Skip to main content

Functional Non-rigid Registration Validation: A CT Phantom Study

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6204))

Abstract

Validation of respiratory motion estimation is indispensable for a variety of clinical applications. For CT lung registration, current approaches employ manually defined landmark sets or contours and compute a target registration error (TRE) to quantify registration accuracy. Preferably, the landmark set is well-dispersed to reflect for lung anatomy with its varying degrees of stiffness. A recent comparison study, however, revealed that the TRE is not sufficient for functional lung analysis.

On the basis of a compressible CT phantom functional lung analysis is addressed. Non-plausible expansion patterns as they occur for CT lung data are analyzed. Motivated by the relation of Hounsfield value and local volume change, local stiffness is incorporated into registration such that an improved functional lung analysis is achieved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. West, J., Fitzpatrick, J.M., Wang, M.Y., Dawant, B.M., Maurer Jr., C.R., et al.: Comparison and evaluation of retrospective intermodality brain image registration techniques. J. Comput. Assist. Tomogr. 21(4), 554–566 (1997)

    Article  Google Scholar 

  2. Ding, K., Cao, K., Christensen, G.E., Hoffman, E.A., Reinhardt, J.M.: Registration-based regional lung mechanical analysis: retrospectively reconstructed dynamic imaging versus static breath-hold image acquisition. In: SPIE, vol. 7262, pp. 72620D–72620D–9 (2009)

    Google Scholar 

  3. Castillo, R., Castillo, E., Guerra, R., Johnson, V.E., McPhail, T., Garg, A.K., Guerrero, T.: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys. Med. Biol. 54, 1849–1870 (2009)

    Article  Google Scholar 

  4. Murphy, K., van Ginneken, B., Pluim, J.P.W., Klein, S., Staring, M.: Semi-automatic reference standard construction for quantitative evaluation of lung CT registration. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 1006–1013. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Kabus, S., Klinder, T., Murphy, K., van Ginneken, B., Lorenz, C., Pluim, J.P.W.: Evaluation of 4D-CT lung registration. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 747–754. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Reinhardt, J.M., Ding, K., Cao, K., Christensen, G.E., Hoffman, E.A., Bodas, S.V.: Registration-based estimates of local lung tissue expansion compared to xenon-CT measures of specific ventilation. Med. Image. Anal. 12(6), 752–763 (2008)

    Article  Google Scholar 

  7. Guerrero, T., Sanders, K., Castillo, E., Zhang, Y., Bidaut, L., Pan, T., Komaki, R.: Dynamic ventilation imaging from four-dimensional computed tomography. Phys. Med. Biol. 51(4), 777–791 (2006)

    Article  Google Scholar 

  8. Yamamoto, T., Kabus, S., von Berg, J., Lorenz, C., Keall, P.J.: The impact of four-dimensional computed tomography pulmonary ventilation imaging-based functional avoidance for lung cancer radiotherapy. In: IJROBP (accepted 2010)

    Google Scholar 

  9. Levitzky, M.G.: Pulmonary Physiology, 7th edn. McGraw-Hill, New York (2007)

    Google Scholar 

  10. Modersitzki, J.: Numerical methods for image registration. OUP, Oxford (2004)

    Google Scholar 

  11. Kabus, S., Franz, A., Fischer, B.: Variational image registration with local properties. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds.) WBIR 2006. LNCS, vol. 4057, pp. 92–100. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Ruan, D., Fessler, J.A., Roberson, M., Balter, J., Kessler, M.: Nonrigid registration using regularization that accomodates local tissue rigidity. In: SPIE, vol. 6144, pp. 614412-1–614412-9 (2006)

    Google Scholar 

  13. Kabus, S., Franz, A., Fischer, B.: Spatially varying elasticity in image registration. Methods Inf. Med. 46(3), 287–291 (2007)

    Google Scholar 

  14. Yin, Y., Hoffman, E.A., Lin, C.-L.: Mass preserving nonrigid registration of CT lung images using cubic B-spline. Med. Phys. 36(9), 4213–4222 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kabus, S., Klinder, T., von Berg, J., Lorenz, C. (2010). Functional Non-rigid Registration Validation: A CT Phantom Study. In: Fischer, B., Dawant, B.M., Lorenz, C. (eds) Biomedical Image Registration. WBIR 2010. Lecture Notes in Computer Science, vol 6204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14366-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14366-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14365-6

  • Online ISBN: 978-3-642-14366-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics