Skip to main content

Regression Models for Spatial Data: An Example from Precision Agriculture

  • Conference paper
Advances in Data Mining. Applications and Theoretical Aspects (ICDM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6171))

Included in the following conference series:

Abstract

The term precision agriculture refers to the application of state-of-the-art GPS technology in connection with small-scale, sensor-based treatment of the crop. This data-driven approach to agriculture poses a number of data mining problems. One of those is also an obviously important task in agriculture: yield prediction. Given a precise, geographically annotated data set for a certain field, can a season’s yield be predicted?

Numerous approaches have been proposed to solving this problem. In the past, classical regression models for non-spatial data have been used, like regression trees, neural networks and support vector machines. However, in a cross-validation learning approach, issues with the assumption of statistical independence of the data records appear. Therefore, the geographical location of data records should clearly be considered while employing a regression model. This paper gives a short overview about the available data, points out the issues with the classical learning approaches and presents a novel spatial cross-validation technique to overcome the problems and solve the aforementioned yield prediction task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anselin, L.: Spatial Econometrics, pp. 310–330. Basil Blackwell, Oxford (2001)

    Google Scholar 

  2. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pp. 144–152. ACM Press, New York (1992)

    Chapter  Google Scholar 

  3. Breiman, L.: Bagging predictors. Technical report, Department of Statistics, Univ. of California, Berkeley (1994)

    Google Scholar 

  4. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  5. Corwin, D.L., Lesch, S.M.: Application of soil electrical conductivity to precision agriculture: Theory, principles, and guidelines. Agron J. 95(3), 455–471 (2003)

    Google Scholar 

  6. Cressie, N.A.C.: Statistics for Spatial Data. Wiley, New York (1993)

    Google Scholar 

  7. Griffith, D.A.: Spatial Autocorrelation and Spatial Filtering. In: Advances in Spatial Science, Springer, New York (2003)

    Google Scholar 

  8. Gunn, S.R.: Support vector machines for classification and regression. Technical Report, School of Electronics and Computer Science, University of Southampton, Southampton, U.K (1998)

    Google Scholar 

  9. Liu, J., Miller, J.R., Haboudane, D., Pattey, E.: Exploring the relationship between red edge parameters and crop variables for precision agriculture. In: 2004 IEEE International Geoscience and Remote Sensing Symposium, vol. 2, pp. 1276–1279 (2004)

    Google Scholar 

  10. Goodchild, M., Anselin, L., Appelbaum, R., Harthorn, B.: Toward spatially integrated social science. International Regional Science Review 23, 139–159 (2000)

    Google Scholar 

  11. Meier, U.: Entwicklungsstadien mono- und dikotyler Pflanzen. Biologische Bundesanstalt für Land- und Forstwirtschaft, Braunschweig, Germany (2001)

    Google Scholar 

  12. Mejía-Guevara, I., Kuri-Morales, Á.: Evolutionary feature and parameter selection in support vector regression. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS (LNAI), vol. 4827, pp. 399–408. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Middleton, E.M., Campbell, P.K.E., Mcmurtrey, J.E., Corp, L.A., Butcher, L.M., Chappelle, E.W.: ”Red edge” optical properties of corn leaves from different nitrogen regimes. In: 2002 IEEE International Geoscience and Remote Sensing Symposium, vol. 4, pp. 2208–2210 (2002)

    Google Scholar 

  14. Moran, P.A.P.: Notes on continuous stochastic phenomena. Biometrika 37, 17–33 (1950)

    MATH  MathSciNet  Google Scholar 

  15. Neeteson, J.J.: Nitrogen Management for Intensively Grown Arable Crops and Field Vegetables, ch. 7, pp. 295–326. CRC Press, Haren (1995)

    Google Scholar 

  16. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2009) ISBN 3-900051-07-0

    Google Scholar 

  17. Ruß, G.: Data mining of agricultural yield data: A comparison of regression models. In: Perner, P. (ed.) Advances in Data Mining. Applications and Theoretical Aspects. LNCS, vol. 5633, pp. 24–37. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Ruß, G., Kruse, R., Schneider, M., Wagner, P.: Estimation of neural network parameters for wheat yield prediction. In: Bramer, M. (ed.) AI in Theory and Practice II, July 2008. Proceedings of IFIP-2008, vol. 276, pp. 109–118. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Ruß, G., Kruse, R., Schneider, M., Wagner, P.: Optimizing wheat yield prediction using different topologies of neural networks. In: Verdegay, J., Ojeda-Aciego, M., Magdalena, L. (eds.) Proceedings of IPMU 2008, June 2008, pp. 576–582. University of Málaga (2008)

    Google Scholar 

  20. Ruß, G., Kruse, R., Schneider, M., Wagner, P.: Visualization of agriculture data using self-organizing maps. In: Allen, T., Ellis, R., Petridis, M. (eds.) Applications and Innovations in Intelligent Systems, January 2009. Proceedings of AI-2008, vol. 16, pp. 47–60, BCS SGAI. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Ruß, G., Kruse, R., Wagner, P., Schneider, M.: Data mining with neural networks for wheat yield prediction. In: Perner, P. (ed.) ICDM 2008. LNCS (LNAI), vol. 5077, pp. 47–56. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Technical report, Statistics and Computing (1998)

    Google Scholar 

  23. Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging (Springer Series in Statistics). Springer, Heidelberg (June 1999)

    MATH  Google Scholar 

  24. Weigert, G.: Data Mining und Wissensentdeckung im Precision Farming - Entwicklung von ökonomisch optimierten Entscheidungsregeln zur kleinräumigen Stickstoff-Ausbringung. PhD thesis, TU München (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ruß, G., Kruse, R. (2010). Regression Models for Spatial Data: An Example from Precision Agriculture. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2010. Lecture Notes in Computer Science(), vol 6171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14400-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14400-4_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14399-1

  • Online ISBN: 978-3-642-14400-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics