
Regular Hedge Language Factorization Revisited

Mircea Marin1? and Temur Kutsia2??

1 Department of Computer Science, University of Tsukuba, Japan
2 RISC, Johannes Kepler University, Linz, Austria

Abstract. We consider the factorization problem of regular hedge lan-
guages. This problem is strongly related to the type checking problem
in rule based transformations of valid XML documents. We propose the
representation of regular hedge languages by reduced, complete, and de-
terministic linear hedge automata, and indicate algorithms for the com-
putation of right factors and factor matrix.

1 Motivation

Regular hedge languages, or simply RHLs, are a natural generalization of regular
languages where strings are replaced by sequences of unranked trees, also known
as hedges. They were first studied by Thatcher [8, 9], who developed the basic
theory of unranked tree automata and investigated their regular extensions. In-
terest in their study was reignited by the advent of XML as the de facto standard
for the exchange and manipulation of data on the Web [1], and by the recogni-
tion of the fact that RHLs are a suitable formalism to specify restrictions on the
structure of XML documents. Hedge automata [7] were invented to type check
(or validate) input data against specifications of RHLs, and regular expression
types were introduced in XML processing languages [4] as a means to specify
membership constraints to RHLs.

Several results from the theory of regular languages carry over nicely to reg-
ular hedge languages. In particular, the factorization theory of regular languages
[2] has a natural generalization to regular hedge languages [6, 5]. One of the mo-
tivations behind the study of regular hedge language factorizations is the type
checking problem that arises in the context of XML transformation. Assume we
are given a transformation rule P → r for input documents ranging over an RHL
Hin, and we want to check if the result belongs to an output type given by an
RHL Hout. This problem amounts to inferring the types of the pattern variables
of P when matching input documents from Hin, using them to infer the type (or
type over-approximation) H of the result r, and then checking if H is a subtype
of Hout. We mention two possible approaches:

1. Type inference for pattern variables, used in the XML programming language
XDuce [3]. Certain syntactic restrictions and a pattern matching strategy

? Supported by JSPS Grant-in-Aid no. 20500025 for Scientific Research (C).
?? Supported by EC FP6 under the project SCIEnce—Symbolic Computation Infras-

tructure for Europe (Contract No. 026133).

are imposed in order to enable an easy static type reconstruction algorithm
for the variables of P when matched against inputs of a given type. The
types inferred for the pattern variables can be used to compute an over-
approximation of the type of output r, and check if it is a subtype of Hout.

2. Type inference for the tuple of all variables of a pattern. In this case, we
compute for every pattern P with variables x1, . . . , xn a finite set

Hp = {Hi,1 × . . .×Hi,n | i ∈ {1, . . . , p}}

of cartesian products of RHLs such that: {x1 7→ h1, . . . , xn 7→ hn} is a
matcher of P against some input from Hin iff (h1, . . . , hn) belongs to some
cartesian product from Hp. Alternatively, we could say that we infer the
type

∑p
i=1(Hi,1 × . . .×Hi,n) for the tuple of pattern variables (x1, . . . , xn).

There are p possibilities for the type of (x1, . . . , xn), which can be used to
compute an over-approximation of the type of output r and then check if it
is a subtype of Hout.
This type inference approach works for the class of patterns1 proposed by
us in [5]. They are similar to the patterns of XDuce, but lack features such
as global pattern names and pattern bindings. However, these patterns have
some extra features that are desirable for XML querying: (a) they can be non-
linear, (b) variables can occur below iteration, and (c) there is no predefined
matching strategy.

The first type checking approach is easier, but the second approach is more accu-
rate and relies on factorizations of regular hedge languages, which are described
in Sect. 2.1. The following example illustrates a situation when the second type
checking approach is more accurate.

Example 1. Consider the type checking problem for input type f(a? b?)?, output
type f(a?b?a?b?a?), and transformation rule f(x y) f(y x)→ f(x y x).

The first type checking approach infers that x is of type a?b?, and y is of type
a?b?. Therefore f(x y x) is of type f(a?b?a?b?a?b?). Since this is not a subtype
of the output type f(a?b?a?b?a?), type checking fails.

The second approach works by noting that f(x y) f(y x) matches an input
from f(a?b?)? if and only if both x y and y x match inputs from a?b?. Then,
instead of computing the types for x and y independently of each other, we
compute the type of a pair (x, y). From the type of (x, y), by easy simplifications
we obtain that the type of f(x y x) is f(a?b?a?b?). Since this is a subtype of
the output type f(a?b?a?b?a?), type checking succeeds. The crucial step in this
approach is the computation the type of the tuple (x, y), which heavily relies on
factorization computations: First factorizing f(a?b?)?, then factorizing a?b?. We
will return to this example at the end of the paper to see how the computations
are done. �

Regular hedge language factorization algorithms have been described in [6,
5]. In this paper we propose a significant improvement over those, by developing
1 They are called regular hedge expressions in [5].

a new algorithm to compute the factor matrix of an RHL that is more efficient
and easier to analyze. The improvement is based on a new representation of
RHLs, by deterministic, reduced, and complete linear hedge automata.

The paper is structured as follows. Section 2 introduces the main notions we
use in the investigation of regular hedge language factorization, and recalls some
well known results. Section 3 presents a simple algorithm for the computation of
automaton representations for all right factors of an RHL. In Sect. 4 we propose
an algorithm to compute automata representations for the elements of the factor
matrix of an RHL. The algorithm makes use of the automaton representations
of the right factors of the RHL, and of their corresponding specification by
linear systems of hedge language equations. Section 5 concludes by comparing
the algorithms presented here with those presented in [6] and [5].

2 Preliminaries

Hedges over an unranked alphabet Σ of hedge labels and finite set of constants
K are finite sequences of trees generated by the grammar

h ::= ε | k | a(h)h

where ε denotes the empty sequence, k ∈ K, and a ∈ Σ. A tree over Σ and K is a
hedge of the form k or a(h). Trees of the form a(ε) are abbreviated by a. We write
H(Σ,K) for the set of hedges over Σ and K, and T (Σ,K) for the set of trees over
Σ and K. Also, we abbreviate H(Σ, ∅) by H(Σ), and T (Σ, ∅) by T (Σ). A hedge
language over Σ is a subset of H(Σ). From now on we assume implicitly that H,
possibly subscripted, denotes regular hedge languages. The concatenation of H1

and H2 is the hedge language H1H2 := {h1 h2 | h1 ∈ H1, h2 ∈ H2}; and the as-
terate of H is the hedge language H∗ := {ε}∪

⋃∞
n=1{h1 . . . hn | h1, . . . , hn ∈ H}.

A regular hedge language (RHL) over an unranked alphabet Σ is a language
accepted by a hedge automaton (HA). According to [7], such an automaton is
a tuple M = (Q,Σ, F,∆M) where: Q is a finite set of states; ∆M is a set of
transition rules of the form a(R)→ q where q ∈ Q and R is a regular language
over Q; and F is a regular set over Q, called the final state sequence set of M . If
we write→M for the rewrite relation induced on H(Σ,Q) by the rewrite system
{a(w) → q | a(R) → q ∈ ∆M , w ∈ R}, then the language accepted by M is
L(M) := {h ∈ H(Σ) | ∃w ∈ F. h→∗M w}.

In this paper we propose another representation of RHLs, by so called linear
hedge automata. A linear hedge automaton (LHA) over an unranked alphabet
Σ is a tuple A = (Q,Σ,Qf, ∆) where: Q is a finite set of states; ∆ is a set of
transition rules of the form ε→ q or a(q1) q2 → q with q, q1, q2 ∈ Q and a ∈ Σ;
and Qf ⊆ Q is the set of final states of A. An ε-transition is a transition rule of
the form ε → q. A is deterministic if there are no two transition rules with the
same left hand side.

Let→A be the rewrite relation induced by the rewrite system ∆ on H(Σ,Q).
Then the language accepted by A in a state q ∈ Q is L(A, q) := {h ∈ H(Σ) |
h→∗A q}. For every Q′ ⊆ Q we define L(A, Q′) :=

⋃
q∈Q′ L(A, q). The language

accepted by A is L(A) := L(A, Qf). A state q of an LHA A is accessible if
L(A, q) 6= ∅. The LHA A is reduced if all its states are accessible. A is complete
if for every a ∈ Σ and q1, q2 ∈ Q there exists a transition rule a(q1) q2 → q ∈ ∆.

A convenient representation of LHAs is by a linear system of hedge language
equations (LSH). The LSH representation of an LHAA = ({q1, . . . , qn}, Σ,Qf, ∆)
is the pair (Qf, S) where

S :


q1 = c1 + `1,1 q1 + · · ·+ `1,n qn
...
qn = cn + `n,1 q1 + · · ·+ `n,n qn

with ci :=
{

1 if ε→ qi ∈ ∆,
0 otherwise

and `i,j :=
∑
a(q) qj→qi∈∆ a(q) for all 1 ≤ i, j ≤ n. The variables of this system

of equations are q1, . . . , qn, and they correspond to the states of the LHA that
is being represented. Therefore, from now on, we will refer to the elements of Q
either as states of the LHA or as variables of the corresponding LSH.

The equations of S are between expressions which belong to the larger class
of regular hedge expressions HReg(Σ,Q) defined by the grammar

e ::= 0 | 1 | q | a(e) | e+ e | e e | e?.

Such expressions are interpreted with respect to an assignment for Q, which is
a mapping σ : Q → 2H(Σ). The interpretation of e ∈ HReg(Σ,Q) with respect
to an assignment σ is defined as follows: [[0]]σ := ∅, [[1]]σ := {ε}, [[q]]σ := σ(q),
[[a(e)]]σ := {a(h) | h ∈ [[e]]σ}, [[e1 + e2]]σ := [[e1]]σ ∪ [[e2]]σ, [[e1 e2]]σ := [[e1]]σ [[e2]]σ,
and [[e?]]σ := [[e]]∗σ. A solution of S is an assignment σ such that σ(qi) =
[[ci + `i,1 q1 + . . .+ `i,n qn]]σ for all 1 ≤ i ≤ n. We recall from [6] that an LSH
S has a unique solution σS , and that σS binds the elements of Q to RHLs. In
general, L(A, q) = σS(q) for all q ∈ Q.

Example 2. Let A = ({q1, q2, q3}, {a, b}, {q1}, ∆) with

∆ := {ε→ q1, a(q1) q2 → q1, b(q2) q2 → q1, a(q1) q1 → q2,

a(q1) q2 → q2, a(q3) q2 → q3}.

Then A is nondeterministic because the transition rules a(q1) q2 → q1 and
a(q1) q2 → q2 have the same left hand side. The LSH representation of A is
the pair ({q1}, S) where S is the LSH

S :

 q1 = 1 + (a(q1) + b(q2)) q2
q2 = 0 + a(q1) q1 + a(q1) q2
q3 = 0 + a(q3) q2

It is not hard to see from the structure of S that state q3 is not accessible,
therefore A is not a reduced LHA. ut

The subset construction of a deterministic, complete, and reduced finite tree
automaton equivalent to a nondeterministic finite tree automaton can be easily
adapted to linear hedge automata, so we can conclude the following lemma.

Lemma 1. For every LHA A there exists a deterministic, complete, and reduced
LHA Ad such that L(A) = L(Ad).

Thus we can represent any RHL by a deterministic, complete, and reduced LHA.

Example 3. The determinization of the LHA A from Example 2 produces the de-
terministic, complete, and reduced LHA Ad := ({s1, s2, s3, s4}, Σ, {s1, s4}, ∆d)
whose LSH representation is ({s1, s4}, S) with

S :



s1 = 1 + (b(s2) + b(s4)) s2 + (b(s2) + b(s4)) s4
s2 = 0 + (a(s1) + a(s4)) s1
s3 = 0 + (a(s2) + a(s3) +

∑4
i=1 b(si)) s1

+ (a(s2) + a(s3) + b(s1) + b(s3)) s2
+ (
∑4
i=1 a(si) +

∑4
i=1 b(si)) s3

+ (a(s2) + a(s3) + b(s1) + b(s3)) s4
s4 = 0 + (a(s1) + a(s4)) s2 + (a(s1) + a(s4)) s4.

2.1 Factorizations of regular hedge languages

The factorization theory of RHLs [5] is a natural generalization of the factoriza-
tion theory of regular languages [2]. We recall here main definitions and results
from [5]. An n-subfactorization of an RHL H is a tuple (H1, . . . ,Hn) of hedge
languages such that the concatenation H1 · · ·Hn is a subset of H. If we define
the relation

(H1, . . . ,Hn) < (H ′1, . . . ,H
′
n) :⇔ Hi ⊆ H ′i for all i ∈ {1, . . . , n} and

Hj 6= H ′j for some j ∈ {1, . . . , n}

then we can talk about <-maximal n-subfactorizations of H, also known as n-
factorizations of H. The components of such n-factorizations are called factors.
A left factor of H is the first factor of an n-factorization of H, and a right factor
is the last factor of an n-factorization of H. For the rest of this section we assume
implicitly that H,L,M are RHLs, F(H) is the set of factors of H, LF(H) is the
set of left factors of H and RF(H) is the set of right factors of H.

Example 4. The RHL H = {a(ε)m b(ε)na(ε)p | m,n, p ∈ N} over signature Σ =
{a, b, c} has five possible 2-factorizations (H1, H2): either (H({a, b, c}), ∅), or
({a(ε)m | m ∈ N}, H), or ({a(ε)mb(ε)n | m,n ∈ N}, {b(ε)na(ε)p | n, p ∈ N}), or
(H, {a(ε)p | p ∈ N}), or (∅,H({a, b, c})). In this case we have

LF(H) = {H({a, b, c}), {a(ε)m | m ∈ N}, {a(ε)mb(ε)n | m,n ∈ N}, H, ∅} and
RF(H) = {∅, H, {b(ε)na(ε)p | n, p ∈ N}, {a(ε)p | p ∈ N},H({a, b, c})}.

A remarkable fact is that the factors of an RHLH are finitely many [5]. Moreover,
the factors of H can be indexed such that F(H) = {Fi,j | 1 ≤ i, j ≤ p} and:

– Fi,k Fk,j ⊆ Fi,j for all i, j, k ∈ {1, . . . , p}, and

– There exist l, r ∈ {1, . . . , p} such that Fl,r = H and, for any k-subfactorization
(H1, . . . ,Hk) of H there exist u1, . . . , uk+1 ∈ {1, . . . , p} with u1 = l and
uk+1 = r, such that Hi ⊆ Fui,ui+1 for all i ∈ {1, . . . , k}.

The matrix (Fi,j)1≤i,j≤p is called the factor matrix of H.

In order to achieve a better characterization of the factors of an RHL, we
introduce the following auxiliary notions:

– h−1H := {h′ ∈ H(Σ) | hh′ ∈ H} is the left quotient of H with respect to a
hedge h,

– H h−1 := {h′ ∈ H(Σ) | h′ h ∈ H} is the right quotient of H with respect to
a hedge h,

– L B M := {h′ ∈ H(Σ) | ∀h ∈ L. h h′ ∈ M} is the product derivative of M
with respect to L,

– M C L := {h′ ∈ H(Σ) | ∀h ∈ L. h′ h ∈ M} is the product antiderivative of
M with respect to L.

– The set of hedge derivatives of H is ∂(H) := {h−1H | h ∈ H(Σ)}.

We recall from [5, 6] that for any RHLs H,M,L we have:

– ∂(H) is a finite set of RHLs,
– RF(H) is the closure of ∂(H) under intersection, i.e., R ∈ RF(H) iff R ∈ ∂(H)

or there exist M1, . . . ,Mp ∈ ∂(H), p > 1, such that R = M1 ∩ · · · ∩Mp,
– M C L is an RHL, and M C L =

⋂
h∈L(M h−1),

– If LF(H) = {L1, . . . , Lp} then we can define Fi,j := Li B Lj ,
– If RF(H) = {R1, . . . , Rp} then we can define Fi,j := Ri C Rj .

In the rest of this paper we will investigate how to compute the factor matrix of
an RHL by making use of these properties and of the representation of RHLs by
deterministic, complete, and reduced LHAs. Our approach is to compute first
{R1, . . . , Rp} := RF(H) and then to define the factor matrix by Fi,j := Ri C Rj
for all i, j ∈ {1, . . . , p}.

3 Computation of Right Factors

In this section we investigate the problem of computing all right factors of an
RHL H accepted by a deterministic, complete, and reduced LHA A. We solve
this problem in two steps. First, we compute LHAs for the RHLs of the finite
set ∂(H). Then, we compute LHAs for the right factors by using the automata
computed in the first step.

Suppose A = (Q,Σ,Qf, ∆) with Q = {q1, . . . , qn}, and let (Qf, S) be the
LSH representation of A. To simplify the analysis of the structure of ∂(H), we
define for every q, q′ ∈ Q, Q′ ⊆ Q, and a ∈ Σ the sets

cut∆(q, a(q′)) :={q′′ ∈ Q | a(q′) q′′ → q ∈ ∆},

cut∆(Q′, a(q′)) :=
⋃
q∈Q′

cut∆(q, a(q′)).

These notions will help us to identify a finitary characterization of the set of
RHLs ∂(H). The key observation is the following lemma.

Lemma 2. a(h)−1L(A, Q′) = L(A, cut∆(Q′, a(q))) holds for all a ∈ Σ, q ∈ Q,
Q′ ⊆ Q, and h ∈ L(A, q).

The following result is an easy corollary of Lemma 2.

Corollary 1. Let G∆ be the directed graph whose nodes are the subsets of Q,
and set of edges is {Q′ → Q′′ | a ∈ Σ, q ∈ Q,Q′′ = cut∆(Q′, a(q))}. Then

∂(H) = {L(A, Q′) | there exists a path from Qf to Q′ in G∆}.

Once we know ∂(H), we can compute RF(H) as the closure of ∂(H) under in-
tersections. At this stage, it is very useful to recall that, since A is determin-
istic, we have L(A, q) ∩ L(A, q′) = ∅ whenever q, q′ ∈ A and q 6= q′. Therefore
L(A, Q1) ∩ L(A, Q2) = L(A, Q1 ∩Q2) for all subsets Q1 and Q2 of Q. Thus, if
∂(H) = {L(A, Qi) | 1 ≤ i ≤ m}, then

RF(H) =
{
L(A,

⋂
i∈I

Qi) | ∅ 6= I ⊆ {1, . . . ,m}
}
.

Example 5. Let Ad = ({s1, s2, s3, s4}, Σ,∆d, {s1, s4}) be the LHA from Exam-
ple 3, and H = L(Ad). The set of nodes reachable from {s1, s4} in G∆d is
{Q1, Q2, Q3} where Q1 := ∅, Q2 := {s2, s4}, and Q3 := {s1, s2, s4}. There-
fore ∂(H) = {L(Ad, Qi) | 1 ≤ i ≤ 3}. Since

{⋂
i∈I Qi | ∅ 6= I ⊆ {1, 2, 3}

}
=

{Q1, Q2, Q3}, we conclude that RF(H) = {L(Ad, Qi) | 1 ≤ i ≤ 3}.
A slightly surprising fact is that L(Ad, {s1, s4}) = H ∈ RF(H) but {s1, s4} 6∈

{Q1, Q2, Q3}. As it turns out, we have L(Ad, {s1, s4}) = L(Ad, Q3). ut

4 Factor Matrix Computation

In this section we address the problem of computing the factor matrix of an RHL
represented by an LHA. To be more specific, from now on we assume H = L(A)
where A = (Q,Σ,Qf, ∆) with Q = {q1, . . . , qn} is a deterministic, complete, and
reduced LHA. We saw in the previous section how to compute Q1, . . . , Qp ⊆ Q
such that RF(H) = {L(A, Qi) | 1 ≤ i ≤ p}. Then we can define the factor matrix
(Fi,j)1≤i,j≤p where Fi,j := L(A, Qi) C L(A, Qj).

In the following two subsections we will show how to compute LHAs for
the product antiderivatives L(A, Qi) C L(A, Qj) when 1 ≤ i, j ≤ p. First, we
indicate in Subsect. 4.1 a simple algorithm to compute LHAs for the product
antiderivatives L(A, Q′) C L(A, q) when q ∈ Q and Q′ ⊆ Q. Then, in Subsect.
4.2 we propose an algorithm that computes LHAs for the RHLs of the product
antiderivatives L(A, Qi) C L(A, Qj), 1 ≤ i, j ≤ p from LHAs for the product
antiderivatives L(A, Qi) C L(A, q), 1 ≤ i ≤ p, where q ∈ Q.

From now on we assume that the LSH representation of A is (Qf, S) where

S :


q1 = c1 + `1,1 q1 + · · ·+ `1,n qn
...
qn = cn + `n,1 q1 + · · ·+ `n,n qn

and that σ is the unique solution of S. Also, we assume that Q′ is subset of Q.

4.1 LHA computation for L(A, Q′) C L(A, q)

Let Q = {q1, . . . , qn}. We fix arbitrarily a state q ∈ Q. Then for every 1 ≤ i ≤ n
and h ∈ L(A, q) we have

[[qi]]σ h−1 = [[ci + `i,1 q1 + · · ·+ `i,n qn]]σ h−1 = [[di + `i,1 r
(q)
1 + · · ·+ `i,n r

(q)
n]]θq

where

– di = 1 if h ∈ [[qi]]σ and di = 0 otherwise,
– θq is the extension of σ with the following bindings for the fresh variables
r
(q)
1 , . . . , r

(q)
n : θq(r

(q)
i) := [[qi]]σ h−1 for all 1 ≤ i ≤ n.

Since A is deterministic, we have L(A, qi)∩L(A, q) = ∅ whenever qi 6= q. There-
fore di = 1 iff h ∈ [[qi]]σ iff ∅ 6= [[qi]]σ ∩ [[q]]σ iff qi = q. Thus, if we define for all
q′, q′′ and 1 ≤ i ≤ n:

ρq(qi) := r
(q)
i , ρq(Q′) := {ρq(q′) | q′ ∈ Q′}, δq′,q′′ :=

{
1 if q′ = q′′

0 otherwise , and

Sq :
{
r
(q)
l = δql,q + `l,1 r

(q)
1 + · · ·+ `l,n r

(q)
n (1 ≤ l ≤ n)

ql = cl + `l,1 q1 + · · ·+ `l,n qn (1 ≤ l ≤ n)

then (Sq, ρq(Q′)) is an LSH representation for L(A, Q′)h−1. Since

L(A, Q′) C L(A, q) =
⋂

h∈L(A,q)

L(A, Q′)h−1 and

L(A, Q′)h−1
1 = L(A, Q′)h−1

2 for all h1, h2 ∈ L(A, q),

we learn that L(A, Q′) C L(A, q) = L(A, Q′)h−1. Let Rq := {r(q)1 , . . . , r
(q)
n } and

Aq := (Q∪Rq, Σ, ρq(Qf), ∆q) be the LHA whose LSH representation is (Q,Sq).
Then L(A, Q′) C L(A, q) = L(Aq, ρq(Q′)).

Note that the computation of the LSH representation of Aq involves only
duplications of the equations of S followed by some trivial variable renamings
and alterations of their constant parts. Another useful observation is that every
LHA Aqi with 1 ≤ i ≤ n is almost deterministic, because the only transition
rules of ∆qi with same left hand side are ε → r

(qi)
i and the ε-transition of ∆.

The following lemma is an easy consequence of this observation.

Lemma 3. L(Aq, r(q)i) ∩ L(Aq, r(q)j) = ∅ for all i, j ∈ {1, . . . , n} and i 6= j.

4.2 LHA computation for L(A, Qi) C L(A, Qj)

In order to compute an LHA for L(A, Qi) C L(A, Qj), we can proceed as follows.
If Qj = ∅ then L(A, Qj) = ∅ and (L(A, Qi) C ∅) = H(Σ) = L(A, Q), where the
last equality follows from the fact that A is complete. If Qj 6= ∅ then

L(A, Qi) C L(A, Qj) =
⋂
q∈Qj

(L(A, Qi) C L(A, q)) =
⋂
q∈Qj

L(Aq, ρq(Qi)).

Let Qj := {qk1 , . . . , qkd} with d ≥ 1, and Ii := {l | ql ∈ Qi}. For every q ∈ Qj ,
the system of equations Sq can be rewritten as follows:

Sq :
{
r
(q)
l = δql,q +

∑
a∈Σ

∑n
u=1 a(qu) ea(qu),l,q (1 ≤ l ≤ n)

ql = cl +`l,1 q1 + · · ·+ `l,n qn (1 ≤ l ≤ n)

where ea(qu),l,q =
∑
r∈cut∆q (r

(q)
l ,a(qu))

r. Suppose θq is the unique solution of Sq
for every q ∈ Qj . Then

L(A, Qi) C L(A, Qj) =
⋂
q∈Qj L(Aq, ρq(Qi))

=
⋂
q∈Qj

⋃
l∈Ii [[r

(q)
l]]θq =

⋃
(l1,...,ld)∈Idi

⋂d
s=1[[r(qks)ls

]]θqks .

where Idi = Ii × · · · × Ii︸ ︷︷ ︸
d times

. At this stage, we can start generating an LSH rep-

resentation for the product antiderivative L(A, Qi) C L(A, Qj). Our algorithm
works in stages, by keeping track of (1) a list E of equations generated so far,
(2) a set Vp of variables produced so far, and (3) a set Va of variables assigned
so far. In addition to the variables from Q and the equations of S, the algorithm
produces fresh variables of the form r

(qk1 ,...,qkd)

(l1,...,ld)
with l1, . . . , ld ∈ {1, . . . , n}, and

corresponding equations such that the solution of the new system of equations
binds r

(qk1 ,...,qkd)

(l1,...,ld)
to
⋂d
s=1[[r(qks)ls

]]θqks . The main goal is to produce equations for

all variables of the set {r(qk1 ,...,qkd)

(l1,...,ld)
| (l1, . . . , ld) ∈ Idi } and the other fresh vari-

ables that show up in the construction process. The initial values of Vp and Va

are Vp = Q∪{r(qk1 ,...,qkd)

(l1,...,ld)
| (l1, . . . , ld) ∈ Idi }, Va = Q, and E consists of the equa-

tions of S. At every stage, the algorithm enlarges Vp, Va, and E by performing
the following operations:

– Select r
(qk1 ,...,qkd)

(l1,...,ld)
∈ Vp \ Va; Va := Va ∪ {r

(qk1 ,...,qkd)

(l1,...,ld)
}

– Produce an equation for r
(qk1 ,...,qkd)

(l1,...,ld)
such that E extended with it has a

solution that binds r
(qk1 ,...,qkd)

(l1,...,ld)
to
⋂d
s=1[[r(qks)ls

]]θqks . The right hand side of

the equation for r
(qk1 ,...,qkd)

(l1,...,ld)
is produced by intersecting the right hand sides

of the equations

(r(qk1)

l1
= δql1 ,qk1 +

∑
a∈Σ

∑n
u=1 a(qu) ea(qu),l1,qk1

) ∈ Sqk1 with solution θk1
...

