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Abstract

A recent work by Nuida and Hanaoka (in ICITS 2009) provided a proof technique for security of
information-theoretically secure cryptographic schemes in which the random input tape is implemented
by a pseudorandom generator (PRG). In this paper, we revisit their proof technique and generalize
it by introducing some trade-off factor, which involves the original proof technique as a special case
and provides a room of improvement of the preceding result. Secondly, we consider two issues of the
preceding result; one is the requirement of some hardness assumption in their proof; another is the gap
between non-uniform and uniform computational models appearing when transferring from the exact
security formulation adopted in the preceding result to the usual asymptotic security. We point out
that these two issues can be resolved by using a PRG proposed by Impagliazzo, Nisan and Wigderson
(in STOC 1994) against memory-bounded distinguishers, instead of usual PRGs against time-bounded
distinguishers. We also give a precise formulation of a computational model explained by Impagliazzo et
al., and by using this, perform a numerical comparison showing that, despite the significant advantage of
removing hardness assumptions, our result is still better than, or at least competitive to, the preceding
result from quantitative viewpoints. The results of this paper would suggest a new motivation to use
PRGs against distinguishers with computational constraints other than time complexity in practical
situations rather than just theoretical works.

Keywords: Information-theoretic security, pseudorandomization, unconditional security, Impagliazzo–
Nisan–Wigderson pseudorandom generator

1 Introduction

1.1 Background and preceding works

In practical uses of cryptographic schemes, pseudorandom generators (PRGs) are usually applied to efficiently
“stretch” short (truly) random bits to much longer pseudorandom sequences used in the schemes. From
the viewpoint of provable security, it is reasonable to combine computationally indistinguishable PRGs to
computationally secure cryptographic schemes. In contrast, when the cryptographic schemes under discussion
have information-theoretic security, i.e., security against adversaries with unbounded computational powers
is considered, a straightforward application of PRGs to such schemes seems problematic, as there exist
no (non-trivial) PRGs whose proof of indistinguishability requires no constraints on computational powers
of distinguishers. This problem might be a hurdle when one wants to rigorously implement information-
theoretically secure cryptographic schemes in practical applications.

Recently, Nuida and Hanaoka [11, 12] invented a proof technique for combinations of PRGs with a certain
kind of information-theoretically secure schemes, which enabled us to prove that the differences of attack
success probabilities for the scheme in random case (i.e., when truly random bits are used in the scheme) and
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in pseudorandom case (i.e., when the output of a PRG is used in the scheme instead) are bounded without
computational constraints on the adversary’s attack algorithm. Their provable bound depends not only on
the strength of indistinguishability of the PRG, but also on the size of the input set for the adversary’s attack
algorithm (which is determined by the formulation of a security notion under consideration); the larger the
adversary’s input set is, the worse the resulting bound will be. Therefore, the adversary’s input set should
be significantly small to make the bound effective, which is a somewhat considerable restriction for types of
the cryptographic schemes. (Another proof technique was presented in an earlier work of Dubrov and Ishai
[3], but the restriction for the cryptographic schemes in their argument seems much more severe than that
in [11, 12]; see Section 2.3 for a detailed discussion.)

On the other hand, it is mentioned in [12] that their proof technique still requires some hardness assump-
tion, despite that the computational constraints on the adversary’s attack algorithms for the cryptographic
schemes have been removed. For example, the numerical example in [11] used a certain PRG given in [4],
whose proof of indistinguishability is based on the DDH assumption (in addition to certain constraints on
computational times of distinguishers). As such a hardness assumption may be compromised due to time
passage (in contrast to the information-theoretic security of the original cryptographic scheme), this also
becomes a disadvantage from the viewpoint of long-term security. To the author’s best knowledge, there are
no preceding works that discuss the problem.

1.2 Our contributions, and organization of the paper

In order to investigate the restriction for the proof technique of Nuida and Hanaoka [11, 12] mentioned
above, in Section 2 we give another proof technique for the security of pseudorandomization of information-
theoretically secure cryptographic schemes. Recall that the size of the adversary’s input set was a crucial
factor in the result of [11, 12]. Intuitively, our argument interprets the size of the adversary’s input set as
“the number of components in the partition of the adversary’s input set into subsets consisting of a single
element”, and our proof technique generalizes the shapes of the partition in order to reduce the number
of the components. In fact, the bound derived in [11, 12] also depends on the computational complexity
of certain “imaginary distinguishers” (involving the original cryptographic scheme as a part) introduced in
the proof, and our generalization actually introduces a trade-off between the number of components in the
partition and the complexity of the imaginary distinguishers. We also introduce another generalizing factor,
i.e., approximability of the adversary’s attack algorithms by probabilistic ensembles of relatively simpler
algorithms. A detailed study on the matter of the approximability is left as a future research topic.

For the other issue of [11, 12] on the requirement of hardness assumptions, we notice that there exist
PRGs whose indistinguishability against distinguishers with constraints on computational complexity of
some types other than time complexity is provable without any hardness assumption and that, by using such
a PRG instead of those used in [11, 12], the requirement of hardness assumptions in [11, 12] can be removed.
An example of such PRGs is the one given by Impagliazzo, Nisan and Wigderson [6] (henceforth called INW
PRG), with constraints on the distinguishers specified in terms of memory complexity. Moreover, we point
out another issue of the argument in [11, 12] using PRGs against time-bounded distinguishers. Namely, the
argument in [11, 12] is based on the exact security formulation (e.g., (T, ε)-security), while the standard
security formulation for such PRGs is asymptotic security, as a convincing verification of the underlying
hardness assumption in terms of time complexity in exact security formulation is very difficult. Now if we
want to convert the argument in terms of exact security into that in terms of asymptotic security, then we
will face a gap between non-uniform and uniform models of computation (such as ones recently discussed by
Koblitz and Menezes [7]). This issue is also resolved by using e.g., INW PRGs, as the exact security of the
PRG can be rigorously evaluated (without any hardness assumption). A more detailed discussion (including
a relation to some PRGs against constant-size circuits proposed in [3]) will be given in Section 3.

For the sake of quantitative evaluation of the indistinguishability, in Section 4 we give a precise formulation
of a computational model which suits the structure of INW PRGs. In fact the idea of the model was
already explained in [6] without a precise formulation; we establish a mathematically rigorous model that
enables us to perform a detailed quantitative evaluation. Intuitively, this model interprets a computation
process using a random input tape as a “bucket-brigade” played by the cells of the random tape, where an
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intermediate computation result stored in the memory is delivered from a currently accessed cell to the next
cell. The model is thus described in terms of multi-party protocols; for the purpose, we also summarize
a mathematical formulation of multi-party protocols. We emphasize that, although in the computational
model each algorithm is expressed as a multi-party protocol, it does not mean that the cryptographic scheme
itself should be a multi-party protocol. (When the cryptographic scheme under consideration is a multi-
party protocol, it has also to be concerned who should execute the PRG and how to securely and efficiently
distribute the PRG’s outputs to players of the protocol in the presence of computationally unbounded
adversary. However, this issue need not be concerned when the whole of the PRG’s output is used by a
single player; for instance, fingerprint code [2] studied in our numerical example below satisfies the condition.)

In Section 5, we summarize a construction of INW PRGs given in [6]. We also show some properties of
INW PRGs, a part of which improves slightly the counterpart in [6]. Section 6 gives an evaluation of the
seed lengths of INW PRGs combined with information-theoretically secure cryptographic schemes according
to our proof technique. By Theorem 4 below, the seed length ν†0 is asymptotically estimated as

