′ such that 3 · 2k′′−1 ≤ m′ < 3 · 2k′′

, then insert the point at
(2k

′
+ 2k

′′
, 2k

′
+ 2k

′′
).

From Case 1 of the first phase, we have m′ = m − 2k, 2k
′
= 2k−1, and

3 · 2k−1 ≤ m < (2 +
√
2) · 2k−1, thus, 2k

′ ≤ m′ ≤
√
2 · 2k′

. From case 2 of the first
phase, we have m′ = m− 2k, 2k

′
= 2k, and (2+

√
2) · 2k−1 ≤ m < (2+1/

√
2) · 2k,

thus,
√
2 · 2k′−1 ≤ m′ ≤ (1 +

√
2/2) · 2k′

. From case 3 of the first phase 1,
we have m′ = m − 2k+1, 2k

′
= 2k, and (2 + 1/

√
2) · 2k ≤ m < 3 · 2k, thus,√

2 · 2k′−1 ≤ m′ ≤ 2k
′
.

Combine all these cases, we have
√
2 · 2k′−1 ≤ m′ ≤ (1 +

√
2/2) · 2k′

, this
constraint can be relaxed to

√
2 · 2k′−1 ≤ m′ < 2 · 2k′

. Let m′ = x · 2k′
, we have√

2/2 ≤ x < 2. Now we show how to insert points in such configuration.

Case 1:
√
2 · 2k′−1 ≤ m′ < 2k

′

In this case, we insert points p1 until p7 in the configuration as shown in
Figure 8.

a
′

b
′

c
′

d

e

f

g h

i

p1

p2

p3 p4 p5

p6

p7

Fig. 8. Case 1 of the following phase.

a
′

b
′

c
′

d

e

f

g h

i

p1

p2 p3

p4

p5 p6

p7 p8 p9

p10 p11

p12 p13 p14

p15 p16

Fig. 9. Case 2 of the following phase.

After the insertion of p1, the minimal gap is decreased to the length of a′p1,
which is

√
22k

′−1, the maximal gap is twice the length of the circumradius of the
rectangle b′feh, which is

√
1 + x22k

′
. Thus, the gap ratio is at most

√
2(x2 + 1),

which is no more than 2
√
2.

After the insertion of p2, the minimal gap is decreased to 2k
′−1, while the

maximal gap is still
√
x2 + 12k

′
. Thus, the gap ratio is 2

√
x2 + 1, which is no

more than 2
√
2 since x < 1.

After the insertion of p3 until p7, the minimal gap remains as 2k
′−1, and the

maximal gap does not increase. Thus, the gap ratio is still no more than 2
√
2.
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When the insertions of this phase complete, m′ remains unchanged but the
size of the square grids in up-left part is decreased to (2k

′−1, 2k
′−1). Therefore, in

the next phase, the constraint of m′ is
√
22k

′ ≤ m′ < 2k
′+1.

Case 2: 2k
′ ≤ m′ < (1 +

√
2/4)2k

′

In this case, since the down-right square grid is larger, we insert points p1 until
p16 in the configuration as shown in Figure 9.

Note that 4 · 2k′−2 ≤ m′ < (2 +
√
2/2)2k

′−1, if we regard m′ = m and
2k

′−1 = 2k, this constraint is within the range in case 2 of the first phase, i.e.,
(2 +

√
2) · 2k−1 ≤ m < (2 + 1/

√
2) · 2k. Thus, similar to the analysis in case 2

of the first phase, we can say that the ratio after each insertion is no more than
2
√
2.
When the insertions complete, m′ is decreased by 2k

′−1 and the size of the
square grids in up-left part is decreased to (2k

′−1, 2k
′−1), therefore, in the next

phase, the constraint of m′ is 2k
′ ≤ m′ < (1 +

√
2/2)2k

′
.

Case 3: (1 +
√
2/4)2k

′ ≤ m′ < 3 · 2k′−1

In this case, we insert points p1 until p27 in the configuration as shown in
Figure 10.

a
′

b
′

c
′

d

e

f

g h

i

p1

p5

p4 p2

p3

p16

p21

p18

p17

p6 p7

p8 p9 p10p19

p11 p12

p13 p14

p20

p15

p22 p23 p24 p25 p26

p27

Fig. 10. Case 3 of the following phase.
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g h

i

p1

p2

p3 p4

p5

p6

p7

p8 p9 p10

p11

p12 p13

p14 p15 p16 p17

p18 p19

p20 p21 p22 p23

p24 p25

p26 p27

Fig. 11. Case 4 of the following phase.

If we regard m′ = m and 2k
′−1 = 2k, the constraint in this case is within the

range in case 3 of the first phase, i.e., (2 + 1/
√
2) · 2k ≤ m < 3 · 2k. Thus, similar

to the analysis in case 3 of the first phase, we can say that the ratio after each
insertion is no more than 2

√
2.

When the insertions complete, m′ is decreased by 2k
′
and the size of the square

grids in up-left part is decreased to (2k
′−1, 2k

′−1), therefore, in next phase, the
constraint of m′ is

√
22k

′−1 ≤ m′ < 2k
′
.

Case 4: 3 · 2k′−1 ≤ m′ < (1 +
√
2/2) · 2k′

In this case, we insert points p1 until p27 in the configuration as shown in
Figure 11.

If we regard m′ = m and 2k
′−1 = 2k, the constraint in this case is within the

range in case 1 of the first phase, i.e., 3 ·2k−1 ≤ m < (2+
√
2) ·2k−1. Thus, similar

to the analysis in case 1 of the first phase, we can say that the ratio after each
insertion is no more than 2

√
2.
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When the insertions complete, m′ is decreased by 2k
′
and the size of the small

square grids is decreased to (2k
′−1, 2k

′−1), therefore, in next phase, the constraint
of m′ is 2k

′ ≤ m′ <
√
2 · 2k′

.

Case 5: (1 +
√
2/2) · 2k′ ≤ m′ < 2k

′+1

In this case, we insert points p1 until p7 in the configuration as shown in
Figure 12.

a
′

b
′

c
′

d

e

f

g h

i

p1

p2

p3

p4p5 p6

p7

Fig. 12. Case 5 of the following phase.

p

p1

p2

a b

c d

p
′

Fig. 13. In a 3 × 3 grid, the gap ratio is at
least 2.5.

If we regard m′ = m and 2k
′
= 2k, the constraint in this case is within the

range in case 2 of the first phase, i.e., (2+
√
2) ·2k−1 ≤ m < (2+1/

√
2) ·2k. Thus,

similar to the analysis in case 2 of the first phase, we can say that the ratio after
each insertion is no more than 2

√
2.

When the insertions complete, m′ is decreased to m′ − 2k
′
while the size of

the square grids in up-left part remains the same as in previous phase, therefore,
in next phase, the constraint of m′ is

√
2 · 2k′−1 ≤ m′ < 2k

′
.

Combine all these cases, we can say that the gap ratio is no more than 2
√
2

after each insertion. When a phase completes, suppose the size of the down-right
square grid is m′ ×m′, the size of the square grids in up-left part is 2k

′ × 2k
′
, we

have
√
22k

′−1 ≤ m′ < 2k
′+1.

Therefore, we have the following conclusion.

Theorem 1 The maximal gap ratio of the above strategy for inserting points into
any square grid is at most 2

√
2 ≈ 2.828.

3 Lower Bound of the Maximal Gap Ratio

In this part, we prove that the lower bound of the maximal gap ratio is at least
2.5 for any online inserting method. Consider inserting points into a 3 × 3 grid,
as shown in Figure 13.

initial step:
In the initial step, four corner points are already assigned. The maximal gap

G0 = 3
√
2 and the minimal gap is g0 = 3, thus the gap ratio at this step is

√
2.

inserting the first point:
If the first point is inserted at the boundary line of the square, w.l.o.g., at p,

the maximal gap is twice the length of the circumradius of triangle pcd, which is
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√
130/3, the minimal gap is the length between a and p, which is 1, so the gap

ratio is
√
130/3 ≈ 3.8.

If the first point is inserted at some interior point, w.l.o.g., at p1, the gap ratio
will be lower. In this case, the maximal gap is twice the length of the circumradius
of triangle bdp1, which is

√
10, the minimal gap is the length between a and p1,

which is
√
2, so the gap ratio r1 =

√
5 ≈ 2.236.

inserting the second point:
We may assume the first point is inserted at p1 since the gap ratio is larger if

the first point is assigned at p.
If the second point is not inserted at p2, the maximal gap will be

√
10 too,

since the maximal gap must appear in triangle bdp1 or cdp1, and the minimal gap
will be 1, so the gap ratio r2 =

√
10 ≈ 3.162.

If the second point is inserted at p2, the circumradius of triangle bp1p2 is
5
√
2/6. Consider the point p′ on the edge ab such that |p′b| = 5/4, the length of

p′p1 is also 5/4, and the length between p′ and any other point is larger than 5/4.
Since 5/4 > 5

√
2/6, we can say the maximal gap is 5/2. The minimal gap is still√

2, so the gap ratio r2 = 5/(2
√
2) ≈ 1.768.

inserting the third and following points:
Similarly, we may assume the second point is assigned at p2, otherwise the

gap ratio will be larger. No matter where we assign the third point, the minimal
gap will be 1, while the maximal gap remains as 5/2 owing to the symmetry of
the assigned points in this square grid. Thus, the gap ratio r3 = 2.5.

For the insertion of the following points, the minimal gap is 1 and the maximal
gap is no larger than 5/2, so the gap ratio ri ≤ 2.5 (i ≥ 3).

Combining all the above cases, we can say that in handling the insertion
sequence in a 3 × 3 square grid, the maximal gap ratio is at least 2.5. Thus, we
have the following conclusion.

Theorem 2 No online inserting method can hold the maximal gap ratio to strictly
less than 2.5.
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Appendix

Proof of Lemma 1

Proof. After the insertion of p1, the maximal gap is twice the length of the cir-
cumradius of triangle abp1, the minimal gap is the length of p1d. Thus,

G1 =
2(1 + x)2k ×

√
22k ×

√
1 + x22k

2(1 + x)2k × 2k
=

√
1 + x22k+1

√
2

g1 = x
√
22k

The gap ratio at this step is
√
1 + 1/x2, which is at most

√
5 since 1/2 ≤ x <√

2/2.

After the insertion of p2, the minimal gap is the length of ap2, which is
√
22k−1.

The maximal gap must appear in the triangle abp2, bp1p2, or bp1d. We shall
consider these three triangles respectively.

– Suppose the maximal gap appears in triangle abp2, since x <
√
2/2, the

maximal gap must be (x+ y)2k+1, such that (1/2− y)2 + (1/2)2 = (x+ y)2.
Thus, y = (1/2−x2)/(2x+1) and x+y = (x2+x+1/2)/(2x+1). Therefore,

the gap ratio is
√
2(2x2+2x+1)

2x+1 < 2
√
2.

– Suppose the maximal gap appears in triangle bp1p2. Since |bp1| =
√
1 + x22k,

|p1p2| =
√
22k−1, |bp2| =

√
1/4 + (1/2 + x)22k, and ∆bp1p2 = (1 + x)22k−2,

the maximal gap is
√
2
√
1+x2

√
1/4+(1/2+x)22k

(1+x) . Therefore, the gap ratio is
2
√
1+x2

√
x2+x+1/2

1+x ,

this value is strictly less than 2
√
2 since 1/2 ≤ x <

√
2/2.

– Suppose the maximal gap appears in triangle bp1d. Since x <
√
2/2 < 1, the

maximal gap will be 2(1/2 + y)2k, such that (1/2 − y)2 + 1/4 = (1/2 + y)2.
Thus, we have y = x2/2 and the maximal gap is (x2 + 1)2k. The gap ratio is√
2(x2 + 1) < 2

√
2.

After the insertion of p3, the maximal gap remains same as the previous step,
but the minimal gap is decreased to x2k. Similar to above analysis,

– Suppose the maximal gap appears in triangle acp2, the maximal gap must be

x2 + x+1/2)/(2x+1)2k+1. Therefore, the gap ratio is 2x2+2x+1
2x2+x < 2

√
2 since

1/2 ≤ x <
√
2/2.

– Suppose the maximal gap appears in triangle cp1p2. The maximal gap is√
2
√
1+x2

√
1/4+(1/2+x)22k

(1+x) . Therefore, the gap ratio is
√
2
√
1+x2

√
x2+x+1/2

x(1+x) ; this

value is strictly less than 2
√
2 since 1/2 ≤ x <

√
2/2.

– Suppose the maximal gap appears in triangle cp1d. Since x <
√
2/2 < 1, the

maximal gap is (x2 + 1)2k. The gap ratio is (x2 + 1)/x < 2
√
2.

After the insertion of p4, p5, and p6, the minimal gap is still x2k−1 but the
maximal gap does not increase. Thus, the gap ratio at this step is still no more
than 2

√
2.

After the insertion of p7, the minimal gap is decreased to 2k−1. The maximal
gap is twice the length of the circumradius of the rectangle bp3p1p5, which is
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√
x2 + 12k. Thus, the gap ratio is no more than 2

√
x2 + 1 < 2

√
2.

After the insertion of p8 until p12, the minimal gap remains as 2k−1, but the
maximal gap does not increase. Thus, the gap ratio at each step is no more than
2
√
2.

Proof of Lemma 2

Proof. After the insertion of p1, if
√
2/2 ≤ x < 1, the maximal gap is twice

the length of the circumradius of the triangle abp1, and the minimal gap is the
length of p1d; if 1 ≤ x ≤ 1 +

√
2/2, the maximal gap is twice the length of the

circumradius of the triangle bp1d, and the minimal gap is the length of ap1. Thus,
we have

–
√
2/2 ≤ x < 1

G1 =
2(1 + x)2k ×

√
22k ×

√
1 + x22k

2(1 + x)2k × 2k
=

√
2(1 + x2)2k

g1 =
√
2x2k

The gap ratio in this case is
√
1 + 1/x2, which is at most

√
3.

– 1 ≤ x ≤ 1 +
√
2/2

G1 =
2(1 + x)2k ×

√
2x2k ×

√
1 + x22k

2(1 + x)2k × x2k
=

√
2(1 + x2)2k

g1 =
√
22k

The gap ratio in this case is
√
1 + x2, which is no more than 2.

After the insertion of p2, the maximal gap is the same as the previous step, but
the minimal gap is decreased to x2k (if

√
2/2 ≤ x < 1), or 2k (if 1 ≤ x ≤ 1+

√
2/2).

Thus, the gap ratio is
√
2(1 + 1/x2) (if

√
2/2 ≤ x < 1), which is at most√

6 < 2
√
2, or

√
2(1 + x2) (if 1 ≤ x ≤ 1 +

√
2/2), which is no more than 2

√
2.

After the insertion of p3 until p5, the minimal gap does not change, and the
maximal gap does not increase. Therefore, the gap ratio after each insertion is no
more than 2

√
2.

Proof of Lemma 3

Proof. After the insertion of p1, the maximal gap is twice the length of the cir-
cumradius of triangle bdp1, the minimal gap is the length of ap1. Thus,

G1 =
2(1 + x)2k ×

√
2x2k ×

√
1 + x22k

2x(1 + x)2k × 2k
=

√
2(1 + x2)2k

g1 =
√
22k

The gap ratio at this step is
√
1 + x2, which is at most

√
5 since 1+

√
2/2 ≤ x < 2.

After the insertion of p2, the minimal gap is the length of dp2, which is
√
2(x−

1)2k. The maximal gap must appear in the triangle abp1, bp1p2, or bp2d. We
consider these three triangles respectively.
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– Suppose the maximal gap appears in triangle abp1, since x < 2, the maximal
gap must be 2(x − 1 + y)2k, such that (1 − y)2 + 1 = (x − 1 + y)2. Thus,
y = (1+2x−x2)/(2x) and x−1+y = (x2+1)/(2x). Therefore, the gap ratio

is x2+1√
2x(x−1)

< 2
√
2.

– Suppose the maximal gap appears in triangle bp1p2. Since |bp1| =
√
1 + x22k,

|p1p2| =
√
22k, |bp2| =

√
4 + (x− 1)22k, and ∆bp1p2 = (1+x)22k−1, the max-

imal gap is
√
2
√
1+x2

√
x2−2x+52k

1+x . Therefore, the gap ratio is
√
1+x2

√
x2−2x+5

x2−1 ,

this value is no more than 2
√
2.

– Suppose the maximal gap appears in triangle bp2d. The maximal gap is 2(1+
y)2k, such that (1− y)2 + (x− 1)2 = (1 + y)2. Thus, we have y = (x− 1)2/4

and the maximal gap is (x2 − 2x+ 5)2k−1. The gap ratio is x2−2x+5
2
√
2(x−1)

< 2
√
2.

After the insertion of p3, the maximal gap remains the same as the previous
step, but the minimal gap is decreased to 2k. Similar to the above analysis,

– Suppose the maximal gap appears in triangle acp1, the maximal gap must be
x2+1

x 2k. Therefore, the gap ratio is x2+1
x < 2

√
2.

– Suppose the maximal gap appears in triangle cp1p2. The maximal gap is√
2
√
1+x2

√
x2−2x+52k

1+x . Therefore, the gap ratio is
√
2
√
1+x2

√
x2−2x+5

1+x , this value

is strictly less than 2
√
2.

– Suppose the maximal gap appears in triangle cp2d. The maximal gap is (x2−
2x+ 5)2k−1. The gap ratio is (x2 − 2x+ 5)/2 < 2

√
2.

After the insertion of p4, p5, and p6, the minimal gap is still 2k but the max-
imal gap does not increase. Thus, the gap ratios at these steps are still no more
than 2

√
2.

After the insertion of p7, the minimal gap is decreased to (x− 1)2k. The max-
imal gap is twice the length of the circumradius of the rectangle p1p4cp6, which
is

√
x2 + 12k. Thus, the gap ratio is

√
x2 + 1/(x− 1) < 2

√
2.

After the insertion of p8 until p12, the minimal gap remains as (x− 1)2k, but
the maximal gap does not increase. Thus, the gap ratio after each insertion is at
most 2

√
2.
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