(r
(qkd)

ld
= δqld ,qkd +

∑
a∈Σ

∑n
u=1 a(qu) ea(qu),ld,qkd

) ∈ Sqkd with solution θkd

and using the facts that [[a(qu) ea(qu),ls,qks
]]θqks = [[a(qu)]]σ [[ea(qu),ls,qks

]]θqks ,
and [[a(q)]]σ∩[[b(q′)]]σ = ∅ whenever (a, q) 6= (b, q′). It follows that [[a(q) e]]θqki
∩[[b(q′) e′]]θqkj = ∅ whenever (a, q) 6= (b, q′). We obtain

r
(qk1 ,...,qkd

)

(l1,...,ld)
=

dY
s=1

δqls ,qks +
X
a∈Σ

nX
u=1

a(qu)
“ X

(m1,...,md)∈S
a(qu)
(l1,...,ld)

r
(qk1 ,...,qkd

)

(m1,...,md)

”
(1)

where

S
a(qu)
(l1,...,ld)

=
{

(m1, . . . ,md) | ∀s ∈ {1, . . . , d}. r
(qks)
ms ∈ cut∆qks

(r(qks)ls
, a(qu))

}
.

– Append equation (1) to E;
Vp := Vp ∪

⋃
a∈Σ

⋃n
u=1

{
r
(qk1 ,...,qkd)

(m1,...,md)
| (m1, . . . ,md) ∈ S

a(qu)
(l1,...,ld)

}
.

– If Vp = Va, then stop and return ({r(qk1 ,...,qkd)

(l1,...,ld)
| (l1, . . . , ld) ∈ Idi }, E). This

is the LSH representation of an LHA for L(A, Qi) C L(A, Qj).

The algorithm will eventually stop because Vp and Va are subsets of the finite

set Q ∪
{
r
(qk1 ,...,qkd)

(l1,...,ld)
| l1, . . . , ld ∈ {1, . . . , n}

}
, therefore they can not increase

forever. �
Let us now look back at Example 1 and see how factorization theory helps

there to infer the type of the tuple (x, y) of variables of pattern f(x y) f(y x)
when matched against inputs of type f(a?b?)?. Let’s write P � T for the type
inference problem of the tuple (x1, . . . , xn) of variables of a pattern P when
matched against inputs of type T . This problem can be solved by recursion
on the structure of P . In this example, we have P1 P2 � T where P1 = f(x y),
P2 = f(y x), and T = f(a? b?)?. This problem can be reduced to solving the prob-
lems P1 � T1 and P2 � T2, where T1, T2 are nonempty and ⊆-maximal types
such that T1 T2 ⊆ T . Such tuples (T1, T2) are called 2-factorizations of T , and can
be computed effectively. The only such 2-factorization of f(a?b?)? is (T1, T2) =
(f(a?b?)?, f(a?b?)?), therefore P � f(a?b?)? is reduced to f(x y) � f(a?b?)?

and f(y x) � f(a?b?)?. The first subproblem is equivalent to x y � a?b?, and
the second subproblem is equivalent to y x � a? b?. To solve these subprob-
lems, we look for nonempty types T3, T4 such that (T3, T4) is a 2-factorization
of a?b?. There are two possibilities: either (T3, T4) = (a?, a?b?), or (T3, T4) =
(a?b?, b?). Thus x y � a?b? reduces to (x � T3 and y � T4) where (T3, T4) ∈
{(a?, a?b?), (a?b?, b?)}. This means (x, y) is of type (a?×a?b?)+(a?b?×b?) where
× denotes cartesian product and + denotes union. Similarly, the second subprob-
lem y x� a?b? reduces to the fact that (x, y) is of type (a?b?×a?)+(b?×a?b?).
We conclude that (x, y) is of type

((a? × a?b?) + (a?b? × b?)) ∩ ((a?b? × a?) + (b? × a?b?))
= (a? × a?) + (1× a?b?) + (a?b? × 1) + (b? × b?).

From here, one can easily compute an over-approximation of the type of x y x as
a?a?a? + 1 a?b? 1 + a?b? 1a?b? + b? b? b? = a?b?a?b?, therefore f(x y x) is of type
f(a?b?a?b?).

5 Discussion

The approach to compute the factor matrix of an RHL proposed in this paper is
more efficient than that from our previous works [5, 6]. Our main insight is that,
if we want to compute the factor matrix of an RHL, it is better to start with a
representation by a deterministic, reduced, and complete LHA. Next, we noticed
that the computation of the factor matrix of an RHL is easier to compute via
computations of product antiderivatives between right factors than via product
derivatives between left factors.

