Skip to main content

The Implementation of Regional Atmospheric Model Numerical Algorithms for CBEA-Based Clusters

  • Conference paper
  • 1316 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6067))

Abstract

Regional atmospheric models are important tools for short-range weather predictions and future climate change assessment. The further enhancement of spatial resolution and development of physical parameterizations in these models need the effective implementation of the program code on multiprocessor systems. However, nowadays typical cluster systems tend to grow into very huge machines with over petaflop performance, while individual computing node design stays almost unchanged, and growth is achieved simply by using more and more nodes, rather than increasing individual node performance and keeping adequate power consuming. This leads to worse scalability of data-intensive applications due to increasing time consumption for data passing via clusters interconnect. Especially some of numerical algorithms (e.g. those solving the Poisson equation) satisfactorily scaling at previous generation cluster systems do not utilize the computational resources of clusters with thousands cores effectively. This prompts to study the performance of numerical schemes of regional atmospheric models on processor architectures significantly different from those used in conventional clusters. Our approach focuses on improving the performance of time explicit numerical schemes for Reynolds-averaged equations of atmospheric hydrodynamics and thermodynamics by parallelization on CellBE processors. The optimization of loops for numerical schemes with local data dependence pattern and with independent iterations is presented. Cell-specific workloading managers are built on top of existing numerical schemes implementations, conserving the original source code layout and bringing high speed-ups over serial version on QS22 blade server. Intercomparison between Cell and other multicore architectures is also provided. Targeting the next generation of MPI-CellBE hybrid cluster architectures, out method aims to provide additional scalability to MPI-based codes of atmospheric models and related applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Michalakes, J., Dudhia, J., Gill, D., Henderson, T., Klemp, J., Skamarock, W., Wang, W.: The Weather Research and Forecasting Model: software architecture and performance. In: Mozdzynski, G. (ed.) 11th ECMWF Workshop on the use of High Performance Computing in Meteorology, Reading, UK (2004)

    Google Scholar 

  2. Dubtsov, R., Semenov, A., Shkurko, D.: WRF performance on Intel platforms. In: 8th WRF Users Workshop, p. 6.4 (2007)

    Google Scholar 

  3. Zhou, S., Duffy, D., Clune, T., Williams, S., Suarez, M., Halem, M.: Accelerate Climate Models with the IBM Cell Processor, American Geophysical Union, Fall Meeting, abstract #IN21C-02 (2008)

    Google Scholar 

  4. Michalakes, J., Vachharajani, M.: GPU acceleration of numerical weather prediction. In: IEEE International Symposium on Parallel and Distributed Processing, April 14-18, pp. 1–7 (2008)

    Google Scholar 

  5. Miranda, P.M.A., James, I.N.: Non-linear three-dimensional effects on gravity wave drag: splitting flow and breaking waves. Quart. J.R. Met. Soc. 118, 1057–1082 (1992)

    Article  Google Scholar 

  6. Chou, M.-D., Suarez, M.J., Liang, X.Z., Yan, M.M.-H.: A thermal infrared radiation parameterization for atmospheric studies: Technical Report Series on Global Modeling and Data Assimilation, NASA/TM-2001-104606, vol. 19, 55 p. (2003)

    Google Scholar 

  7. Chou, M.-D., Suarez, M.J.: A solar radiation parameterization for atmospheric studies: Technical Report Series on Global Modeling and Data Assimilation, NASA/TM-1999-10460, vol. 15, 42 p. (2002)

    Google Scholar 

  8. Mahfouf, J.F., Manzi, A.O., Noilhan, J., Giordani, H., Deque, M.: The land surface scheme ISBA within the Meteo-France Climate Model ARPEGE. P.1: Implementation and preliminary results. J. of Climate 8, 2039–2057 (1995)

    Article  Google Scholar 

  9. Volodin, E.M., Lykosov, V.N.: Parameterization of heat and moisture transfer processes in the soil-vegetation system for the general atmospheric circulation modeling. 1. Model description and simulations using local observation data. Izvestiya RAS, Atm. Ocean Phys. 34, 453–465 (1998)

    Google Scholar 

  10. Stepanenko, V.M., Lykosov, V.N.: Numerical modeling of heat and moisture transfer processes in the soil-lake system. Russian Journal of Meteorology and Hydrology 3, 95–104 (2005)

    Google Scholar 

  11. Stepanenko, V.M., Mikushin, D.N.: Numerical modeling of mezoscale dynamics in the atmosphere and tracer transport above hydrologically inhomogeneous land. Computational Technologies 13(Special issue 3), 104–110 (2008)

    Google Scholar 

  12. Takahashi, D.: An Implementation of Parallel 3-D FFT with 2-D Decomposition on a Massively Parallel Cluster of Multi-Core Processors. In: Wyrzykowski, R., et al. (eds.) PPAM 2009, Part I. LNCS, vol. 6067, pp. 606–614. Springer, Heidelberg (2010)

    Google Scholar 

  13. Supercomputer SKIF-MSU Chebyshev, http://parallel.ru/cluster/skif_msu.html

  14. Altevogt, P., Boettiger, H., Kiss, T., Krnjajic, Z.: Evaluating IBM BladeCenter QS21 hardware performance. IBM Multicore Acceleration Technical Library, 2008, http://www.ibm.com/developerworks/library/pa-qs21perf/index.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mikushin, D., Stepanenko, V. (2010). The Implementation of Regional Atmospheric Model Numerical Algorithms for CBEA-Based Clusters. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2009. Lecture Notes in Computer Science, vol 6067. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14390-8_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14390-8_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14389-2

  • Online ISBN: 978-3-642-14390-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics