Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 308))

Abstract

Bayesian networks are a formalism for reasoning under uncertainty that has been widely adopted in Artificial Intelligence (AI). Student modeling, i.e., the process of having an ITS build a model of relevant student’s traits/states during interaction, is a task permeated with uncertainty, which naturally calls for probabilistic approaches. In this chapter, I will describe techniques and issues involved in building probabilistic student models based on Bayesian networks and their extensions. I will describe pros and cons of this approach, and discuss examples from existing Intelligent Tutoring Systems that rely on Bayesian student models

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arroyo, I., Woolf, B.: Inferring learning and attitudes from a Bayesian Network of log file data. In: 12th International Conference on Artificial Intelligence in Education, AIED 2005 (2005)

    Google Scholar 

  • Bunt, A., Conati, C., Hugget, M., Muldner, K.: On Improving the Effectiveness of Open Learning Environments through Tailored Support for Exploration. In: 10th World Conference of Artificial Intelligence and Education, AIED 2001 (2001)

    Google Scholar 

  • Buntine, W.: A Guide to the Literature on Learning Probabilistic Networks from Data. IEEE Transactions on Knowledge and Data Engineering 8(2), 195–210 (1996)

    Article  Google Scholar 

  • Chi, M.: Self-explaining: The dual processes of generating inference and repairing mental models. In: Glaser, R. (ed.) Advances in instructional psychology: Educational design and cognitive science, vol. (5), pp. 161–238. Lawrence Erlbaum Associates, Mahwah (2000)

    Google Scholar 

  • Conati, C., Maclaren, H.: Empirically Building and Evaluating a Probabilistic Model of User Affect. Modeling and User-Adapted Interaction 19(3), 267–303 (2009)

    Article  Google Scholar 

  • Conati, C., Merten, C.: Eye-Tracking for User Modeling in Exploratory Learning Environments: an Empirical Evaluation. Knowledge Based Systems 20(6), 557–574 (2007)

    Article  Google Scholar 

  • Conati, C., Gertner, A., VanLehn, K.: Using Bayesian Networks to Manage Uncertainty in Student Modeling. Journal of User Modeling and User-Adapted Interaction 12(4), 371–417 (2002)

    Article  MATH  Google Scholar 

  • Conati, C., Merten, C., Muldner, K., Ternes, D.: Exploring Eye Tracking to Increase Bandwidth in User Modeling. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 357–366. Springer, Heidelberg (2005)

    Google Scholar 

  • Corbett, A.T., Anderson, J.R.: Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction 4(4), 253–278 (1995)

    Article  Google Scholar 

  • Costa, P., McRae, R.: Four ways five factors are. Personality and Individual Differences 13, 653–665 (1992)

    Article  Google Scholar 

  • Dean, T., Kanazawa, K.: A Model for REasoning About Persistence and Causation. Computational Intelligence 5(3), 142–150 (1989)

    Article  Google Scholar 

  • Dempster, A., Laird, N., Rubin, D.: Maximization-likelihood from Incomplete Data via the EM Algorithm. Journal of Royal Statistical Society, Series B (1977)

    Google Scholar 

  • D’Mello, S., Craig, S., Witherspoon, A., McDaniel, B., Graesser, A.: Automatic detection of learner’s affect from conversational cues. User Modeling and User-Adapted Interaction, 45–80 (2008)

    Google Scholar 

  • Ferguson, K., Arroyo, Y., Mahadevan, S., Park Woolf, B., Barto, A.: Improving Intelligent Tutoring Systems: Using Expectation Maximization to Learn Student Skill Levels. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 453–462. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Henrion, M.: Some practical issues in constructing belief networks. In: 3rd Conference on Uncertainty in Artificial Intelligence, pp. 161–173 (1989)

    Google Scholar 

  • Keeney, R.L., von Winterfeldt, D.: Eliciting probabilities from experts in complex technical problems. IEEE Transactions on Engineering Management 38, 191–201 (1991)

    Article  Google Scholar 

  • Martin, J., VanLehn, K.: Student assessment using Bayesian nets. International Journal of Human-Computer Studies 42, 575–591 (1995)

    Article  Google Scholar 

  • Mayo, M., Mitrovic, T.: Optimising ITS Behaviour with Bayesian Networks and Decision Theory. International Journal of Artificial Intelligence in Education 12, 124–153 (2001)

    Google Scholar 

  • Mislevy, R.: Probability-based inference in cognitive diagnosis. In: Nichols, P., Chipman, S., Brennan, R. (eds.) Cognitive Diagnostic Assessment, pp. 43–71. Erlbaum, Hillsdale (1995)

    Google Scholar 

  • Moore, A., Wong, W.: Optimal Reinsertion: A New Search Operator for Accelerated and More Accurate Bayesian Network Structure Learning. In: ICML 2003, pp. 552–559 (2003)

    Google Scholar 

  • Murray, C., VanLehn, K., Mostov, J.: Looking Ahead to Select Tutorial Actions: A Decision-Theoretic Approach. International Journal of Artificial Intelligence in Education 14(3-4), 235–278 (2004)

    Google Scholar 

  • Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  • Reye, J.: Two-phase updating of student models based on dynamic belief networks. In: Goettl, B.P., Halff, H.M., Redfield, C.L., Shute, V.J. (eds.) ITS 1998. LNCS, vol. 1452, pp. 274–283. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  • Russel, S., Norvig, P.: Artificial Intelligence - A Modern Approach, 3rd edn. Prentice Hall, Englewood Cliffs (2010)

    Google Scholar 

  • VanLehn, K., Niu, Z.: Bayesian student modeling, user interfaces and feedback: A sensitivity analysis. International Journal of Artificial Intelligence in Education 12, 154–184 (2001)

    Google Scholar 

  • Zapata-Rivera, D., Greer, J.: Interacting with Inspectable Bayesian Student Models. International Journal of Artificial Intelligence in Education 14(2), 127–163 (2004)

    Google Scholar 

  • Zhou, X., Conati, C.: Inferring User Goals from Personality and Behavior in a Causal Model of User Affect. In: UI 2003, International Conference on Intelligent User Interfaces, pp. 211–281. ACM Press, New York (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Conati, C. (2010). Bayesian Student Modeling. In: Nkambou, R., Bourdeau, J., Mizoguchi, R. (eds) Advances in Intelligent Tutoring Systems. Studies in Computational Intelligence, vol 308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14363-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14363-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14362-5

  • Online ISBN: 978-3-642-14363-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics