
ar
X

iv
:1

00
5.

05
05

v1
 [

cs
.F

L
]

 4
 M

ay
 2

01
0

Rankers over Infinite Words∗

Luc Dartois1 Manfred Kufleitner2 Alexander Lauser2

1 ENS Cachan, France
ldartois@dptinfo.ens-cachan.fr

2 FMI, Universität Stuttgart, Germany
{kufleitner,lauser}@fmi.uni-stuttgart.de

May 3, 2010

Abstract. We consider the fragments FO2, Σ2 ∩ FO2, Π2 ∩ FO2, and ∆2 of first-order
logic FO[<] over finite and infinite words. For all four fragments, we give character-
izations in terms of rankers. In particular, we generalize the notion of a ranker to
infinite words in two possible ways. Both extensions are natural in the sense that over
finite words, they coincide with classical rankers and over infinite words, they both
have the full expressive power of FO2. Moreover, the first extension of rankers admits
a characterization of Σ2 ∩ FO2 while the other leads to a characterization of Π2 ∩ FO2.
Both versions of rankers yield characterizations of the fragment ∆2 = Σ2 ∩ Π2. As a
byproduct, we also obtain characterizations based on unambiguous temporal logic and
unambiguous interval temporal logic.

Keywords. infinite words; first-order logic; temporal logic; ranker; interval logic

1 Introduction

We consider fragments of two-variable first-order logic FO2. Formulas are interpreted over words
which may be infinite or finite. Over finite words only, a large number of different characterizations
of FO2 is known, see e.g. [7] or [1] for an overview. Some of the characterizations have been
generalized to infinite words in [2]. In this paper, we continue this line of work. For this paper
the main difference between finite word models and infinite word models is the following: Over
finite words, FO2 and the fragment ∆2 = Σ2 ∩ Π2 have the same expressive power [8], whereas
∆2 is a strict subclass of FO2 over infinite words. Moreover, in the case of infinite words, FO2

is incomparable to Σ2 and Π2. By definition Σ2 is the class of formulas in prenex normal form
with two blocks of quantifiers starting with a block of existential quantifiers, and Π2 is the class of
negations of Σ2-formulas. Here and throughout the paper, we identify a logical fragment with the
class of languages definable in the fragment.

An important concept in this paper are rankers which have been introduced by Immerman and
Weis [9] in order to give a combinatorial characterization of quantifier alternation within FO2 over
finite words. Casually speaking, a ranker is a sequence of instructions of the form “go to the next
a-position” and “go to the previous a-position” for some letters a. For every word, a ranker is
either undefined or it determines a unique position. We generalize rankers to infinite words in two

∗The last two authors acknowledge the support by the German Research Foundation (DFG) for the project
DI 435/5-1.

1

http://arxiv.org/abs/1005.0505v1

possible ways. The main difference to finite words is that we have to define the semantics of “go to
the last a-position” if there are infinitely many occurrences of the letter a. The first solution is to
say that this modality evaluates to false and that the position is undefined. The second approach is
to stay at an infinite position. For example, if a word has infinitely many a-positions but only two
b-positions, then in the first semantics “go to the last a-position and from there, go to the previous
b-position” would be false while in the second semantics it would be true and it would determine the
last b-position. By delaying the interpretation of modalities until some letter with finite occurrence
is met, the second semantics is reminiscent of the lazy evaluation principle. We therefore call the
second semantics lazy rankers. If we want to emphasize that we use the first semantics, then we
often use the term eager ranker. The language L(r) of a ranker r consists of all words such that
r is defined. A ranker language is a Boolean combination of languages of the form L(r) for some
rankers r.

In both ways, rankers admit natural combinatorial characterizations of the first-order fragments
FO2 and ∆2 over finite and infinite words. Moreover, the eager semantics yields a characterization
of Σ2 ∩ FO2 while lazy rankers lead to a characterization of Π2 ∩ FO2. We note that the decid-
ability results for the first-order fragments lead to decidability results for the respective ranker
fragments [2].

Let Γ∞ be the set of all finite and infinite words over the alphabet Γ and let L ⊆ Γ∞. Our main
results are

• L ∈ FO2 if and only if L is an eager ranker language (Theorem 1) if and only if L is a lazy
ranker language (Theorem 5).

• L ∈ Σ2 ∩ FO2 if and only if L is a positive eager ranker language with some additional atomic
modality (Theorem 2).

• L ∈ Π2 ∩ FO2 if and only if L is a positive lazy ranker language with some additional atomic
modality (Theorem 4).

• L ∈ ∆2 if and only if L is a ranker language such that all instructions are starting with a
modality “go to the first a-position” (Theorem 3).

It turns out that unambiguous temporal logic [3] and unambiguous interval temporal logic [4] allow
natural intermediate characterizations on the way from first-order logic to rankers. In particular,
this yields temporal logic counterparts of the first-order fragments. Moreover, we present a way
for converting formulas in unambiguous interval temporal logic into equivalent formulas in unam-
biguous temporal logic, which does not introduce new negations (Propositions 1 and 2). This also
leads to a new characterization of FO2 over finite words in terms of restricted ranker languages
(Corollary 1).

In this paper, all steps from fragments of first-order logic to interval temporal logic are based on
characterizations in terms of so-called unambiguous polynomials; almost all other steps are effective
syntactic transformations. The sole exception is the inclusion of some ranker fragment in Π2∩FO2.
This step relies on a characterization of Π2 ∩ FO2 in terms of the alphabetic topology [2].

An extended abstract of our results will be presented at the 14th International Conference on
Developments in Language Theory (DLT 2010).

2 Preliminaries

In the following Γ denotes a finite alphabet. For A ⊆ Γ we denote by A∗ the set of finite words
over A. The set of infinite words is Aω, and A∞ = A∗ ∪ Aω is the set of finite and infinite words.
The empty word is ε and we have {ε} = ∅∞. We denote potentially infinite words by lowercase

2

Greek letters α, β, γ whereas finite words are denoted by lowercase Latin letters u, v, w; for letters
in Γ we use a, b, c, d. For a word α and a position x of the word, α(x) is the x-th letter of α.
By |α| ∈ N ∪ {∞} we denote the length of α. Therefore α = α(1) · · · α(|α|) if α is finite and
α = α(1)α(2) · · · if α is infinite. We extend this notation to intervals T ⊆ N and write α(T) for
the word comprising the positions of α contained in T . In particular, we do not require that T is
contained in the set of positions of α. Hence, for all α ∈ Γ∞ we have α(∅) = ε, and α(N) = α even
if the word α is finite. We call alph(α) the alphabet of α, i.e., the set of letters occurring in α. For
a ∈ Γ, a position labeled by a is called an a-position. By im(α) we mean the imaginary alphabet of
α, i.e., the set of letters occurring infinitely often in α. For A ⊆ Γ, the set of words with imaginary
alphabet A is denoted by Aim. In particular, Γ∗ = ∅im.

A monomial (of degree k) is a language of the form A∗
1a1 · · ·A

∗
kakA

∞
k+1 for letters ai ∈ Γ and sets

Ai ⊆ Γ. It is unambiguous if each word of the monomial has a unique factorization u1a1 · · · ukakβ
with ui ∈ A∗

i and β ∈ A∞
k+1. A polynomial (of degree k) is a finite union of monomials (of degree

at most k). It is called unambiguous if it is a finite union of unambiguous monomials.

Example 1 The set of all finite words over an alphabet A ⊆ Γ is an unambiguous polynomial.
We have

A∗ = ∅∞ ∪
⋃

a∈A

A∗a∅∞,

i.e., a word is of finite length if it is either empty or if there is a last letter. ♦

Example 2 Consider the language L = (Γ \ {b})∗aΓ∞ ∩ (Γ \ {c})∗bΓ∞ ∩ Γ∗cΓ∞ of all words
containing a c such that there is an a with no b to the left, and such that there is a b with no c to
the left. This language is an unambiguous monomial since

L = (Γ \ {b, c})∗a(Γ \ {c})∗bΓ∗cΓ∞.

Moreover, L is the set of all words such that the first a occurs before the first b which in turn occurs
before the first c. ♦

2.1 Fragments of First-Order Logic

We denote by FO = FO[<] the first-order logic over words interpreted as labeled linear orders
(without ∞). As atomic formulas, FO comprises ⊤ (for true), the unary predicate λ(x)= a for
a ∈ Γ, and the binary predicate x < y for variables x and y. The idea is that variables range over
the linearly ordered positions of a word and λ(x)= a means that x is an a-position. Apart from the
Boolean connectives, we allow composition of formulas using existential quantification ∃x : ϕ and
universal quantification ∀x : ϕ for ϕ ∈ FO. The semantics is as usual. We introduce the common
shortcut ⊥ for ¬⊤. Typical names for formulas in this paper are ϕ,ψ, ̺, ϑ, µ, ν, σ.

Every formula in FO can be converted into a semantically equivalent formula in prenex normal
form by renaming variables and moving quantifiers to the front. This observation gives rise to the
fragment Σ2 (resp. Π2) consisting of all FO-formulas in prenex normal form with only two blocks of
quantifiers, starting with a block of existential quantifiers (resp. universal quantifiers). Note that
the negation of a formula in Σ2 is equivalent to a formula in Π2 and vice versa. The fragments
Σ2 and Π2 are both closed under conjunction and disjunction. Furthermore, FO2 is the fragment
of FO containing all formulas which use at most two different names for the variables. This is a
natural restriction, since FO with three variables already has the full expressive power of FO.

A sentence in FO is a formula without free variables. For a sentence ϕ the language defined by ϕ,
denoted by L(ϕ), is the set of all words α ∈ Γ∞ that model ϕ, i.e., α |= ϕ. We frequently identify
logical fragments with the classes of languages they define (as in the definition of the fragment
∆2 = Σ2 ∩Π2 for example).

3

Example 3 Consider the formulas

ϕ = ∃x∀y : y ≤ x ∨ λ(y) 6= a and ψ = ∀x∃y : y > x ∧ λ(y)= a.

The formula ϕ ∈ Σ2∩FO2 states that after some position there is no a-position, i.e., L(ϕ) contains
all words with finitely many a-positions. Its negation ψ ∈ FO2∩Π2 says that for all positions there
is a greater a-position, i.e., L(ψ) is set of all words α with a ∈ im(α). Surprisingly, L(ϕ) is not
definable in Π2 and L(ψ) is not definable in Σ2, cf. [2].

3 Rankers and Unambiguous Temporal Logics

For finite words, rankers have been introduced by Immerman and Weis [9]. They can be seen as a
generalization of turtle programs used by Schwentick, Thérien, and Vollmer [6] for characterizing
FO2-definable languages over finite words. The main difference between rankers and turtle programs
is that rankers either uniquely determine a position in a word or they are undefined, whereas turtle
programs mainly distinguish between being defined and being undefined.

Extending rankers with Boolean connectives yields unambiguous temporal logic (unambiguous
TL). It is called unambiguous since each position considered by some formula in this logic is unique.
Unambiguous TL has been introduced for Mazurkiewicz traces [3] which are a generalization of finite
words.

All of our characterizations of first-order fragments rely on unambiguous polynomials. A natural
intermediate step from polynomials to temporal logic is interval temporal logic. Unambiguous
interval temporal logic (unambiguous ITL) has been introduced by Lodaya, Pandya, and Shah [4]
for finite words. They showed that over finite words it has the same expressive power as FO2.

In this section, we generalize all three concepts (rankers, unambiguous TL, and unambiguous
ITL) to infinite words. For each concept there are essentially two natural choices for such gen-
eralizations. Surprisingly, it turns out that one extension can be used for the characterization of
the first-order fragment Σ2 ∩ FO2 over Γ∞ while the other yields a characterization of Π2 ∩ FO2.
Moreover, both semantics can be used for describing FO2 and ∆2. In fact, for ∆2 we use some
fragment of rankers which conceals the difference between the two versions.

Basically, all proofs of our main theorems have the following structure: Using some characteriza-
tion in terms of unambiguous polynomials, we go from first-order logic to interval temporal logic;
then formulas in interval temporal logic are transformed into equivalent formulas in temporal logic,
which in turn can be easily converted into some ranker descriptions. The last step is to express
ranker languages within some fragment of first-order logic. In all proofs, the main technical step
is the conversion of unambiguous ITL into unambiguous TL without introducing new negations
(Propositions 1 and 2).

3.1 Rankers

A ranker is a finite word over the alphabet {Xa,Ya | a ∈ Γ}. It can be interpreted as a sequence
of instructions of the form Xa and Ya. Here, Xa (for neXt-a) means “go to the next a-position”
and Ya (for Yesterday-a) means “go to the previous a-position”. Below, we will introduce a second
variant of rankers (lazy rankers). For distinguishing, we will sometimes use the attribute eager for
this first version of rankers. For a word α and a position x ∈ N ∪ {∞} we define

Xa(α, x) = min {y ∈ N | α(y) = a and y > x} ,

Ya(α, x) = max {y ∈ N | α(y) = a and y < x} .

As usual, we set y < ∞ for all y ∈ N. The minimum and the maximum of ∅ as well as the
maximum of an infinite set are undefined. In particular, Xa(α,∞) is always undefined and Ya(α,∞)

4

is defined if and only if a ∈ alph(α) \ im(α). We extend this definition to rankers by setting
Xa r(α, x) = r(α,Xa(α, x)) and Ya r(α, x) = r(α,Ya(α, x)), i.e., rankers are processed from left to
right. We say that r(α, x) is undefined, if after processing some prefix of r on α, the resulting
position is undefined. If r(α, x) is defined for some non-empty ranker r, then r(α, x) 6= ∞.

1 2 3 · · · ∞
a1 a2 a3 im(α)

Figure 1: Signature of α = a1 a2 a3 · · · over lazy rankers

Next, we define another variant of rankers as finite words over the alphabet {Xℓ

a,Y
ℓ

a | a ∈ Γ}.
The superscript ℓ is derived from lazy and accordingly such rankers are called lazy rankers. The
difference to eager rankers is that lazy rankers can point to an infinite position ∞. The idea is
that the position ∞ is not reachable from any finite position and that it represents the behavior at
infinity. We imagine that∞ is greater than all finite positions and it is labeled by all letters in im(α)
for words α. Therefore, it is often adequate to set ∞ < ∞, since the infinite position simulates a
set of finite positions. For a word α and a finite position x ∈ N we define X

ℓ

a(α, x) = Xa(α, x) and
Y

ℓ

a(α, x) = Ya(α, x). For the infinite position we set

X
ℓ

a(α,∞) =

{

∞ if a ∈ im(α)

undefined else

Y
ℓ

a(α,∞) =

{

∞ if a ∈ im(α)

Ya(α,∞) else

i.e., Y
ℓ

a(α,∞) is undefined if a 6∈ alph(α), and Y
ℓ

a(α,∞) = Ya(α,∞) is a finite position if a ∈
alph(α)\im(α). As before, we extend this definition to rankers of length > 1 by setting X

ℓ

a r(α, x) =
r(α,Xℓ

a(α, x)) and Y
ℓ

a r(α, x) = r(α,Yℓ

a(α, x)). We denote by

alphΓ(r) = {a ∈ Γ | r ∈ q {Xa,Ya,X
ℓ

a,Y
ℓ

a} s for some rankers q, s}

the set of letters in Γ occurring in some modality of the ranker r. It can happen that r(α,∞) = ∞
for some non-empty lazy ranker r. This is the case if and only if r is of the form Y

ℓ

a s and alphΓ(r) ⊆
im(α).

If the reference to the word α is clear from the context, then for eager and lazy rankers r we
shorten the notation and write r(x) instead of r(α, x).

An eager ranker r is an X-ranker if r = Xa s for some ranker s and a ∈ Γ, and it is a Y-ranker
if r is of the form Ya s. Lazy X

ℓ-rankers and Y
ℓ-rankers are defined similarly. We proceed to define

r(α), the position of α reached by the ranker r by starting “outside” the word α. The position
r(α) is called r-position. The intuition is as follows. If r is an X-ranker or an X

ℓ-ranker, we imagine
that we start at an outside position in front of α; if r is a Y-ranker or a Y

ℓ-ranker, then we start
at a position behind α. Therefore, we define

r(α) = r(α, 0) if r is an X-ranker or an X
ℓ-ranker,

r(α) = r(α,∞) if r is a Y-ranker or a Y
ℓ-ranker.

On the left side of Figure 2, a possible situation for the eager ranker Ya Yb Xc being defined on
some word α is depicted. The right side of the same figure illustrates a similar situation for the
lazy ranker Yℓ

d X
ℓ

d Y
ℓ

a Y
ℓ

b X
ℓ

c with d ∈ im(α) and a ∈ alph(α) \ im(α). Note that the eager version of
the same ranker would not be defined on α since d ∈ im(α).

Given these definitions, an eager ranker can either be undefined on a word α (if at some state of
the evaluation of r(α) an instruction cannot be accomplished) or the ranker is defined on α and in

5

α · · ·

Ya

a

Yb

b

Xc

c
· · ·

no ano b

no c

α · · · ∞

Y
ℓ

d
X

ℓ

d

Y
ℓ

a

a

Y
ℓ

b

b

X
ℓ

c

c
im(α)· · ·

no ano b

no c

Figure 2: Eager and lazy rankers

this case it determines a unique finite position of α. If a lazy ranker r is defined on α, then either
r(α) = ∞ or it defines a unique finite position of α. For the empty ranker ε we have εXa = Xa and
εXℓ

a = X
ℓ

a as well as εYa = Ya and εYℓ

a = Y
ℓ

a, i.e., the empty ranker ε either starts at position 0 or
∞ depending on whether the next modality is in {Xa,X

ℓ

a | a ∈ Γ} or in {Ya,Y
ℓ

a | a ∈ Γ}. Moreover,
ε is defined on every word even though it does not determine a unique position of the word. The
empty ranker is both eager and lazy.

For an eager or lazy ranker r the language L(r) generated by r is the set of all words in Γ∞

on which r is defined. A (positive) ranker language is a finite (positive) Boolean combination of
languages of the form L(r) for a ranker r. A (positive) lazy ranker language is a finite (positive)
Boolean combination of languages of the form L(r) for a lazy ranker r. Finally, a (positive) X-ranker
language is a (positive) ranker language using only X-rankers.

Example 4 The language L = (Γ \ {a, b, c})∗a(Γ \ {b, c})∗b(Γ \ {c})∗cΓ∞ of all words such that
the first a occurs before the first b which in turn occurs before the first c is a positive X-ranker
language because

L = L(Xb Ya) ∩ L(Xc Yb).

We have alphΓ(Xb Ya) = {a, b} and alphΓ(Xc Yb) = {b, c}, and both rankers are X-rankers. ♦

Example 5 Consider the language L ⊆ Γ∞ consisting of all non-empty words with a as the first
letter. A word is contained in L if and only if it contains an a-position and such that no b ∈ Γ
occurs to the left of the first a-position. Therefore,

L = L(Xa) ∩ Γ∞ \
⋃

b∈Γ

L(Xa Yb),

that is, L is a Boolean combination of the rankers Xa and Xa Yb for b ∈ Γ. ♦

3.2 Unambiguous Temporal Logic

Our generalization of rankers allows us to define unambiguous temporal logic (unambiguous TL)
over infinite words. As for rankers, we have an eager and a lazy variant. The syntax is given by:

⊤ | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | Xa ϕ | Ya ϕ | Gā | Hā | Xℓ

a ϕ | Yℓ

a ϕ | Gℓ

ā | Hℓ

ā

for a ∈ Γ and ϕ,ψ are formulas in unambiguous TL. The atomic formulas are ⊤ (which is true),
and the eager modalities Gā (for Globally-no-a) and Hā (for Historically-no-a), as well as the lazy
modalities G

ℓ

ā (for lazy-Globally-no-a) and H
ℓ

ā (for lazy-Historically-no-a). We now define, when
a word α at a position x ∈ N ∪ {∞} satisfies a formula ϕ in unambiguous TL, in which case we
write α, x |= ϕ. The atomic formula ⊤ is true at all positions and the semantics of the Boolean
connectives is as usual. For Z ∈ {Xa,Ya,X

ℓ

a,Y
ℓ

a | a ∈ Γ} the semantics is defined as follows:

α, x |= Zϕ iff Z(x) is defined and α,Z(x) |= ϕ,

6

and the semantics of the atomic modalities is given by

Gā = ¬Xa⊤, Hā = ¬Ya⊤,

G
ℓ

ā = ¬X
ℓ

a⊤, H
ℓ

ā = ¬Y
ℓ

a⊤.

In order to define when a word α models a formula ϕ, we have to distinguish whether ϕ starts with
a future or a past modality:

α |= Xa ϕ iff α, 0 |= Xa ϕ, α |= Ya ϕ iff α,∞ |= Ya ϕ,

α |= Gā iff α, 0 |= Gā, α |= Hā iff α,∞ |= Hā,

α |= X
ℓ

a ϕ iff α, 0 |= X
ℓ

a ϕ, α |= Y
ℓ

a ϕ iff α,∞ |= Y
ℓ

a ϕ,

α |= G
ℓ

ā iff α, 0 |= G
ℓ

ā, α |= H
ℓ

ā iff α,∞ |= H
ℓ

ā .

The modalities on the left are called future modalities and the modalities on the right are called past
modalities. The atomic modalities Gā and G

ℓ

ā differ only for the infinite position, but the semantics
of Hā and H

ℓ

ā differs a lot: α |= Hā if and only if a ∈ im(α) or a 6∈ alph(α) whereas α |= H
ℓ

ā if and
only if a 6∈ alph(α). Every formula ϕ defines a language L(ϕ) = {α ∈ Γ∞ | α |= ϕ}.

For C ⊆ {Xa,Ya,Gā,Hā,X
ℓ

a,Y
ℓ

a,G
ℓ

ā,H
ℓ

ā} we define the following fragments of unambiguous TL:

• TL[C] consists of all formulas using only ⊤, Boolean connectives, and temporal modalities in
C,

• TL+[C] consists of all formulas using only ⊤, positive Boolean connectives (i.e., no negation),
and temporal modalities in C,

• TLX[C] consists of all formulas using only ⊤, Boolean connectives, and temporal modalities
in C such that all outmost modalities are future modalities,

• TL+
X
[C] consists of all formulas in TL+[C] ∩ TLX[C].

Frequently, we identify a class of formulas F with the class of languages {L(ϕ) | ϕ ∈ F}. We say
that a language L ⊆ Γ∞ is definable in a logical fragment F or simply F-definable, if L = L(ϕ) for
some ϕ ∈ F .

Example 6 Consider again the language L ⊆ Γ∞ of example 5 consisting of all non-empty words
with a as the first letter. This language is defined by each of following formulas:

ϕ1 = Xa⊤ ∧
∧

b∈Γ

¬Xa Yb ⊤ ∈ TLX[Xa,Ya],

ϕ2 =
∧

b∈Γ

Xa Hb̄ ∈ TL+
X
[Xa,Hā],

ϕ3 = Xa⊤ ∧
∧

b∈Γ\{a}

(

Gb̄ ∨ Xb Ya⊤
)

∈ TL+
X
[Xa,Ya,Gā].

The formula ϕ1 says that there is some a-position and that no letter occurs before the first a-
position. In particular, it uses a negation. The second formula ϕ2 is almost identical, but it uses
the atomic modality Hb̄. Due to the use of this implicit negation in a past-modality, no explicit
negation is required. The surprising fact about ϕ3 is that it neither uses negations nor the implicitly
negated past-modality Hb̄. It essentially says that before every non-a-position there is an a-position.

♦

7

Example 7 The language L = (Γ \ {b})∗aΓ∞ with a 6= b consisting of all words containing an
a-position with no b to the left is defined by each of the following formulas:

ϕ1 = Xa ¬Yb⊤ ∈ TL[Xa,Ya],

ϕ2 = Gb̄ ∨ Xb Ya⊤ ∈ TL+[Xa,Ya,Gā].

The first formula requires that the first a-position has no b-position in the future, whereas the
second formula states that there is either no b at all or that there is an a-position before the first
b-position. Note that for a word in L, the position reached by the term Xb Ya in ϕ2 is not necessarily
the first a-position of the word. In particular, formulas can be equivalent without visiting the same
positions. Also note that the argumentation would not be valid for a = b. ♦

Inspired by the atomic logical modalities, we extend the notion of a ranker by allowing the atomic
modalities Gā and Hā as well as G

ℓ

ā and H
ℓ

ā. We call r a ranker with atomic modality Gā (Hā, G
ℓ

ā,
H

ℓ

ā, resp.) if r = sGā (r = sHā, r = sGℓ

ā, r = sHℓ

ā, resp.) for some ranker s. In this setting,
r = Gā is an X-ranker, and r = Hā is a Y-ranker. Analogously, we can add atomic modalities to
lazy rankers. Note that any ranker with some atomic modality is also a formula in unambiguous
TL. We can therefore define the domain of an extended ranker r with some atomic modality by

r(α, x) is defined iff α, x |= r.

If r ∈ s {Gā,Hā,G
ℓ

ā,H
ℓ

ā | a ∈ Γ} is an extended ranker and r(α, x) is defined, then we set r(α, x) =
s(α, x), i.e., r(α, x) is the position reached after the execution of s. The reinterpretation of rankers
as formulas also makes sense for a ranker r ∈ {Xa,Ya,X

ℓ

a,Y
ℓ

a}
∗ without atomic modality, if we

identify r with r⊤ in unambiguous TL, which is justified since we have that r is defined on α if
and only if α |= r⊤.

Let C ⊆ {Gā,Hā,G
ℓ

ā,H
ℓ

ā}. A language L is a ranker language with atomic modalities C if L is a
Boolean combination of languages L(r) such that r is either a ranker without atomic modalities
or a ranker with some atomic modality in C. Similarly, the notions of lazy / positive /X-ranker
languages are adapted to the use of atomic modalities.

The following lemma shows that not only can we interpret rankers as formulas, but we can also
transform fragments of unambiguous TL into ranker languages.

Lemma 1 For L ⊆ Γ∞ the following holds:

1. If L ∈ TL[Xa,Ya], then L is a ranker language.

2. If L ∈ TL+[Xa,Ya,Gā,Hā], then L is a positive ranker language with atomic modalities Gā

and Hā.

3. If L ∈ TL+[Xa,Ya,Gā], then L is a positive ranker language with atomic modality Gā.

4. If L ∈ TL+
X
[Xa,Ya,Gā], then L is a positive X-ranker language with atomic modality Gā.

5. If L ∈ TLX[Xa,Ya], then L is an X-ranker language.

6. If L ∈ TL+[Xℓ

a,Y
ℓ

a,H
ℓ

ā], then L is a positive lazy ranker language with atomic modality Hā.

8

Proof: We observe the following basic equivalences (with Za ∈ {Xa,Ya,X
ℓ

a,Y
ℓ

a} and with ≡ denoting
equivalence of formulas on all words and all positions in N ∪ {∞}):

Za(¬ϕ) ≡ Za⊤ ∧ ¬Za ϕ,

Za(ϕ ∨ ψ) ≡ Za ϕ ∨ Za ψ,

Za(ϕ ∧ ψ) ≡ Za ϕ ∧ Za ψ.

For a formula in TL[Xa,Ya] we use the equivalences to move all Boolean connectives to the outermost
level, ending up in a Boolean combination of formulas of type r⊤ for some ranker r. This shows 1.
For formulas in TL+[Xa,Ya,Gā,Hā] the same argument yields a positive Boolean combination of
languages defined by rankers with atomic modalities Gā and Hā. (Of course, we do not apply the
rule for negations.) Moreover, there is a ranker generated this way containing the atomic modality
Hā if and only if the original formula uses Hā. This shows 2 and 3. The situation for formulas in
TL+[Xℓ

a,Y
ℓ

a,H
ℓ

ā] is similar, showing 6. If the first non-Boolean modality on each path of the syntax
tree of the original formula is a future modality, then all rankers generated by the above rules start
with future modalities, so 4 and 5 follow. �

Lemma 2 For every non-empty ranker r there exist formulas ̺r, ϑr ∈ TL+[Xa,Ya,Gā] such that
for every α ∈ Γ∞ with r(α) being defined we have

α, x |= ̺r iff x > r(α),

α, x |= ϑr iff x ≥ r(α).

Proof: We use induction on the length of the ranker. Let α be a word such that r is defined on
α. Consider the case r = sXa for some ranker s. Note that there must be an a-position since r
is defined on α. For a position x of α we have x > r(α) if and only if we find an a-position y

strictly smaller than x such that y > s(α). But this is equivalent to Ya(x) > s(α) since Ya(x) is the
maximal a-position strictly smaller than x. For the formula ϑr we have to be more careful: For a
position x of α we have x ≥ r(α) if and only if there is no a-position strictly greater than x or if
all such a-positions y satisfy y > r(α) which we already know how to express. Therefore,

̺r = Ya ̺s

ϑr = Gā ∨ Xa ̺r

for r = sXa with ̺s = ⊤ for s = ε. So, if the ranker starts with Xa, we view the empty ranker to
be on a position in front of the word and hence all positions are strictly greater than it.

Consider r = sYa for some ranker s. Again, we know that there is an a-position in α. For a
position x on α we have x ≥ r(α) if and only if there is no a-position strictly greater than x or for
all such a-positions y we have y ≥ s(α). But this is equivalent to Xa(x) ≥ s(α) since Xa(x) is the
minimal a-position strictly greater than x. A position x of α satisfies x > r(α) if and only if there
is an a-position y strictly smaller than x such that y ≥ r(α). Hence

ϑr = Gā ∨ Xa ϑs

̺r = Ya ϑr

for r = sYa with ϑs = ⊥ for s = ε. This means that in the case that the ranker starts with Ya,
we view the empty ranker to be on a position behind the word and hence all positions are strictly
smaller than it. So for s = ε the formula ϑr is equivalent to Gā. �

9

In the following lemma, we set ∞ ≤ ∞ and also ∞ < ∞. This is natural since with the single
“position” ∞ we want to model the behavior of a word “after” all finite positions; in particular, if
im(α) 6= ∅, then ∞ corresponds to infinitely many positions.

Lemma 3 For every non-empty lazy ranker r there exist formulas ̺r, ϑr ∈ TL+[Xℓ

a,Y
ℓ

a,H
ℓ

ā] such
that for every α ∈ Γ∞ with r(α) being defined we have

α, x |= ̺r iff x < r(α),

α, x |= ϑr iff x ≤ r(α).

Proof: For r = X
ℓ

a we set

ϑr = H
ℓ

ā ,

̺r = X
ℓ

a ϑr .

For r = Y
ℓ

a we set

̺r = X
ℓ

a⊤,

ϑr = H
ℓ

ā ∨ Y
ℓ

a ̺r .

Suppose r = sXℓ

a. Then

ϑr = H
ℓ

ā ∨ Y
ℓ

a ϑs ,

̺r = X
ℓ

a ϑr .

Suppose r = sYℓ

a. Then

̺r = X
ℓ

a ̺s

ϑr = H
ℓ

ā ∨ Y
ℓ

a ̺r .

Note that the formulas conform to ∞ <∞ and ∞ ≤ ∞. �

3.3 Unambiguous Interval Temporal Logic

Here, we extend unambiguous interval temporal logic (unambiguous ITL) to infinite words in such
a way that it coincides with FO2. In fact, we have two extensions with this property, one being
eager and one being lazy. The syntax of unambiguous ITL is given by Boolean combinations and:

⊤ | ϕ Fa ψ | ϕ La ψ | Gā | Hā | ϕ F
ℓ

a ψ | ϕ L
ℓ

a ψ | Gℓ

ā | Hℓ

ā

with a ∈ Γ and ϕ,ψ are formulas in unambiguous ITL. The name Fa derives from First-a and
La derives from Last-a. As in unambiguous temporal logic, the atomic formulas are ⊤, the eager
modalities Gā and Hā, and the lazy modalities Gℓ

ā and H
ℓ

ā. We now define, when a word α together
with an interval (x; y) = {z ∈ N ∪ {∞} | x < z < y} satisfies a formula ϕ in unambiguous ITL, in
which case we write α, (x; y) |= ϕ. Remember that we have set ∞ < ∞. In particular (∞;∞) =
{∞}. The atomic formula ⊤ is true for all intervals and the semantics of the Boolean connectives

10

is as usual. The semantics of the binary modalities is as follows:

α, (x; y) |= ϕ Fa ψ iff Xa(x) is defined, Xa(x) < y,

α,
(

x;Xa(x)
)

|= ϕ and α,
(

Xa(x); y
)

|= ψ,

α, (x; y) |= ϕ La ψ iff Ya(y) is defined, Ya(y) > x,

α,
(

x;Ya(y)
)

|= ϕ and α,
(

Ya(y); y
)

|= ψ,

α, (x; y) |= ϕ F
ℓ

a ψ iff X
ℓ

a(x) is defined, X
ℓ

a(x) < y,

α,
(

x;Xℓ

a(x)
)

|= ϕ and α,
(

X
ℓ

a(x); y
)

|= ψ,

α, (x; y) |= ϕ L
ℓ

a ψ iff Y
ℓ

a(y) is defined, Y
ℓ

a(y) > x,

α,
(

x;Yℓ

a(y)
)

|= ϕ and α,
(

Y
ℓ

a(y); y
)

|= ψ.

The semantics of the atomic modalities is given by

Gā = ¬(⊤ Fa ⊤), Hā = ¬(⊤ La ⊤),

G
ℓ

ā = ¬(⊤ F
ℓ

a ⊤), H
ℓ

ā = ¬(⊤ L
ℓ

a ⊤) ∨
∨

b∈Γ

((⊤ L
ℓ

b ⊤) Fℓ

b ⊤).

In the definition of Hℓ

ā, the disjunction on the right-hand side ensures that α, (∞;∞) |= H
ℓ

ā for
every infinite word α ∈ Γω and every a ∈ Γ. It will turn out that the inability of specifying the
letters not in im(α) is crucial in the characterization of the fragment Π2 ∩ FO2. Observe that only
for the interval (∞;∞), there can be a b before the “first” b. Also note that for every finite interval
of some word α, the formula Gā is true if and only if Hā is true. Whether a word α models a
formula ϕ in unambiguous ITL (i.e., α |= ϕ) or not is defined by

α |= ϕ iff α, (0;∞) |= ϕ,

and the language defined by ϕ is L(ϕ) = {α ∈ Γ∞ | α |= ϕ}.

α · · ·

Ya

a

Xc

c

Xb

b
La

Fb Fc

· · ·

ϕ1 ψ1 ϕ2 ψ2
· · ·

Figure 3: (ϕ1 Fb ψ1) La (ϕ2 Fc ψ2)

Figure 3 depicts the situation for the formula (ϕ1 Fb

ψ1)La(ϕ2Fcψ2) being defined on α. The main difference to
rankers and unambiguous TL is that there is no crossing
over in unambiguous ITL, e.g., in the situation depicted
on the left side of Figure 2, the formula (⊤Lb(⊤Fc⊤))La⊤
is false even though Ya Yb Xc is defined.

In unambiguous ITL, the modalities Fa,Gā,F
ℓ
a,G

ℓ

ā are
future modalities and La,Hā, L

ℓ
a,H

ℓ

ā are past modalities.
An unambiguous ITL formula ϕ is a future-formula if in
the parse tree of ϕ every past modality occurs on the left
branch of some future modality, i.e., if it is never necessary to interpret a past modality over an
unbounded interval. For C ⊆ {Fa, La,Gā,Hā,F

ℓ
a, L

ℓ
a,G

ℓ

ā,H
ℓ

ā} we define the following fragments of
unambiguous ITL:

• ITL[C] consists of all formulas using only ⊤, Boolean connectives, and temporal modalities
in C,

• ITL+[C] consists of all formulas using only ⊤, positive Boolean connectives (i.e., no negation),
and temporal modalities in C,

• ITLF[C] consists of all future formulas using only ⊤, Boolean connectives, and temporal
modalities in C,

• ITL+
F
[C] consists of all future formulas in ITL+[C] ∩ ITLF[C].

11

Example 8 Consider the unambiguous ITL formulas

ϕ = (⊤ L
ℓ

b ⊤) Fℓ

b ⊤ and ψ = ⊤ L
ℓ

b (⊤ F
ℓ

b ⊤)

and a word α with b ∈ im(α). The formula ϕ was used in the definition of the semantics of Hℓ

ā

and, as already mentioned, is only true if the interval is (∞;∞). In contrast, ψ is also true if the
interval is (0,∞). ♦

The following two propositions describe a procedure for converting unambiguous ITL formulas
into unambiguous TL formulas without introducing new negations. A similar relativization tech-
nique as in our proof has been used by Lodaya, Pandya, and Shah [4] for the conversion of ITL
over finite words into so-called deterministic partially ordered two-way automata (but without the
focus on not introducing negations). Proposition 1 is the eager version, whereas Proposition 2 is
the lazy version. As will follow from Theorems 1 to 5 we actually have equality for all inclusions
in both propositions.

Proposition 1 We have the following inclusions:

ITL[Fa, La] ⊆ TL[Xa,Ya],

ITL+[Fa, La,Gā,Hā] ⊆ TL+[Xa,Ya,Gā,Hā],

ITL+[Fa, La,Gā] ⊆ TL+[Xa,Ya,Gā],

ITL+
F
[Fa, La,Gā,Hā] ⊆ TL+

X
[Xa,Ya,Gā],

ITLF[Fa, La] ⊆ TLX[Xa,Ya].

Proof: Note that the atomic modalities Gā and Hā are expressible in ITL[Fa, La] as well as
in TL[Xa,Ya]. For every ϕ ∈ ITL[Fa, La,Gā,Hā] we construct an equivalent formula ϕ(ε;ε) ∈
TL[Xa,Ya,Gā,Hā] such that ϕ(ε;ε) contains a negation if and only if ϕ contains a negation, and
an Hā term appears in ϕ(ε;ε) if and only if it appears in ϕ. This will prove the first three inclusions.

For rankers q, r and ϕ ∈ ITL[Fa, La,Gā,Hā] we define ϕ(q;r) ∈ TL[Xa,Ya,Gā,Hā] such that α |=
ϕ(q;r) if and only if q(α) and r(α) are defined, q(α) < r(α), and

α,
(

q(α); r(α)
)

|= ϕ

with q(α) = 0 for q = ε and r(α) = ∞ for r = ε. In particular, in the above situation q and r

define the boundaries of an interval (q; r) parameterized by words α. The construction of ϕ(q;r) is
by structural induction. We will make extensive use of the formulas ̺q, ̺r and ϑr from Lemma 2
with the convention ̺q = ⊤ for q = ε. The atomic formula ⊤ and Boolean connectives are as
follows:

⊤(q;r) = q⊤ ∧ r⊤ ∧ r̺q

(¬ϕ)(q;r) = ⊤(q;r) ∧ ¬ϕ(q;r)

(ϕ ∧ ψ)(q;r) = ϕ(q;r) ∧ ψ(q;r)

(ϕ ∨ ψ)(q;r) = ϕ(q;r) ∨ ψ(q;r)

For the atomic ITL-formula Gā we set

(Gā)(q;r) =

{

⊤(q;ε) ∧ q Gā for r = ε

⊤(q;r) ∧ q
(

Gā ∨ Xa ϑr
)

for r 6= ε

Essentially, the term on the right-hand side says that the next a-position after the q-position is at
least the r-position. In case of the atomic ITL-formula Hā we have to distinguish between r = ε

12

and r 6= ε. If r 6= ε, then the interval defined by (q; r) is finite and therefore in this situation Hā

and Gā are equivalent:

(Hā)(q;r) = (Gā)(q;r)

If r = ε, then

(Hā)(q;r) = ⊤(q;r) ∧
(

Hā ∨ q Gā

)

i.e., either there are no or infinitely many a-positions, or there is no a-position after the q-position.
For the Fa-modality we define

(ϕ Fa ψ)(q;r) = ⊤(q;r) ∧ ϕ(q;q Xa) ∧ ψ(q Xa;r)

i.e., we verify ϕ on the interval (q; q Xa) and ψ on the interval (q Xa; r). The La-modality is similar:

(ϕ La ψ)(q;r) = ⊤(q;r) ∧ ϕ(q;rYa) ∧ ψ(r Ya;r)

saying that ϕ and ψ are defined on the respective subintervals and that there is some a-position in
the interval (q; r).

Now, for every ϕ ∈ ITL[Fa, La,Gā,Hā] and any rankers q, r, the formula ϕ(q;r) ∈ TL[Xa,Ya,Gā,Hā]
is a Boolean combination of formulas of the form ⊤(p;s), (Gā)(p;s), and (Hā)(p;s). Moreover, every
negation and every Hā-modality in ϕ(q;r) is only caused by the respective operation in ϕ. This
completes the proof of the first three inclusions.

For the last two inclusions, we first observe that in our construction the following invariants hold:

• If q and r are X-rankers with r 6= ε, then ϕ(q;r) ∈ TLX[Xa,Ya,Gā] for every formula ϕ ∈
ITL[Fa, La,Gā,Hā].

• If q is an X-ranker and r = ε, then for every ϕ ∈ ITL[Fa, La,Gā,Hā] and every ψ ∈
ITLF[Fa, La,Gā,Hā] we have (ϕ Fa ψ)(q;r) ∈ TLX[Xa,Ya,Gā].

Therefore, if ϕ ∈ ITLF[Fa, La,Gā,Hā], then ϕ(ε;ε) ∈ TLX[Xa,Ya,Gā]. Hence, the fourth and the fifth
inclusion follow. �

Proposition 2 We have the following inclusions:

ITL[Fℓ

a, L
ℓ

a] ⊆ TL[Xℓ

a,Y
ℓ

a],

ITL+[Fℓ

a, La,G
ℓ

ā,H
ℓ

ā] ⊆ TL+[Xℓ

a,Y
ℓ

a,G
ℓ

ā,H
ℓ

ā],

ITL+[Fℓ

a, L
ℓ

a,H
ℓ

ā] ⊆ TL+[Xℓ

a,Y
ℓ

a,H
ℓ

ā].

Proof: For ϕ ∈ ITL[Fℓ
a, L

ℓ
a,G

ℓ

ā,H
ℓ

ā] we construct an equivalent formula ϕ(ε;ε) ∈ TL[Xℓ

a,Y
ℓ

a,G
ℓ

ā,H
ℓ

ā]
such that ϕ(ε;ε) contains a negation if and only if ϕ does, and a Gℓ

ā term appears in ϕ(ε;ε) if and only if
it appears in ϕ. We use the following construction. For lazy rankers q, r and ϕ ∈ ITL[Fℓ

a, L
ℓ
a,G

ℓ

ā,H
ℓ

ā]
we define ϕ(q;r) ∈ TL[Xℓ

a,Y
ℓ

a,G
ℓ

ā,H
ℓ

ā] such that α |= ϕ(q;r) if and only if q(α) and r(α) are defined,
q(α) < r(α), and

α,
(

q(α); r(α)
)

|= ϕ

with q(α) = 0 for q = ε and r(α) = ∞ for r = ε. In particular, in the above situation q and r

define the boundaries of an interval (q; r) parameterized by words α. The construction of ϕ(q;r) is

13

by structural induction. We will make extensive use of the formulas ̺r and ϑr from Lemma 3. The
atomic formula ⊤ and positive Boolean connectives are as follows:

⊤(q;r) = q⊤ ∧ r⊤ ∧ q̺r

(¬ϕ)(q;r) = ⊤(q;r) ∧ ¬ϕ(q;r)

(ϕ ∧ ψ)(q;r) = ϕ(q;r) ∧ ψ(q;r)

(ϕ ∨ ψ)(q;r) = ϕ(q;r) ∨ ψ(q;r)

with ̺r = ⊤ for r = ε. For the atomic ITL-formula H
ℓ

ā we set

(Hℓ

ā)(q;r) =

{

⊤(q;r) ∧ r(Hℓ

ā ∨ Y
ℓ

a ϑq) if q 6= ε

⊤(ε;r) ∧ rHℓ

ā if q = ε

This is consistent with the definition that for all a ∈ Γ and all infinite words α ∈ Γω we have
α, (∞;∞) |= H

ℓ

ā in unambiguous ITL. The atomic modality Gā is slightly more technical due to its
behavior on the interval (∞;∞). For r = ε we set

(Gℓ

ā)(q;ε) = ⊤(q;ε) ∧ q Gℓ

ā .

If r 6= ε is an X
ℓ-ranker we define

(Gℓ

ā)(q;r) = ⊤(q;r) ∧ r(Hℓ

ā ∨ Y
ℓ

a ϑq)

with ϑq = ⊥ for q = ε. Therefore, if q = ε, then we can omit the term Y
ℓ

a ϑq in the above formula.
Finally, for a non-empty Y

ℓ-ranker r we use

(Gℓ

ā)(q;r) = ⊤(q;r) ∧

(

(

r(Hℓ

ā ∨ Y
ℓ

a ϑq) ∧
∨

b∈B

Y
ℓ

b G
ℓ

b̄

)

∨ q Gℓ

ā

)

with B = alphΓ(r) is the set of letters which occur in some modality of the ranker r. As before,
we set ϑq = ⊥ for q = ε. The above formula distinguishes two cases. The first case is that r
determines a finite position (after some last occurrence of a letter b ∈ B from the ranker r there is
no b-position). In this case either there is no a-position before the r-position, or the first a-position
before the r-position is on the left-hand side of the q-position. The other case is that r leads to the
infinite position and then we want to see no a-position on the right-hand side of the q-position.

For the F
ℓ
a-modality we define

(ϕ F
ℓ

a ψ)(q;r) = ⊤(q;r) ∧ ϕ(q;q Xℓ
a)

∧ ψ(q Xℓ
a;r)

and for Lℓ
a we set

(ϕ L
ℓ

a ψ)(q;r) = ⊤(q;r) ∧ ϕ(q;r Yℓ
a)

∧ ψ(r Yℓ
a ;r)

.

Now, for every ϕ ∈ ITL[Fℓ
a, L

ℓ
a,G

ℓ

ā,H
ℓ

ā] and for all lazy rankers q, r, the formula ϕ(q;r) ∈ TL[Xℓ

a,Y
ℓ

a,

G
ℓ

ā,H
ℓ

ā] is a Boolean combination of formulas of the form ⊤(p;s), (G
ℓ

ā)(p;s), and (Hℓ

ā)(p;s). Moreover,
every negation and every G

ℓ

ā-modality in ϕ(q;r) is due to the respective operation in ϕ. This
completes the proof. �

14

4 The Fragment FO2

This section contains various ITL, TL, and ranker characterizations using the eager variants. We
postpone characterizations in terms of the lazy fragments to Theorem 5.

Theorem 1 For L ⊆ Γ∞ the following assertions are equivalent:

1. L is definable in FO2.

2. L is definable in ITL+[Fa, La,Gā,Hā].

3. L is definable in ITL[Fa, La].

4. L is definable in TL[Xa,Ya].

5. L is definable in TL+[Xa,Ya,Gā,Hā].

6. L is a positive ranker language with atomic modalities Gā and Hā.

7. L is a ranker language.

Lemma 4 Let A ⊆ Γ. Then A∞ is definable in ITL+[Gā], and A
im is definable in ITL+[Fa,Hā].

Proof: A letter a ∈ Γ does not appear in a word α if and only if α |= Gā, and a appears infinitely
often in a word α if and only if α |= (⊤ Fa ⊤) ∧ Hā. Hence

A∞ is defined by
∧

a6∈A

Gā and

Aim is defined by
∧

a∈A

(⊤ Fa ⊤) ∧ Hā . �

Lemma 5 Every unambiguous monomial L = A∗
1a1 · · ·A

∗
kakA

∞
k+1 is definable in ITL+[Fa, La,Gā].

Proof: We perform an induction on k. For k = 0 we have L = A∞
1 which is definable in ITL+[Gā]

by Lemma 4. Let k ≥ 1. Since L is unambiguous, we have {a1, . . . , ak} 6⊆ A1 ∩ Ak+1; otherwise
(a1 · · · ak)

2 admits two different factorizations showing that L is not unambiguous. First, consider
the case ai 6∈ A1 and let i be minimal with this property. Each word α ∈ L has a unique factorization
α = uaiβ such that ai 6∈ alph(u). Depending on whether the first ai of α coincides with the marker
ai or not, we have

u ∈ A∗
1a1 · · ·A

∗
i , β ∈ A∗

i+1ai+1 · · ·A
∗
kakA

∞
k+1 or

u ∈ A∗
1a1 · · ·A

∗
j , ai ∈ Aj , β ∈ A∗

jaj · · ·A
∗
kakA

∞
k+1

with 2 ≤ j ≤ i. In both cases, since L is unambiguous, each expression containing u or β is
unambiguous. Moreover, each of these expressions is strictly shorter than L. By induction, for
each 2 ≤ j ≤ k, there exist formulas ϕ,ψ ∈ ITL+[Fa, La,Gā] such that L(ϕ) = A∗

1a1 · · ·A
∞
j and

L(ψ) = A∗
jaj · · ·A

∗
kakA

∞
k+1. By the above reasoning, we see that L is the union of (at most i)

languages of the form
(

L(ϕ) ∩ (Γ \ {ai})
∗
)

ai L(ψ)

and each of them is defined by ϕ Fai ψ.
For ai 6∈ Ak+1 with i maximal we consider the unique factorization α = uaiβ with ai 6∈ alph(β)

and again we end up with one of the two cases from above, with the difference that 1 ≤ i < j ≤ k

in the second case. Inductively L is defined by a disjunction of formulas ϕ Lai ψ. �

15

The language L(Hā) is definable in Π2 ∩ FO2 using the following formula

∀x∃y : λ(x)=a ∨
(

y > x ∧ λ(y)= a
)

,

but it is not definable in Σ2. Therefore, we have to exclude the case r = Hā in the following lemma.

Lemma 6 Let r 6= Hā be a non-empty ranker, potentially with atomic modality Gā or Hā, then
L(r) is definable in FO2 ∩ Σ2.

Proof: By induction on k = |r| we construct formulas µr(x) ∈ FO2 and σr(x) ∈ Σ2 with one free
variable such that for every word α ∈ Γ∞ we have

α |= ∃x : µr(x) iff r(α) is defined iff α |= ∃x : σr(x)

and if r(α) is defined, then

α, x |= µr(x) iff x = r(α) iff α, x |= σr(x).

For µr we only use the variables x and y. By interchanging the names, we can always choose
whether x or y is the free variable of µr. The formula σr = σr(xk) will have the form

∃xk−1 · · · ∃x1∀y : νr(xk, . . . , x1, y).

For r = Gā we set

µr(x) ≡ σr(x) ≡ ∀y : λ(y) 6= a.

For r = Ya we define

µr(x) ≡ σr(x) ≡ ∀y : λ(x) = a ∧ (y ≤ x ∨ λ(y) 6= a).

Note that if α contains infinitely many a’s, then α 6|= ∃x : µr(x) for r = Ya. The case r = Xa is
symmetric; we only have to replace “≤” with “≥” in the above formula.

Let now k = |r| > 1. We first consider the formula µr. If r = sXa, then

µr(x) ≡

{

λ(x) = a ∧ ∃y < x : µs(y) ∧

∀y < x :
(

λ(y) 6= a ∨ ∃x ≥ y : µs(x)
)

saying that x is an a-position greater than the s-position (in particular, r is defined) and that all
a-positions smaller than x are not greater than the s-position. The case r = sYa is symmetric; we
only have to replace all “<” by “>” and “≥” by “≤” in the above formula. If r = sGā, then

µr(x) ≡ µs(x) ∧ ∀y > x : λ(y) 6= a,

and for r = sHā we use the same formula, but y > x is replaced by y < x.
We now describe the construction of the formula σr. Suppose r = sXa and let σs(xk−1) =

∃xk−2 · · · ∃x1∀y : νs(xk−1, . . . , x1, y). Then

σr(xk) ≡











∃xk−1 · · · ∃x1∀y : λ(xk) = a ∧

xk > xk−1 ∧ νs(xk−1, . . . , x1, y) ∧
(

y ≤ xk−1 ∨ y ≥ xk ∨ λ(y) 6= a
)

.

The semantics of σr is as follows: xk is labeled by a and it is strictly greater than the s-position
xk−1; moreover, there is no a-position strictly between xk−1 and xk. Hence, xk determines the
r-position. As before, the case r = sYa is symmetric; we only have to replace “>” by “<” and we
have to interchange “≥” and “≤” in the above formula. If r = sGā, then

σr(xk) ≡ ∃xk−1 · · · ∃x1∀y : νs(xk, xk−2, . . . , x1, y) ∧
(

y ≤ xk ∨ λ(y) 6= a),

and for r = sHā we use the same formula, but y ≤ xk is replaced by y ≥ xk. �

16

Proof (Theorem 1): We show “1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 7 ⇒ 1” and “2 ⇒ 5 ⇒ 6 ⇒ 4”.
“1 ⇒ 2”: Every FO2-definable language is a finite union of languages of the form P ∩Aim with an

unambiguous monomial P and A ⊆ Γ, see [2]. Since ITL+[Fa, La,Gā,Hā] is closed under finite unions
and finite intersections, it suffices to show that Aim and P are definable in ITL+[Fa, La,Gā,Hā].
This follows from Lemma 4 and Lemma 5, respectively.

“2 ⇒ 3” and “6 ⇒ 4” are trivial. “3 ⇒ 4” and “2 ⇒ 5”: Proposition 1. “4 ⇒ 7” and “5 ⇒ 6”:
Lemma 1.

“7 ⇒ 1”: By Lemma 6, for every ranker r the language L(r) is FO2-definable. Since FO2 is
closed under Boolean operations, every ranker language is FO2-definable. �

5 The Fragment Σ2 ∩ FO2

In the following, we show that Σ2 ∩ FO2 admits characterizations in terms of eager ITL, TL, and
rankers.

Theorem 2 Let L ⊆ Γ∞. The following assertions are equivalent:

1. L is definable in Σ2 and FO2.

2. L is definable in ITL+[Fa, La,Gā].

3. L is definable in TL+[Xa,Ya,Gā].

4. L is a positive ranker language with atomic modality Gā.

5. L is a ranker language with atomic modality Gā with the restriction that all Y-rankers are
positive.

Note that we cannot use lazy counterparts in the above characterizations, since for example Yℓ

a X
ℓ

a

is defined if and only if there are infinitely many a’s, but this property is not Σ2-definable.

Lemma 7 Let r be an X-ranker with atomic modality Gā. Then Γ∞ \ L(r) is Σ2-definable.

Proof: If r is an X-ranker which is not defined on α, then there is a longest prefix p of r such that
p is defined on α. Write r = pq. If the first modality q is of the form Xa or Ya or Gā , then we set
s = pGā or s = pHā or s = pXa, respectively. Note that if q starts with Ya, then p is a non-empty
X-ranker. In any case s 6= Hā, and therefore, L(s) is Σ2-definable by Lemma 6. Hence, we find a
finite set of Σ2-definable languages whose union is Γ∞ \ L(r). But Σ2 is closed under union and
thus Γ∞ \ L(r) is Σ2-definable. �

Proof (Theorem 2): “1 ⇒ 2”: A language L is definable in Σ2 ∩FO2 if and only if L is a union of
unambiguous monomials, see [2]. Since ITL+[Fa, La,Gā] is closed under union, it suffices to show
that every unambiguous monomial is definable in ITL+[Fa, La,Gā]; this is exactly Lemma 5.

“2 ⇒ 3”: Proposition 1. “3 ⇒ 4”: Lemma 1. “4 ⇒ 5”: trivial.
“5 ⇒ 1”: Since languages in Σ2 ∩ FO2 are closed under finite union and finite intersection, the

claim follows from Lemma 6 and Lemma 7. �

Over finite words, the fragments FO2 and ∆2 coincide [8]. In particular, FO2 ∩ Σ2 = FO2 for
finite words. Since finiteness of a word is definable in FO2 ∩ Σ2, we obtain the following corollary
of Theorem 2.

Corollary 1 A language L ⊆ Γ∗ of finite words is definable in FO2 if and only if L is a positive
ranker language with atomic modality Gā.

17

6 The Fragment ∆2

Over infinite words, the fragment ∆2 is a strict subclass of FO2. In this section, we show that
∆2 basically is FO2 with the lack of past formulas and past-rankers. Since eager future formulas
and future-rankers coincide with their lazy counterparts, all of the characterizations in the next
theorem could be replaced by their lazy pendants.

Theorem 3 Let L ⊆ Γ∞. The following assertions are equivalent:

1. L is definable in ∆2.

2. L is definable in ITL+
F
[Fa, La,Gā].

3. L is definable in ITLF[Fa, La].

4. L is definable in TLX[Xa,Ya].

5. L is definable in TL+
X
[Xa,Ya,Gā].

6. L is a positive X-ranker language with atomic modality Gā.

7. L is an X-ranker language.

Lemma 8 Every language definable in ∆2 is definable in ITL+
F
[Fa, La,Gā].

Proof: It is known that a ∆2-definable language is a finite union of unambiguous monomials
L = A∗

1a1 · · ·A
∗
kakA

∞
k+1 such that {aj, . . . , ak} * Aj for all 1 ≤ j ≤ k, see [2]. Let i be minimal such

that ai 6∈ A1 and for each word α ∈ L consider the factorization α = uaiβ such that ai 6∈ alph(u).
There are two cases:

u ∈ A∗
1a1 · · ·A

∗
i , β ∈ A∗

i+1ai+1 · · ·A
∗
kakA

∞
k+1 or

u ∈ A∗
1a1 · · ·A

∗
j , ai ∈ Aj , β ∈ A∗

jaj · · ·A
∗
kakA

∞
k+1

with 2 ≤ j ≤ i. In each case the expression P = A∗
jaj · · ·A

∗
kakA

∞
k+1 containing β is unambiguous

since L is. Moreover, the expression is shorter than that for L and we have {aℓ, . . . , ak} * Aℓ for
all j ≤ ℓ ≤ k. By induction P is definable by an ITL+

F
[Fa, La,Gā]-formula ψ. By Lemma 5, we

get an ITL+[Fa, La,Gā]-formula ϕ defining the monomial A∗
1a1 · · ·A

∞
j . Therefore L is the union of

languages of the form ϕ Fai ψ each of which is an ITL+
F
[Fa, La,Gā]-formula by definition, given the

constraints imposed on ϕ and ψ. �

Proof (Theorem 3): We show“1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 7 ⇒ 1” and “2 ⇒ 5 ⇒ 6 ⇒ 4”.
“1 ⇒ 2” is Lemma 8 and “2 ⇒ 3” as well as “6 ⇒ 4” are trivial. “3 ⇒ 4” and “2 ⇒ 5”: Propo-

sition 1. “4 ⇒ 7” and “5 ⇒ 6”: Lemma 1.
It remains to show “7 ⇒ 1”. By Lemma 6 and Lemma 7, for every X-ranker r the languages

L(r) and Γ∞ \L(r) are definable in ∆2 = Σ2∩Π2. Since ∆2 is closed under finite unions and finite
intersections, the claim follows. �

7 The Fragment Π2 ∩ FO2

In this section we give characterizations of the fragment Π2 ∩ FO2 in term of the lazy variants of
ITL, TL, and rankers. We cannot use the eager variants, since Ya says that there are only finitely
many a’s, but this property is not Π2-definable. Also note that α, (∞;∞) |= Ĥā for Ĥā = ¬(⊤L

ℓ
a⊤)

if and only if a 6∈ im(α), i.e., if and only if a occurs at most finitely often. As before, this property
is not Π2-definable. This is the reason why we did not define H

ℓ

ā simply as Ĥā.

18

Theorem 4 Let L ⊆ Γ∞. The following assertions are equivalent:

1. L is definable in Π2 and FO2.

2. L is definable in ITL+[Fℓ
a, L

ℓ
a,H

ℓ

ā].

3. L is definable in TL+[Xℓ

a,Y
ℓ

a,H
ℓ

ā].

4. L is a positive lazy ranker language with atomic modality H
ℓ

ā.

5. L is a lazy ranker language with atomic modality H
ℓ

ā with the restriction that all Yℓ-rankers
are positive.

Lemma 9 The complement Γ∞ \ L of every unambiguous monomial L = A∗
1a1 · · ·A

∗
kakA

∞
k+1 is

definable in ITL+[Fℓ
a, L

ℓ
a,H

ℓ

ā].

Proof: We perform an induction on k. For k = 0 we have L = A∞
1 and Γ∞ \A∞

1 is defined by the
ITL+[Fℓ

a]-formula

∨

a6∈A1

(⊤ F
ℓ

a ⊤).

Let now k > 0. Since L is unambiguous, we have {a1, . . . , ak} 6⊆ A1 ∩ Ak+1; otherwise (a1 · · · ak)
2

admits two different factorizations showing that L is not unambiguous. First, consider the case
ai 6∈ Ak+1 and let i be maximal with this property. For α ∈ Γ∞ we have α 6∈ L if and only if one
of the following conditions is true: The first condition is ai 6∈ alph(α) or ai ∈ im(α) and the second
condition is ai ∈ alph(α) \ im(α) and the following holds for α = uaiβ with ai 6∈ alph(β):

• u 6∈ A∗
1a1 · · ·A

∞
i or β 6∈ A∗

i+1ai+1 · · ·A
∞
k+1, and

• for all i < j ≤ k with ai ∈ Aj we have: u 6∈ A∗
1a1 · · ·A

∞
j or β 6∈ A∗

jaj · · ·A
∞
k+1.

The monomials A∗
1a1 · · ·A

∞
j for i ≤ j ≤ k and A∗

jaj · · ·A
∞
k+1 for i < j ≤ k are unambiguous and

have degree smaller than k. Hence by induction, there exist formulas ϕj , ψj ∈ ITL+[Fℓ
a, L

ℓ
a,H

ℓ

ā] such
that L(ϕj) = Γ∞ \A∗

1a1 · · ·A
∞
j and L(ψj) = Γ∞ \A∗

jaj · · ·A
∞
k+1. This yields the following formula

for the complement of L:

H
ℓ

āi
∨ (⊤ L

ℓ

ai
(⊤ F

ℓ

ai
⊤)) ∨

(

(

(ϕi L
ℓ

ai
⊤) ∨ (⊤ L

ℓ

ai
ψi+1)

)

∧
∧

i<j≤k,ai∈Aj

(

(ϕj L
ℓ

ai
⊤) ∨ (⊤ L

ℓ

ai
ψj)

)

)

.

The first line captures the first condition from above, since ⊤ L
ℓ
ai
(⊤ F

ℓ
ai
⊤) is true if and only if ai

appears infinitely often. Note that a term T saying that ai occurs only finitely often and at least
once is not required in the above formula, even though it would be natural to include it on the
right-hand side of the second disjunction at the outermost level (if T is false, then one of the first
two terms is true). Hence, we do not have to care about the case in which the right interval of
some L

ℓ
ai
-modality is (∞;∞).

Let now ai 6∈ A1 and let i be minimal with this property. For α ∈ Γ∞ we have α 6∈ L if and
only if one of the following conditions is true: The first condition is ai 6∈ alph(α) and the second
condition is ai ∈ alph(α) and the following holds for α = uaiβ with ai 6∈ alph(u):

• u 6∈ A∗
1a1 · · ·A

∞
i or β 6∈ A∗

i+1ai+1 · · ·A
∞
k+1, and

• for all 1 < j ≤ i with ai ∈ Aj we have: u 6∈ A∗
1a1 · · ·A

∞
j or β 6∈ A∗

jaj · · ·A
∞
k+1.

19

The monomials A∗
1a1 · · ·A

∞
j for 1 < j ≤ i and A∗

jaj · · ·A
∞
k+1 for 1 < j ≤ i + 1 are unambiguous

and have degree smaller than k. Hence by induction, there exist formulas ϕj , ψj ∈ ITL+[Fℓ
a, L

ℓ
a,H

ℓ

ā]
such that L(ϕj) = Γ∞ \ A∗

1a1 · · ·A
∞
j and L(ψj) = Γ∞ \ A∗

jaj · · ·A
∞
k+1. This yields the following

formula for the complement of L:

H
ℓ

āi
∨
(

(

(ϕi F
ℓ

ai
⊤) ∨ (⊤ F

ℓ

ai
ψi+1)

)

∧
∧

1<j≤i,ai∈Aj

(

(ϕj F
ℓ

ai
⊤) ∨ (⊤ F

ℓ

ai
ψj)

)

)

.

This completes the proof. �

For the inclusion of positive lazy rankers in Π2 ∩ FO2, our proof is based on a characterization
of this fragment in terms of the alphabetic topology over finite and infinite words [2]. A base of
the open subsets of this topology is given by the sets of the form uA∞ for u ∈ Γ∗ and A ⊆ Γ. A
language is closed if its complement is open. The closure L of a language is the intersection of all
closed sets containing L. A word α belongs to L if for every finite prefix u of α there exists γ ∈ A∞

for A = im(α) such that uγ ∈ L. A language L is closed if and only if L ⊆ L.

Lemma 10 Let L ⊆ Γ∞. If L is a lazy ranker language with atomic modality H
ℓ

ā such that all
Y

ℓ-rankers are positive, then L is closed in the alphabetic topology.

Proof: A lazy ranker starting with a future modality is equivalent to its eager counterpart. For
pure eager X-rankers r we have shown in Lemma 6 and Lemma 7 that both L(r) and Γ∞ \ L(r)
are Σ2-definable, and hence, L(r) and Γ∞ \ L(r) are open in the alphabetic topology, i.e., L(r) is
clopen. For every X-ranker r we have L(rHā) = L(r) \ L(rYa). Therefore, every lazy X

ℓ-ranker r
(possibly with atomic H

ℓ

ā-modality) generates a clopen language L(r).
It remains to show that L(r) is closed for every Y

ℓ-ranker r. The ranker r may end with H
ℓ

ā. We
show that the closure of L(r) in the alphabetic topology is contained in L(r). Suppose α ∈ L(r)
and let A = im(α). Let s be the maximal pure prefix of r, i.e., r ∈ s {ε,Hℓ

ā | a ∈ Γ}, and let
k = |s| + 1. Write α = uv1 · · · vkβ with alph(vi) = A and β ∈ A∞ ∩ Aim. Since α ∈ L(r),
there exists γ ∈ A∞ such that uv1 · · · vkγ ∈ L(r), i.e., r is defined on the word α′ = uv1 · · · vkγ.
If s(α′) = ∞, then s(α) = ∞, since im(α′) ⊆ A = im(α). Moreover, r(α) is defined, since
alph(α′) = alph(uv1) = alph(α). Let now s(α′) 6= ∞. We have to distinguish two cases.

The first case is that all letters occurring in s are from A. Then s(α) = ∞ (in particular s(α)
is defined) and s(α′) > |uv1| by choice of k. This shows, that r(α) is defined if r = s. Now, if
r = sHℓ

ā, then a 6∈ alph(uv1) = alph(α), and hence r(α) is defined.
The second case is s = s1 Y

ℓ

b s2 such that b 6∈ A and all letter from s1 are in A. Note that we
cannot have the situation s = s1 X

ℓ

b s2 with b 6∈ A and all letter from s1 are in A, since then s

would be undefined on α′. Then s1 Y
ℓ

b(α
′) = s1 Y

ℓ

b(α) ≤ |u|. Again, by choice of k, it follows that
s1 Y

ℓ

b s2(α
′) = s1 Y

ℓ

b s2(α). Therefore, even if r ends with H
ℓ

ā, we see that r(α) is defined.
In any case, we have α ∈ L(r). This completes the proof. �

Proof (Theorem 4): “1 ⇒ 2” A language is in Π2 ∩ FO2 if and only if it is the intersection of
complements of unambiguous monomials, see [2]. By Lemma 9, such complements are definable in
ITL+[Fℓ

a, L
ℓ
a,H

ℓ

ā]. Since ITL+[Fℓ
a, L

ℓ
a,H

ℓ

ā] is closed under intersection, the claim follows.
“2 ⇒ 3” is Proposition 2 and “3 ⇒ 4” follows from Lemma 1. “4 ⇒ 5” is trivial.
“5 ⇒ 1”: It is easy to see that any lazy ranker language is definable in TL[Xa,Ya]. Hence, by

Theorem 1, any such language is in FO2. Closed languages are closed under finite union and
intersection. Therefore, by Lemma 10, lazy ranker languages with atomic modality H

ℓ

ā and with
only positive Y

ℓ-rankers are closed in the alphabetic topology. Languages which are closed in the
alphabetic topology and which are FO2-definable are in Π2, see [2]. �

20

For completeness, we give a counterpart of Theorem 1 using the lazy versions ITL, TL, and
rankers.

Theorem 5 For L ⊆ Γ∞ the following assertions are equivalent:

1. L is definable in FO2.

2. L is definable in ITL+[Fℓ
a, L

ℓ
a,G

ℓ

ā,H
ℓ

ā].

3. L is definable in ITL[Fℓ
a, L

ℓ
a].

4. L is definable in TL[Xℓ

a,Y
ℓ

a].

5. L is definable in TL+[Xℓ

a,Y
ℓ

a,G
ℓ

ā,H
ℓ

ā].

6. L is a positive ranker language with atomic modalities G
ℓ

ā and H
ℓ

ā.

7. L is a lazy ranker language.

Proof: “1 ⇒ 2”: Every FO2-definable language is a finite intersection of languages of the form
Γ∞ \ (P ∩ Aim) = (Γ∞ \ P) ∪ (Γ∞ \ Aim) with an unambiguous monomial P and A ⊆ Γ, see [2].
Since ITL+[Fℓ

a, L
ℓ
a,G

ℓ

ā,H
ℓ

ā] is closed under finite unions and finite intersections, it suffices to show
that Γ∞ \ P and Γ∞ \ Aim are definable in ITL+[Fℓ

a, L
ℓ
a,G

ℓ

ā,H
ℓ

ā]. For Γ∞ \ P , this is shown in
Lemma 9 and Γ∞ \ Aim is defined by

∨

b6∈A

(

⊤ L
ℓ

b (⊤X
ℓ

b ⊤)
)

∨
∨

b∈A

(

⊤ L
ℓ

b G
ℓ

b̄

)

.

“2 ⇒ 3” is trivial.
“3 ⇒ 4”: Proposition 2.
“4 ⇒ 5”: Using a similar approach as in Lemma 1 we can remove all negations. For this, we

apply De Morgan’s laws and the following rules for moving negations to the innermost level:

¬X
ℓ

a ϕ ≡ G
ℓ

ā ∨ X
ℓ

a ¬ϕ,

¬Y
ℓ

a ϕ ≡ H
ℓ

ā ∨ Y
ℓ

a ¬ϕ.

Note that X
ℓ

a⊥ ≡ ⊥ ≡ Y
ℓ

a⊥. After incorporating all constants, we end up with an equivalent
formula in TL+[Xℓ

a,Y
ℓ

a,G
ℓ

ā,H
ℓ

ā].
“5 ⇒ 6” is proved in Lemma 1 (even though not stated explicitly due to lack of space).
“6 ⇒ 7” is trivial.
“7 ⇒ 1”: Every lazy X-ranker is equivalent to its eager counterpart and hence, it generates a

TL[Xa,Ya]-definable language. Let now r = Y
ℓ

a1
Z

ℓ

a2
· · · Zℓ

ak
with each Z

ℓ

ai
being either X

ℓ

ai
or Y

ℓ

ai
.

For A ⊆ Γ we define the following macro:

A ⊆ im ≡
∧

a∈A

(Xa⊤ ∧ ¬Ya⊤)

Now, L(r) is defined by

∨

i = 0, . . . , k
Z
ℓ
ai+1

6= X
ℓ
ai+1

(

{a1, . . . , ai} ⊆ im ∧ Z
ℓ

ai+1
· · ·Zℓ

ak
⊤
)

Therefore, every lazy ranker language is TL[Xa,Ya]-definable, and by Theorem 1 it is FO2-definable.
�

21

8 Conclusion

We have given an eager and a lazy generalization of rankers for infinite words. Together with
the usual rankers over finite words, we obtained combinatorial descriptions of various fragments of
first-order logic FO[<] over finite and infinite words. Without negation the eager variant cannot
express that there are infinitely many occurrences of some letter. This leads to a characterization
of the fragment Σ2∩FO2. Similarly, we cannot say that some letter occurs only finitely often in the
lazy version, and this yields Π2 ∩FO2. Both eager and lazy rankers are suitable for describing FO2

and ∆2. Intermediate steps in all our proofs have been unambiguous ITL and unambiguous TL—
both in an eager and a lazy variant. The following table summarizes some characterizations of the
fragments. For conciseness we introduce some additional terminology. By Rankers[C] we denote
the class of ranker languages with atomic modalities C. If C is empty we simply write Rankers.
The positive fragment is denoted by Rankers+[C] and RankersX[C] are the X-ranker languages. If
we prepend an ℓ we mean the respective lazy pendant.

FO-Logic Interval Logic Temporal Logic Rankers

FO2

ITL[Fa, La]
ITL[Fℓ

a, L
ℓ
a]

ITL+[Fa, La,Gā,Hā]
ITL+[Fℓ

a, L
ℓ
a,G

ℓ

ā,H
ℓ

ā]

TL[Xa,Ya]
TL[Xℓ

a,Y
ℓ

a]
TL+[Xa,Ya,Gā,Hā]
TL+[Xℓ

a,Y
ℓ

a,G
ℓ

ā,H
ℓ

ā]

Rankers
ℓ-Rankers

Rankers+[Gā,Hā]
ℓ-Rankers+[Gℓ

ā,H
ℓ

ā]

Thm. 1
Thm. 5

Σ2 ∩ FO2 ITL+[Fa, La,Gā] TL+[Xa,Ya,Gā] Rankers+[Gā] Thm. 2

Π2 ∩ FO2 ITL+[Fℓ
a, L

ℓ
a,H

ℓ

ā] TL+[Xℓ

a,Y
ℓ

a,H
ℓ

ā] ℓ-Rankers+[Hℓ

ā] Thm. 4

∆2

ITLF[Fa, La]
ITLF[F

ℓ
a, L

ℓ
a]

ITL+
F
[Fa, La,Gā]

ITL+
F
[Fℓ

a, L
ℓ
a,G

ℓ

ā]

TLX[Xa,Ya]
TLX[X

ℓ

a,Y
ℓ

a]
TL+

X
[Xa,Ya,Gā]

TL+
X
[Xℓ

a,Y
ℓ

a,G
ℓ

ā]

RankersX
ℓ-RankersX

Rankers+
X
[Gā]

ℓ-Rankers+
X
[Gℓ

ā]

Thm. 3

Open Problems

Rankers over finite words have been introduced for characterizing quantifier alternation within FO2.
We conjecture that similar results for infinite words can be obtained using our generalizations of
rankers.

Over infinite words, the class of X-ranker languages correspond to the fragment ∆2. Over finite
words however, X-ranker languages form a strict subclass of ∆2 (which for finite words coincides
with FO2). An algebraic counterpart is still missing. The main problem is that X-ranker languages
do not form a variety of languages.

A well-known theorem by Schützenberger [5] implies that over finite words, arbitrary finite unions
of unambiguous monomials and finite disjoint unions of unambiguous monomials describe the same
class of languages. In the case of infinite words, it is open whether one can require that unambiguous
polynomials are disjoint unions of unambiguous monomials without changing the class of languages.

Acknowledgments. We thank Volker Diekert for a suggestion which led to Theorem 2. We also
thank the anonymous referees for several useful suggestions which helped to improve the presenta-
tion of the paper.

22

References

[1] Diekert, V., Gastin, P., Kufleitner, M.: A survey on small fragments of first-order logic over
finite words. International Journal of Foundations of Computer Science 19(3), 513–548 (June
2008), special issue DLT 2007

[2] Diekert, V., Kufleitner, M.: Fragments of first-order logic over infinite words. STACS 2009.
Dagstuhl Seminar Proceedings, vol. 09001, pp. 325–336 (2009)

[3] Kufleitner, M.: Polynomials, fragments of temporal logic and the variety DA over traces. The-
oretical Computer Science 376, 89–100 (2007), special issue DLT 2006

[4] Lodaya, K., Pandya, P.K., Shah, S.S.: Marking the chops: an unambiguous temporal logic. IFIP
TCS 273, 461–476 (2008)

[5] Schützenberger, M.P.: Sur le produit de concaténation non ambigu. Semigroup Forum 13, 47–75
(1976)

[6] Schwentick, T., Thérien, D., Vollmer, H.: Partially-ordered two-way automata: A new charac-
terization of DA. Proceedings of DLT’01, LNCS vol. 2295, pp. 239–250. Springer (2001)

[7] Tesson, P., Thérien, D.: Diamonds are forever: The variety DA. Semigroups, Algorithms,
Automata and Languages, 475–500 (2002)

[8] Thérien, D., Wilke, Th.: Over words, two variables are as powerful as one quantifier alternation.
Proceedings of STOC’98, 234-240 (1998). (1998)

[9] Weis, Ph., Immerman, N.: Structure theorem and strict alternation hierarchy for FO2 on words.
Logical Methods in Computer Science 5(3:3), 1–23 (2009)

23

	1 Introduction
	2 Preliminaries
	2.1 Fragments of First-Order Logic

	3 Rankers and Unambiguous Temporal Logics
	3.1 Rankers
	3.2 Unambiguous Temporal Logic
	3.3 Unambiguous Interval Temporal Logic

	4 The Fragment FO2
	5 The Fragment 2FO2
	6 The Fragment 2
	7 The Fragment 2 FO2
	8 Conclusion

