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Abstract. In random networks decorated with Ising spins, an increase
of the density of frustrations reduces the transition temperature of the
spin-glass ordering. This result is in contradiction to the Bethe theory.
Here we investigate if this effect depends on the small-world property of
the network. The results on the specific heat and the spin susceptibility
indicate that the effect appears also in spatial networks.
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1 Introduction

A random network is an archetypal example of a complex system [1]. If we dec-
orate the network nodes with some additional variables, the problem can be
mapped to several applications. In the simplest case, these variables are two-
valued; these can be sex or opinion (yes or no) in social networks, states ON and
OFF in genetic networks, ’sell’ and ’buy’ in trade networks and so on. Informa-
tion on stationary states of one such system can be useful for the whole class
of problems in various areas of science. The subject of this text is the antifer-
romagnetic network, where the variables are Ising spins Si = ±1/2. As it was
discussed in [1], the ground state problem of this network can be mapped onto
the MAX-CUT problem, which belongs to the class of NP-complete optimization
problems. Also, the state of the antiferromagnetic network in a weak magnetic
field gives an information on the minimal vertex cover of the network, which is
another famous NP-complete problem [1]. Further, in the ground state of the
antiferromagnetic network all neighboring spins should be antiparallel, i.e. their
product should be equal to -1. This can be seen as an equivalent to the problem
of satisfiability of K conditions imposed on N variables, where N is the number
of nodes and K is the number of links. The problem of satisfiability is known
also to be NP-complete [2]. Here we are particularly interested in an ifluence
of the network topology on the collective magnetic state of the Ising network.
The topology is to be characterized by the clustering coefficient C, which is a
measure of the density of triads of linked nodes in the network. In antiferromag-
netic systems, these triads contribute to the ground state energy, because three
neighboring spins of a triad cannot be antiparallel simultaneously to each other.
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This effect is known as spin frustration. When the frustration is combined with
the topological disorder of a random network, the ground state of the system
is expected to be the spin-glass state, a most mysterious magnetic phase which
remains under dispute for more than thirty years [3,4,5]. These facts suggest that
a search on random network with Ising spins and antiferromagnetic interaction
can be worthwhile.

Here we are interested in an influence of the density of frustration on the
phase transition from the disordered paramagnetic phase to the ordered spin-
glass phase. In our Ising systems, the interaction is short-ranged and the dynam-
ics is ruled by a simple Monte-Carlo heat-bath algorithm, with one parameter
J/kBT , i.e. the ratio of the exchange energy constant J to the thermal energy
kBT [6]. Despite this simplicity, the low-temperature phase is very complex and
multi-degenerate even in periodic systems, where the topological disorder is ab-
sent [7]. Current theory of Ising spin-glasses in random networks ignores the
contribution of frustrations, reducing the network to a tree [1]. In a ’tree-like
structure’ closed loops as triads are absent. In the case of trees the Bethe theory
is known to work well [1,8]. In our considerations, the Bethe formula for the
transition temperature TSG from the paramagnetic to the spin glass phase [1]

−2J

TSG

= ln

√
B + 1√
B − 1

(1)

serves as a reference case without frustrations. Here B = z2/z1 is the ratio of
the mean number of second neighbours to the mean number of the first neigh-
bours. Then, the transition temperature TSG depends on the network topology.
We note that in our network there is no bond disorder; all interactions are an-
tiferromagnetic [9].

In our former texts, we calculated the transition temperature TSG of the
Erdös-Rényi networks [10] and of the regular network [11]. The results indicated
that on the contrary to the anticipations of the Bethe theory TSG decreases with
the clustering coefficient C. However, in both cases we dealt with the networks
endowed with the small-world property. It is not clear what dimension should
be assigned to these networks, but it is well known that the dimensionality and
in general the network topology influences the values of temperatures of phase
transitions [12,8,13]. On the other hand, many real networks are embedded in
the three-dimensional space - these are called spatial networks [14]. In particu-
lar, magnetic systems belong obviously to this class. Therefore, the aim of this
work is to calculate the phase transition temperature TSG again for the spatial
networks. As in our previous texts [10,11] the clustering coefficient C is varied
as to investigate the influence of the density of frustrations on TSG.

In the next section we describe the calculation scheme, including the de-
tails on the control of the clustering coefficient. Third section is devoted to our
numerical results. These are the thermal dependences of the magnetic suscep-
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Fig. 1. The degree distribution for the mean degree < k >= 9 and three different
values of the clustering coefficient C.

tibility χ(T ) and of the spacific heat Cv(T ). Final conclusions are given in the
last section.

2 Calculations

The spatial network is constructed as follows. Three coordinates of the positions
of nodes are selected randomly from the homogeneous distribution between 0
and 1. Two nodes are linked if their mutual distance is not larger than some
critical value a. In this way a controls the mean number of neighbours, i.e. the
mean degree < k > of the network. In networks obtained in this way, the degree
distribution P (k) agrees with the Poisson curve. As a rule, the number of nodes
N = 105. Then, to obtain < k >= 4 and < k >= 9 we use a = 0.0212 and
a = 0.0278. The mean degree < k > is found to be proportional to a2.91. This
departure from the cubic function is due to the open boundary conditions. In
two above cases, the values of the clustering coefficient C are respectively 0.42
and 0.47.

Now we intend to produce spatial networks with given mean degree < k >
and with enhanced clusterization coefficient C. This is done in two steps. First
we adjust the radius a to obtain a smaller < k >, than desired. Next we apply
the procedure proposed by Holme and Kim [15]: for each pair of neighbours of
the same node a link between these neighbours is added with a given probability
p′. This p′ is tuned as to obtain a desired value of the mean degree < k >.
Simultaneously, the clustering coefficient C is higher. In this way we obtain C



between 0.42 and 0.46 for < k >= 4, and between 0.47 and 0.56 for < k >= 9.
The degree distribution P (k) in the network with enhanced C differs from the
Poisson distribution, as shown in Fig. 1.

The dynamics of the system is ruled by the standard Monte Carlo heat-bath
algorithm [6]. We checked that for temperature T > 0.5, the system equilibrates
after 103 Monte Carlo steps; in one step each spin is checked. Sample runs
ensured that after this time, the specific heat Cv calculations from the thermal
derivative of energy and from the energy fluctuations give - within the numerical
accuracy - the same results.
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Fig. 2. The magnetic susceptibility χ(T ) for < k >= 4 and different values of
the clustering coefficient C.

3 Results

In Fig. 2 we show the thermal dependence of the static magnetic susceptibility
χ(T ) for the network with mean degree < k >= 4. Fig. 3 displays the magnetic
specific heat Cv(T ) for the same network. The plots of the same quantities for
< k >= 9 are shown in Figs. 4 and 5. The positions of the maxima of χ(T ) and
Cv(T ) can be treated as approximate values of the transition temperature TSG

[16,3]. Most curves displayed show some maxima except two cases with highest
C for < k >= 4, where the susceptibility for low temperatures does not decrease
- this is shown in Fig. 2. Still it is clear that the observed maxima do not appear
above T = 1.1 for < k = 4 > and above T = 1.7 for < k >= 9. Moreover, the



 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.5  1  1.5  2  2.5  3

C
v

T

C=0.42
C=0.44
C=0.45
C=0.47

Fig. 3. The magnetic specific heat Cv(T ) for < k >= 4 and different values of
the clustering coefficient C.

data suggest that when the clustering coefficient C increases, the positions of the
maxima of χ(T ) and Cv(T ) decrease. This is visible in particular for < k >= 9,
in Figs. 4 and 5.

In Fig. 6 we show approximate values of the transition temperatures TSG,
as read from Figs. 2-5. These results are compared with the theoretical values
of TSG, obtained from Eq. 1. On the contrary to the numerical results, the
Bethe theory indicates that TSG is almost constant or increases with C. This
discrepancy is our main numerical result. It is also of interest that once the
clustering coefficient C increases, the susceptibility χ increases but the specific
heat Cv decreases. This can be due with the variation of the shape of the free
energy, as dependent on temperature and magnetic field.

4 Discussion

Our numerical results can be summarized as follows. The temperature TSG of
the transition from the paramagnetic phase to the spin-glass phase decreases
with the clustering coefficient C. We interpret this decrease as a consequence of
the increase of the density of frustrations. More frustrated triads make the en-
ergy minima more shallow and then a smaller thermal noise is sufficient to throw
the system from one to another minimum. This result is in contradiction to the
Bethe theory. However, in this theory the frustration effect is neglected. Then
the overall picture, obtained previously [10,11] for the small-world networks, is
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Fig. 4. The magnetic susceptibility χ(T ) for < k >= 9 and different values of
the clustering coefficient C.

confirmed here also for the spatial networks.

This interpretation can be confronted with recent numerical results of Her-
rero, where the transition temperature TSG increases with the clustering coeffi-
cient C in the square lattice [17]. As it is shown in Fig. 7 of [17], TSG decreases
from 2.3 to 1.7 when the rewiring probability p increases from zero to 0.4. Above
p = 0.4, TSG remains constant or increases very slightly, from 1.7 to 1.72 when
p = 1.0. The overall dependence can be seen as a clear decrease of TSG. On the
other hand, the clustering coefficient C does not increase remarkably with the
rewiring probability p. The solution of this puzzle is that in the square lattice
with rewiring the frustrations are not due to triads, but to two interpenetrating
sublattices, which are antiferromagnetically ordered in the case when p = 0. The
conclusion is that it is the increase of the density of frustrations what always
leads to a decrease of TSG.

A few words can be added on the significance of these results for the science
of complexity, with a reference to the computational problem of satisfiability.
In many complex systems we deal with a number of external conditions, when
all of them cannot be fulfilled. Second premise is that in many complex systems
a noise is ubiquitous. These are analogs of frustration and thermal noise. In
the presence of noise and contradictive conditions, the system drives in its own
way between temporally stable states, similarly to the way how the Ising spin
glass wanders between local minima of energy. Once the number of contradictive
tendencies or aspirations increases, the overall structure becomes less stable.
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Fig. 5. The magnetic specific heat Cv(T ) for < k >= 9 and different values of
the clustering coefficient C.
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