Skip to main content

Registration of 2D Images from Fast Scanning Ophthalmic Instruments

  • Conference paper
Book cover Biomedical Image Registration (WBIR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6204))

Included in the following conference series:

Abstract

Images from high-resolution scanning ophthalmic instruments are significantly distorted due to eye movement. Accurate image registration is required to successfully image subjects who are unable to fixate due to retinal conditions. Moreover, all scanning ophthalmic imaging modalities using adaptive optics will benefit from image registration, even in subjects with good fixation and anaesthetized animals. Transformation functions used to map two images could in principle be very complex. Here, we show that when the scanning in ophthalmic instruments is sufficiently fast with respect to the speed of involuntary eye movement, these mapping functions become the addition of a linear term and a single variable function. Then, based on experimental data on eye movement amplitude and speed of the fixating eye, minimum sampling frequencies for these instruments are discussed. Finally, a simple method for estimating the image transformation functions by taking advantage of the finite bandwidth of the motion signals is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liang, J., Williams, D.R., Miller, D.T.: Supernormal vision and high-resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A 14(11), 2884–2892 (1997)

    Article  Google Scholar 

  2. Rha, J., Jonnal, R.S., Thorn, K.E., Qu, J., Zhang, Y., Miller, D.T.: Adaptive optics flood-illumination camera for high speed retinal imaging. Opt. Exp. 14(10), 4552–4569 (2006)

    Article  Google Scholar 

  3. Hermann, B., Fernandez, E.J., Unterhuber, A., Sattmann, H., Fercher, A.F., Drexler, W., Prieto, P.M., Artal, P.: Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt. Lett. 29(18), 2142–2144 (2004)

    Article  Google Scholar 

  4. Zawadzki, R., Jones, S., Olivier, S., Zhao, M., Bower, B., Izatt, J., Choi, S., Laut, S., Werner, J.: Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt. Exp. 13(21), 8532–8546 (2005)

    Article  Google Scholar 

  5. Fernandez, E.J., Povazay, B., Hermann, B., Unterhuber, A., Sattmann, H., Prieto, P.M., Leitgeb, R., Ahnelt, P., Artal, P., Drexler, W.: Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator. Vision Res. 14(20), 8900–8917 (2006)

    Google Scholar 

  6. Zhang, Y., Rha, J., Jonnal, R., Miller, D.: Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. Opt. Exp. 13(12), 4792–4811 (2005)

    Article  Google Scholar 

  7. Merino, D., Dainty, C., Bradu, A., Podoleanu, A.G.: Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy. Opt. Exp. 14(8), 3345–3353 (2006)

    Article  Google Scholar 

  8. Bigelow, C.E., Iftimia, N.V., Ferguson, R.D., Ustun, T.E., Bloom, B., Hammer, D.X.: Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging. J. Opt. Soc. Am. A 24(5), 1327–1336 (2007)

    Article  Google Scholar 

  9. Roorda, A., Romero-Borja, F., Donnelly III, W.J., Queener, H., Hebert, T.J., Campbell, M.C.W.: Adaptive optics scanning laser ophthalmoscopy. Opt. Exp. 10(9), 405–412 (2002)

    Google Scholar 

  10. Gray, D.C., Merigan, W., Wolfing, J.I., Gee, B.P., Porter, J., Dubra, A., Twietmeyer, T.H., Ahamd, K., Tumbar, R., Reinholz, F., Williams, D.R.: In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells. Opt. Exp. 14(16), 7144–7158 (2006)

    Article  Google Scholar 

  11. Burns, S.A., Tumbar, R., Elsner, A.E., Ferguson, D., Hammer, D.X.: Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope. J. Opt. Soc. Am. A 24(5), 1313–1326 (2007)

    Article  Google Scholar 

  12. Morgan, J.I.W., Dubra, A., Wolfe, R., Merigan, W.H., Williams, D.R.: In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic. Invest. Ophth. Vis. Sci. 50(3), 1350–1359 (2009)

    Article  Google Scholar 

  13. American National Standard for safe use of lasers (ANSI Z136.1), Laser Institute of America, Orlando, Florida, USA (2007)

    Google Scholar 

  14. Stevenson, S.B., Roorda, A.: Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy. In: Proc. SPIE, vol. 5688A, pp. 145–151 (2005)

    Google Scholar 

  15. Hart Jr., W.H.: Adler’s physiology of the eye: clinical application, 9th edn., Mosby-Year Book Inc., 11830 Westline Industrial Drive, St. Louis, Missouri 63146 (1992)

    Google Scholar 

  16. Riggs, L.A., Armington, J.C., Ratliff, F.: Motions of the retinal image during fixation. J. Opt. Soc. Am. 44(4), 315–321 (1954)

    Article  Google Scholar 

  17. Eizenman, M., Hallett, P.E., Frecker, R.C.: Power spectra for ocular drift and tremor. Vision Res. 25(11), 1635–1640 (1985)

    Article  Google Scholar 

  18. Ditchburn, R.W., Ginsborg, B.L.: Involuntary eye movements during fixation. J. Physiol. 119, 1–17 (1953)

    Google Scholar 

  19. Whittaker, S.G., Budd, J., Cummings, R.W.: Eccentric fixation with macular scotoma. Invest. Ophth. Vis. Sci. 29(2), 268–278 (1988)

    Google Scholar 

  20. Smith, G., Atchison, D.A.: The eye and visual optical instrumentation, 1st edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  21. Charman, N.: Handbook of optics: Vision and vision optics. In: Bass, M. (ed.) Optics of the Eye, ch. 1, 3rd edn., vol. III. Mc Graw Hill, New York (2009)

    Google Scholar 

  22. Arathorn, D.W., Yang, Q., Vogel, C.R., Zhang, Y., Tiruveedhula, P., Roorda, A.: Retinally stabilized cone-targeted stimulus delivery. Opt. Exp. 15(21), 13731–13744 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dubra, A., Harvey, Z. (2010). Registration of 2D Images from Fast Scanning Ophthalmic Instruments. In: Fischer, B., Dawant, B.M., Lorenz, C. (eds) Biomedical Image Registration. WBIR 2010. Lecture Notes in Computer Science, vol 6204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14366-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14366-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14365-6

  • Online ISBN: 978-3-642-14366-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics