Skip to main content

Mining Relationship Associations from Knowledge about Failures Using Ontology and Inference

  • Conference paper
Book cover Advances in Data Mining. Applications and Theoretical Aspects (ICDM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6171))

Included in the following conference series:

Abstract

Mining general knowledge about relationships between concepts described in the analyses of failure cases could help people to avoid repeating previous failures. Furthermore, by representing knowledge using ontologies that support inference, we can identify relationships between concepts more effectively than text-mining techniques. A relationship association is a form of knowledge generalization that is based on binary relationships between entities in semantic graphs. Specifically, relationship associations involve two binary relationships that share a connecting entity and that co-occur frequently in a set of semantic graphs. Such connected relationships can be considered as generalized knowledge mined from a set of knowledge resources, such as failure case descriptions, that are formally represented by the semantic graphs. This paper presents the application of a technique to mine relationship associations from formalized semantic descriptions of failure cases. Results of mining relationship associations in a knowledge base containing 291 semantic graphs representing failure cases are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Schneider, P.P.: The Description Logic Handbook: Theory, implementation and applications. CUP (2003)

    Google Scholar 

  2. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A Comparison of String Distance Metrics for Name-Matching Tasks. In: Proc. of the ACM Workshop on Data Cleaning, Record Linkage and Object Identification 2003 (2003)

    Google Scholar 

  3. Guo, W., Kraines, S.: Explicit Scientific Knowledge Comparison Based on Semantic Description Matching. In: Proc. of American Society for Information Science and Technology 2008 Annual Meeting (2008)

    Google Scholar 

  4. Guo, W., Kraines, S.B.: Mining Common Semantic Patterns from Descriptions of Failure Knowledge. In: Proc. of the 6th International Workshop on Mining and Learning with Graphs (2008)

    Google Scholar 

  5. Guo, W., Kraines, S.B.: Discovering Relationship Associations in Life Sciences Using Ontology and Inference. In: Proc. of the 1st International Conference on Knowledge Discovery and Information Retrieval, pp. 10–17 (2009)

    Google Scholar 

  6. Guo, W., Kraines, S.B.: Extracting Relationship Associations from Semantic Graphs in Life Sciences. In: Fred, A., et al. (eds.) Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K 2009, Revised Selected Papers. CCIS. Springer, Heidelberg (2010)

    Google Scholar 

  7. Hatamura, Y., IIno, K., Tsuchiya, K., Hamaguchi, T.: Structure of Failure Knowledge Database and Case Expression. CIRP Annals- Manufacturing Technology 52(1), 97–100 (2003)

    Article  Google Scholar 

  8. Inokuchi, A., Washio, T., Motoda, H.: An Apriori-based Algorithm for Mining Frequent Substructures from Graph Data. In: Proc. of the 4th European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 13–23 (2000)

    Google Scholar 

  9. Inokuchi, A., Washio, T., Nishimura, Y.: A Fast Algorithm for Mining Frequent Connected Subgraphs. IBM Research Report, RT0448 (Feburary 2002)

    Google Scholar 

  10. Inokuchi, A.: Mining Generalized Substructures from a Set of Labeled Graphs. In: Proc. of the 4th IEEE International Conference on Data Mining, pp. 415–418 (2004)

    Google Scholar 

  11. JST Failure Knowledge Database, http://shippai.jst.go.jp/en/

  12. Kraines, S., Guo, W.: Using Human Authored Description Logics ABoxes as Concept Models for Natural Language Generation. In: Proc. of American Society for Information Science and Technology 2009 Annual Meeting (2009)

    Google Scholar 

  13. Kraines, S., Guo, W., Kemper, B., Nakamura, Y.: EKOSS: A Knowledge-User Centered Approach to Knowledge Sharing, Discovery, and Integration on the Semantic Web. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 833–846. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Liao, T.W., Zhang, Z.M., Mount, C.R.: A Case-Based Reasoning System for Identifying Failure Mechanisms. Engineering Applications of Artificial Intelligence 13, 199–213 (2000)

    Article  Google Scholar 

  15. Mooney, J.R., Melvile, P., Tang, L.R., Shavlik, J., Castro Dutra, I., Page, D., Costa, V.S.: Relational Data Mining with Inductive Logic Programming for Link Discovery. In: Proc. of the National Science Foundation Workshop on Next Generation Data Mining (2002)

    Google Scholar 

  16. Nakao, M., Tsuchiya, K., Harita, Y., Iino, K., Kinukawa, H., Kawagoe, S., Koike, Y., Takano, A.: Extracting Failure Knowledge with Associative Search. In: Satoh, K., Inokuchi, A., Nagao, K., Kawamura, T. (eds.) JSAI 2007. LNCS (LNAI), vol. 4914, pp. 269–276. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. OWL Web Ontology Language Guide, http://www.w3.org/TR/owl-guide/

  18. Rajaraman, K., Tan, A.H.: Mining Semantic Networks for Knowledge Discovery. In: Proc. of the 3rd IEEE International Conference on Data Mining (2003)

    Google Scholar 

  19. Tamura, M.: Learn from Failure! Failure Knowledge in Chemical Substances and Plants and Its Use. Chemistry 58(8), 24–29 (2003) (Japanese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, W., Kraines, S.B. (2010). Mining Relationship Associations from Knowledge about Failures Using Ontology and Inference. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2010. Lecture Notes in Computer Science(), vol 6171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14400-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14400-4_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14399-1

  • Online ISBN: 978-3-642-14400-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics