
Communicating Process Architectures 2009
Peter Welch, Herman Roebbers and Tobe Announced (Eds.)
IOS Press, 2009
c© 2009 The authors and IOS Press. All rights reserved.

1

An Application of CoSMoS Design
Methods to Pedestrian Simulation

Sarah CLAYTON 1, Neil URQUHART and Jon KERRIDGE

School of Computing, Edinburgh Napier University, Edinburgh, EH10 5DT.

Abstract. In this paper, we discuss the implementation of a simple pedestrian sim-
ulation that uses a multi agent based design pattern developed by the CoSMoS re-
search group. Given the nature of Multi Agent Systems (MAS), parallel processing
techniques are inevitably used in their implementation. Most of these approaches rely
on conventional parallel programming techniques, such as threads, Message Passing
Interface (MPI) and Remote Method Invocation (RMI). The CoSMoS design patterns
are founded on the use of Communicating Sequential Processes (CSP), a parallel com-
puting paradigm that emphasises a process oriented rather than object oriented pro-
gramming perspective.

Keywords. JCSP, CoSMoS design methods, pedestrian simulation, multi-agent
systems

1. Introduction

The realistic simulation of pedestrian movement is a challenging problem, a large number
of individual pedestrians may be included in the simulation. Rapid decisions must be made
about the trajectory of each pedestrian in relation to the environment and other pedestrians
in the vicinity. Parallel processing has allowed such simulations to include tens of thousands
of pedestrian processes travelling across large areas. The multi-agent systems paradigm has
recently been used to significant effect within pedestrian simulation, typically each pedestrian
within the simulation equates to a specific agent. Examples of these are described in [1,2]. In
[2], the parallel aspect of the simulation is implemented using MPI.

The Complex Systems Modelling and Simulation infrastructure (CoSMoS) research
project [3], a successor to the TUNA [4] research project, is an attempt to develop reusable
engineering techniques that can be applied across a whole range of MAS and simulations.
Examples include three dimensional simulations of blood clot formation in blood vessels,
involving many millions of processes running across a number of networked computers [5,6].

The aims of the CoSMoS project are to provide a ‘massively-concurrent and distributed’
[7] infrastructure based on a process-oriented programming model. This process-oriented
paradigm derives from the process algebras of CSP [8] and π-calculus [9]. The purpose of
these methods is the elimination of perennial problems in concurrency arising from con-
ventional parallel techniques, such as threads and locks. These problems include deadlock,
livelock and race hazards.

Initial demonstrations produced by the CoSMoS research group are implemented using
occam-π [10], a language developed to enable the direct implementation of concurrent sys-
tems complying with the principles of CSP and π-calculus. To this end, the Kent Retargetable
occam Compiler (KRoC) [11] was developed at the University of Kent Computing Labora-

1Corresponding Author: Sarah Clayton, School of Computing, Edinburgh Napier University, Merchiston
Campus, Edinburgh EH10 5DT, UK.. Tel: +44 131 455 2477. E-mail: s.clayton@napier.ac.uk.



2 S. Clayton et al. / CoSMoS Pedestrian Simulation

tory. Similar capabilities are also provided by the Java Communicating Sequential Processes
(JCSP) [12] packages, also developed at the University of Kent. As a library for the main-
stream Java language, JCSP is more accessible to general programmers. It provides a means
of implementing the semantics of CSP, that uses the underlying Java threading model, with-
out the developer needing to be concerned with the details. The work described here has been
created using JCSP.

2. CSP and the π-calculus

In this section, we give a brief summary of the main concepts within CSP and the π-calculus.
They are part of a rich set of semantics for concurrent programming, made directly available
to programmers through the occam-π programming language and the JCSP library for Java.

CSP and the π-calculus are formalisms for designing and reasoning about concurrent
systems. Development environments that allow the application of these formalisms encour-
age a process-oriented, rather than object-oriented approach, to programming.

2.1. Processes

Processes have their own thread of control and entirely encapsulate all their data and maintain
their own state. These cannot be altered by other processes [13]. Other processes may send
a message to a process requesting that its state be updated; such messages may be refused
by the receiving process until it is in a correct state to deal with it. This gives two important
wins for concurrent design: firstly, state never changes without the process owning that state
making the change and secondly, a process never needs to manage data for requests with
which it cannot deal. No locks are needed. Of course, care must be taken to avoid deadlocks
caused by the refusal of messages.

2.2. Networks, Channels and Barriers

Processes combine in parallel to form networks. Processes interact through synchronising on
shared events. Instead of being propagated by listeners, events in process oriented systems
are built upon channels and barriers. A network of processes is itself a process, so layered
architectures – reflecting the layered structures of real life – are simply modelled.

Barriers are a fundamental part of Bulk Synchronous Processing (BSP) [14]. They are
directlty modelled by multiway events in in CSP. They allow multiple and heterogeneous pro-
cesses to synchronise their activities, and enforce lockstep parallelism between them. When a
process synchronises on a Barrier, it waits until all other processes enrolled on the Barrier
have also synchronised before continuing processing.

Processes communicate privately to each other using channels. Channels are syn-
chronous. Any process writing to a channel will block until the reader is able to process the
message. Although it is possible to implement buffering in these channels (JCSP supports this
directly), no buffered channels are used here. One2OneChannels allow point to point commu-
nication between processes, and Any2OneChannels allow many processes to communicate
with a single process. Other channel types are available but are not discussed here.

3. Implementation

The structure of the simulation is based partly on the server structure described in [2] and
the description of space described by Andrews et al. in [7]. The simulation uses fine grained
parallelism, and is scalable. It has three main elements, Agents, Sites, and an overall
SiteServer. These are implemented as processes rather than passive objects, and communi-



S. Clayton et al. / CoSMoS Pedestrian Simulation 3

cate with each other using channels, rather than through method calls. This allows processes
and their data to be completely encapsulated. Any change of state or control information is
communicated, as necessary, to other processes through channels.

The space to be simulated is modelled by multiple Site processes, in a way similar to
[7]. The SiteServer process acts as a server to all its client Sites. A Site process acts
as a server to an ever-changing set of mobile Agent clients – see Figure 1. The use of a
client-server architecture here eliminates the dangers of deadlock [15].

Figure 1. Server layers based on Quinn et al. [2]

Agents are mobile across sites: they may deregister themselves from any given Site

and migrate to another. Each Site has a register channel for this purpose, where it receives
registration requests from Agents, in the form of their server channel ends. This allows com-
munication to be immediately established between the Agent as client and the Site as server.
The process of registration (by a SiteServer) is described in the code in Listing 1:

private void register()
{

boolean polling = true;
timer.setAlarm(timer.read() + timeout);
Vector<ServerChannelEnd> servers = new Vector<ServerChannelEnd>();
while (polling)
{

int index = alternative.select(); // wait for a timeout or channel register

if (index == TIMER)
polling = false;

else if (index == CHAN)
{

ServerChannelEnd s = (ServerChannelEnd) register.read();
servers.add(s);
timer.setAlarm(timer.read() + timeout);

}
}
for (ServerChannelEnd newserver : servers)
{

newserver.read();
newserver.write("Hello");
server.add(newserver);

}
}

Listing 1: Code for client registration



4 S. Clayton et al. / CoSMoS Pedestrian Simulation

The SiteServer operates in a manner conceptually similar to that described in [2].
Agents communicate their current location to the Site with which they are currently reg-
istered. Sites then engage in a client-server communication with the SiteServer, which
aggregates all this information. In the next phase of the communication, the SiteServer

returns this global information to each Site, which then passes it on to each Agent. Agents
then act on this information and alter their current position. This is described in Table 1 be-
low, and compares the three main processes of the simulation. The implementation of the
pedestrian simulation is illustrated in Fig. 1.

3.1. Discover and Modify

In order to ensure that all processes are updated and modified in parallel, two Barriers
are used: discover and modify. During the discover phase, all Sites are updated by the
SiteServer with the global coordinates of every Agent. Each Site then updates all Agents
that are registered with it.

As explained in [16,6], autonomous software agents perceive their environment and then
act on it. This creates a two phase process for each step of the simulation, discovery and
modification, that all processes comply with. These phases are enforced by barriers, described
above. The tasks carried out by each type of process for each step of the simulation are
described in the Table 1.

Table 1. Processing Sequence

Agent Site SiteServer
Synchronise on discover barrier

Request global → Receive requests
coordinates
Receive global ← Send global
coordinates coordinates

Request update → Receive requests
Receive update ← Send global

coordinates
Synchronise on modify barrier

Modify state

Send state → Receive state
Receive ACK ← Send ACK

Send updates → Receive updates
Receive ACK ← Send ACK

Aggregate updates
into global
coordinates

All communications between processes are on a client-server basis. In effect, a client-
server relationship involves the client sending a request to the server, to which the server is
guaranteed to respond [17,15]. Processes at the same level do not communicate directly with
each other, only with the process at the next level up. As stated in [6]: “such communication
patterns have been proven to be deadlock free”. See [15] for a proof.



S. Clayton et al. / CoSMoS Pedestrian Simulation 5

3.2. Description of Space

The division of space between sites allows for a simulation that is scalable and robust, sep-
arating out the management of agents between many processes. The Site processes them-
selves have no knowledge of how they are situated. Each Agent class has a Map object that
provides information about the area that a Site is associated with and the means with which
the Agent can register with this Site. In this way, Site processes can be associated with
spaces of any shape or size. These spaces can range from triangles, simple co-planar two di-
mensional areas, complex three dimensional shapes, to higher dimensions with dynamically
forming and shifting worm-holes.

At the edges of each space, an Agent may either migrate to the next Site, or encounter
a hard boundary, requiring it to change direction. This is determined by the existence of a
reference to the adjacent Site, if one exists. This is a reference to the Site’s register channel,
an Any2OneChannel, which allows many writers (the Agents seeking to register) and only
one reader (the destination Site).

The register process happens in two phases. First the Agent must inform its current Site
that it wishes to deregister, during the discovery phase. During the modify phase, before any
other operation or communication is carried out, the Agent writes a reference to its commu-
nication channels to the register channel of the new Site, and waits for an acknowledgement.
In this way, while an arbitrary number of Agents may wish to migrate from Site to Site at
any one time, these attempts will always succeed. An image from the software is shown in
Fig. 2 below.

Figure 2. Pedestrian agents in the application showing the arc of their field of vision

The current work implements simple reactive agents. These contain little in the way
of intelligence in making their choices. Their field of view replicates that of humans. The
span of human vision is 160 degrees. Central vision only occupies 60 degrees of this, with
peripheral vision on each side occupying 50 degrees [18]. The minimum distance between
agents is delimited by the inner arc of their field of view. Should any other Agent approach
this, they will react by choosing a different direction.



6 S. Clayton et al. / CoSMoS Pedestrian Simulation

4. Results

A number of test runs were performed to evaluate how the simulation performed when the
number of agents was incremented. This was done in order to demonstrate the scalability
of the system. This test was carried out with one Site object, and the number of Agents
incremented by ten for each run. The results are summarised in Table 2.

Table 2. Results from test runs

Number Total Avg time per Avg time per
of agents time step (ms) Agent (ms)

10 151 15.11 1.51
20 412 20.62 1.03
30 845 28.17 0.94
40 1394 34.86 0.87
50 2057 41.13 0.82
60 2853 47.55 0.79
70 3741 53.44 0.76
80 5035 62.94 0.79
90 6207 68.97 0.77

100 7817 78.17 0.78
110 9401 85.46 0.78
120 11111 92.59 0.77
130 12923 99.41 0.76
140 15243 108.88 0.78
150 17454 116.36 0.78
160 20030 125.19 0.78
170 22251 130.89 0.77
180 25443 141.35 0.79
190 28694 151.02 0.79
200 31104 155.52 0.78

As can be seen from Table 2, the time to update each Agent during each step of the
simulation is more or less constant. This is illustrated in Fig. 3 below.

These average times tend to decrease as the number of Agents increase. This reflects
the overhead of setting up support processes, such as the display processes. Thereafter, the
average times per Agent tend to settle at around 0.78 ms. However, beyond a certain point,
the Java Virtual Machine (JVM) is no longer able to allocate any more threads and throws an
exception. At the same time, as discussed below, it is unlikely that the number of Agents will
exceed thirty in this application.

5. Conclusion

In this paper, the application of CoSMoS design patterns in the development of MAS simu-
lations has been discussed. The principles of concurrent processing using non-conventional
techniques based on CSP and π-calculus have been explained. The client-server pattern that
guarantees livelock and deadlock free concurrency has also been discussed. This offers a firm
foundation for future work, using MAS, to simulate pedestrian behaviour.



S. Clayton et al. / CoSMoS Pedestrian Simulation 7

Figure 3. Average update times per Agent (ms) by test run

6. Future Work

Although there is an upper limit to the number of threads the JVM can allocate, it would be
possible to increase the number of Agents by distributing the application across a number
of JVMs and networked computers. This can be done using the NetBarrier feature of the
development version of JCSP. However, this would require a redesign of the structure of the
application more in line with the occoids example described by Andrews et al. in [7] than the
layered server based structure of Quinn et al.’s work in [2].

Figure 4. Pedestrian trajectory recorded using infra-red sensors along a 15× 4m corridor

Although many simple agents have been used to simulate emergent behaviour [19], the
purpose of the TRAMP project [20] is the simulation of human behaviour derived from data
collected by infra-red sensors. As shown in Fig. 4 actual human movements, when navigating
across a space, are described by elegant and coherent curves. This is difficult to replicate
using simple agents. In order to achieve this aim, agents trained using Learning Classifier
Systems (LCS) [21] will be developed, and their interactions studied. The training data will
allow the creation of agents that display realistic behaviours.

The aim of the TRAMP research project is to simulate simple interactions between in-
dividuals, such as overtaking, group behaviour and obstacle avoidance, at the microscopic
level. Issues of emergence, at the macroscopic level, are not dealt with. The environment
being studied is relatively small, a straight corridor measuring 15× 4 metres. The density of
pedestrians passing through rarely exceeds 30 people. However, this provides a rich set of
data on microscopic behaviours.

References

[1] J. Dijkstra, H.J.P. Timmermans, and A.J. Jessurun. A Multi-Agent Cellular Automata System for Visu-
alising Simulated Pedestrian Activity. In S. Bandini and T. Worsch, editors, Theoretical and Practical



8 S. Clayton et al. / CoSMoS Pedestrian Simulation

Issues on Cellular Automata - Proceedings on the 4th International Conference on Cellular Automata for
research and Industry, pages 29–36, October 2000.

[2] M.J. Quinn, R.A. Metoyer, and K. Hunter-Zaworski. Parallel Implementation of the Social Forces Model.
Pedestrian and Evacuation Dynamics, pages 63–74, 2003.

[3] S. Stepney, P.H. Welch, J. Timmis, C. Alexander, F.R.M. Barnes, M. Bates, F.A.C. Polack, and A. Tyrrell.
CoSMoS: Complex Systems Modelling and Simulation infrastructure, April 2007. EPSRC grants
EP/E053505/1 and EP/E049419/1. URL: http://www.cosmos-research.org/.

[4] S. Stepney, P.H. Welch, F.A.C. Pollack, J.C.P. Woodcock, S. Schneider, H.E. Treharne, and A.L.C. Cav-
alcanti. TUNA: Theory Underpinning Nanotech Assemblers (Feasibility Study), January 2005. EPSRC
grant EP/C516966/1. Available from: http://www.cs.york.ac.uk/nature/tuna/index.htm.

[5] P.H. Welch, B. Vinter, and F. Barnes. Initial Experiences with occam-pi Simulations of Blood Clotting on
the Minimum Intrusion Grid. In H.R. Arabnia, editor, Proceedings of the 2005 International Conference
on Parallel and Distributed Processing Techniques and Applications (PDPTA’05), pages 201–207, Las
Vegas, Nevada, USA, June 2005.

[6] C.G. Ritson and P.H. Welch. A Process-Oriented Architecture for Complex System Modelling. In A.A.
McEwan, W. Ifill, and P.H. Welch, editors, Communicating Process Architectures 2007, pages 249–266,
July 2007.

[7] P. Andrews, A. Sampson, J.M. Bjorndalen, S. Stepney, J. Timmis, D. Warren, P.H. Welch, and J. Noble.
Investigating Patterns for the Process-Oriented Modelling and Simulation of Space in Complex Systems.
In S. Bullock, J. Noble, R. Watson, and M.A. Bedau, editors, Artificial Life XI: Proceedings of the Eleventh
International Conference on the Simulation and Synthesis of Living Systems, pages 17–24, 2008.

[8] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985. ISBN: 0-13-153271-5.
[9] R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge University Press, 1999.

[10] P.H. Welch and F. Barnes. Communicating Mobile Processes: Introducing occam-pi. In A.E. Abdal-
lah, C.B. Jones, and J.W. Sanders, editors, 25 Years of CSP, volume 3525 of Lecture Notes in Computer
Science, pages 175–210, April 2005.

[11] P.H. Welch, J. Moores, F.R.M. Barnes, and D.C. Wood. The KRoC Home Page, 2000. Available at:
http://www.cs.kent.ac.uk/projects/ofa/kroc/.

[12] P.H. Welch, N.C. Brown, J. Moores, K. Chalmers, and B. Sputh. Integrating and Extending JCSP. In A.A.
McEwan, W. Ifill, and P.H. Welch, editors, Communicating Process Architectures 2007, pages 349–369,
July 2007.

[13] P.B. Hansen. Java’s Insecure Parallelism. ACM SIGPLAN Notices, 34:38–45, April 1999.
[14] W.F. McColl. Scalable Computing. In Computer Science Today: Recent Trends and Developments, pages

46–61, 1996.
[15] J.M.R. Martin and P.H.Welch. A Design Strategy for Deadlock-free Concurrent Systems. Transputer

Communications, 3(4):215–232, October 1996.
[16] M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley and Sons, 2002. ISBN 978-

0470519462.
[17] P.H. Welch, G.R.R. Justo, and C.J. Willcock. Higher-Level Paradigms for Deadlock-Free High-

Performance Systems. In R. Grebe, J. Hektor, S.C. Hilton, M.R. Jane, and P.H. Welch, editors, Trans-
puter Applications and Systems ’93, Proceedings of the 1993 World Transputer Congress, volume 2, pages
981–1004, Aachen, Germany, September 1993.

[18] V. Bruce, P.R. Green, and M.A. Georgeson. Visual Perception: Physiology, Psychology, and Ecology.
Psychology Press, New York, 1996. ISBN 1-84169-238-7.

[19] V.J. Blue, M.J. Embrechts, and J.L. Adler. Cellular Automata Modeling of Pedestrian Movements. In
’Computational Cybernetics and Simulation’., 1997 IEEE International Conference on Systems, Man, and
Cybernetics, 1997., volume 3, pages 2320–2323, Orlando, FL, 1997. IEEE.

[20] S. Clayton, N. Urquhart, and J.M. Kerridge. Tracking and Analysis of the Movement of Pedestrians. In
Third Annual Scottish Transport Applications and Research Conference, March 2007.

[21] J.H. Holland. Studying Complex Adaptive Systems. Journal of Systems Science and Complexity, 19:1–8,
March 2006.