The following discussion aims at explaining the main differences between
our former algorithms and those given in this paper. In [5, 6], we considered an
RHL H with an LSH representation of the form ({x1}, S). Such a representation
corresponds to a nondeterministic LHA with one final state. The computation of
the factor matrix is achieved in 3 steps. Step 1 computes representations for the
elements of the finite set {H h−1 | h ∈ H(Σ)}. Step 2 computes representations
for the elements of LF(H) by using the fact that LF(H) coincides with the closure
of {H h−1 | h ∈ H(Σ)} under intersection. Step 3 makes use of the fact that,
if we know {L1, . . . , Lp} := LF(H), then the factor matrix of H is (Fi,j)1≤i,j≤p
with Fi,j := Li B Lj . Step 1 amounts to the computation of the least fixed point
of a monotone operator on the set 22X×2X where X is the set of variables of
S. The construction of LSHs for the elements of LF(H) performs intersections
of equations in a similar way as the construction of product antiderivatives of
right factors, except for the fact that it must account for the possible nonempty
intersections [[a(x)]]σ∩[[b(x′)]]σ when (a, x) 6= (b, x′). Finally, step 3 finds the LSH
representations of the factor matrix of H via product derivative computations
between the left factors of H.

Our new approach is to compute the factor matrix of H starting from a
reduced, complete, and deterministic LHA A = (Q,Σ,Qf, ∆) for H. To achieve
a fair comparison with our former approach, we should account for the fact that
the determinization algorithm of a nondeterministic LHA with n states has, in
the worst case, 2n states. Thus, we assume the worst situation: we compare
the former approach when X has n elements, with the new approach when Q
has 2n states. The newly proposed computation of the factor matrix is carried
out in 3 steps. The first step computes a set {Q1, . . . , Qp} of subsets of Q such
that ∂(H) = {L(A, Qi) | i ∈ {1, . . . , p}}. The sets {Q1, . . . , Qp} are the nodes
reachable from Qf in a directed graph G∆ whose nodes are the subsets of Q,
thus, a graph with 22n nodes.

We claim that new step 1 is more efficient than former step 1 because

– Former step 1 computes at most 2n LSH representations for the RHLs in
{H h−1 | h ∈ H(Σ)} via the computation of the least fixed point of a mono-
tone operator over a set of size 222n

.
– New step 1 computes at most 2n sets Q1, . . . , Qp ⊆ Q such that ∂(H) =
{L(A, Qi) | i ∈ {1, . . . , p}}.

– The computation of Q1, . . . , Qp is straightforward, whereas the operations
required to compute the LSH representations for {H h−1 | h ∈ H(Σ)} are
much more involved.

Also, we claim that new step 2 is more efficient then former step 2 because

– Former step 2 computes LSHs for left factors as intersections of at most 2n

RHLs represented by the nondeterministic LSHs computed in former step 1.
– In new step 2, a right factor is L(A, Q′) where Q′ is an intersection of sets

from {Q1, . . . , Qp}. Since p ≤ 2n, Q′ is obtained by intersecting at most 2n

sets. This is more efficient than intersecting at most 2n RHLs represented
by nondeterministic LHSs.

New step 3 computes the factor matrix of H via product antiderivatives of right
factors, whereas former step 3 computes it via product derivatives of left factors.
The new approach is more efficient than the former one, mainly because both
of them rely on computing representations for intersections of RHLs, but these
computations can be simplified under the assumption L(A, q) ∩ L(A, q′) = ∅
whenever q 6= q′, which follows from the fact that A is deterministic.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers, 2000.

2. J. H. Conway. Regular Algebra and Finite Machines. Mathematics series. Chapman
and Hall, 1971.

3. H. Hosoya and B. C. Pierce. Regular expression pattern matching for XML. Journal
of Functional Programming, 13(6):961–1004, 2002.

4. H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing language.
ACM Trans. Internet Techn., 3(2):117–148, 2003.

5. M. Marin and A. Crăciun. Factorizations of regular hedge languages. In Proceedings
of 11th Intl. Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting (SYNASC 2009), Timişoara, Romania, September 2009. IEEE. Available
from http://www.score.cs.tsukuba.ac.jp/˜mmarin/synasc2009.pdf.

6. M. Marin and T. Kutsia. Linear systems for regular hedge languages. In J. Grund-
spenkis, M. Kirikova, Y. Manolopoulos, and L. Novickis, editors, Advances in
Databases and Information Systems. Associated Workshops and Doctoral Consor-
tium of the 13th East European Conference, ADBIS 2009, Riga, Latvia, September
7-10, 2009. Revised Selected Papers, LNCS 5968, pages 104–112. Springer, 2010.

7. M. Murata. Extended path expressions for XML. In Proceedings of the 20th sympo-
sium on Principles of Database Systems (PODS’2001), pages 126–137, Santa Bar-
bara, California, USA, 2001. ACM.

8. J. Thatcher. There is a lot more to finite automata theory than you would have
thought. Technical Report RC-2852 (#13407), IBM Thomas J. Watson Research
Center, Yorktown, New York, 1970.

9. J. Thatcher and J. B. Wright. Generalized finite automata theory with an appli-
cation to a decision problem of second-order logic. Mathematical Systems Theory,
2(1):57–81, 1968.