ν†0 ∼ 3(log2 µ)
2 + 2Nread log2 |M | log2 µ+ 2 log2(n/ε) log2 µ (µ, |M | → ∞), (1)

where µ denotes the original bit length of the random input, M denotes the set of the possible memory state
used by the imaginary distinguishers mentioned above (hence log2 |M | means the bit length of the memory),
Nread means that each cell of the random tape is accessed at most Nread times during the computation,
n denotes the number of components in the partition of the adversary’s input set mentioned above, and ε
denotes the desired bound for the differences of attack success probabilities for the cryptographic scheme
in random and pseudorandom cases. Finally, in Section 7 we provide a numerical example in the same
setting for the cryptographic scheme as the example in [11]. This example shows that the performance of
our technique in reducing the required random bits is better than, or at least competitive to, the one in [11],
despite the removal of hardness assumptions which are required by the argument in [11].

2 Our proposed proof technique

In this section we describe, by using a toy example, our proposed proof technique to prove information-
theoretic security of a scheme in which some random objects are constructed by using a pseudorandom
generator (PRG). We emphasize that the indistinguishability of any PRG (except trivial ones) requires
computational constraints on the distinguishers, while we are concerning the cases of adversaries without
computational constraints (which is the targeted situation of information-theoretic security), therefore our
proof technique is never trivial. We also notice that our technique is an improvement of the one proposed
by Nuida and Hanaoka [11, 12], as mentioned in Section 2.3.

2.1 Notations and terminology

Here we summarize some notations and terminology used below. For each probabilistic algorithm A, let
dom(A) denote the set of inputs for A for which A halts within finite time, and let ran(A) be the output set
of A. Let FA denote the probabilistic function dom(A)→ ran(A) realized by the algorithm A.

Each probabilistic function f : X → Y , with X and Y being both finite sets, is in one-to-one correspon-
dence to a matrix p(f) = (p(f)y,x)x∈X,y∈Y defined by

p(f)y,x := Pr[f(x) = y] for every x ∈ X , y ∈ Y . (2)

Now for a collection (fi)
ℓ
i=1 of probabilistic functions X → Y and a probability distribution (pi)

ℓ
i=1 on the

index set {1, 2, . . . , ℓ} (i.e., 0 ≤ pi ≤ 1 for every i and
∑ℓ

i=1 pi = 1), we define
∑ℓ

i=1 pifi to be the probabilistic

function X → Y corresponding to the matrix (
∑ℓ

i=1 pip(fi)y,x)x∈X,y∈Y , namely, the value (
∑ℓ

i=1 pifi)(x)
for x ∈ X is determined by first choosing fi0 according to the probability distribution (pi)

ℓ
i=1 and secondly

calculating fi0(x). Such a function
∑ℓ

i=1 pifi is called a probabilistic ensemble of the functions fi.
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For two probabilistic functions f, g : X → Y , we define the distance d(f, g) between f and g by

d(f, g) := max
x∈X,y∈Y

|p(f)y,x − p(g)y,x| . (3)

Then for two sets C, C′ of probabilistic functions X → Y , we define

r(C, C′) := sup
f∈C

inf
g∈C′

d(f, g) . (4)

Intuitively, the quantity r(C, C′) measures the approximation error of each member of C approximated by a
suitably chosen member of C′. Note that we have r(C, C′) = 0 if C ⊂ C′.

2.2 Illustrating example

Here we explain our proposed proof technique to prove information-theoretic security for a pseudorandomized
scheme, by applying it to an example of a typical situation for security evaluation. We consider the following
kind of security game associated to a certain security notion for a cryptographic scheme. Although the
following argument looks like a toy example, the proof technique itself can be applied to more general and
various situations.

The security game is described as follows. First, a protocol Π runs to generate an object s which should
be concealed from the adversary, and during the execution of Π, the adversary receives some information
denoted by x. Secondly, the adversary tries to guess a certain property of the secret s from the object x, by
using an algorithm A to output the guess g. Whether the adversary’s guess g hits the property of s (denoted
by ‘1’) or not (denoted by ‘0’) is evaluated by an algorithm Eval, namely Eval(g, s) ∈ {0, 1}. In this setting,
when (a part of) the random object that controls the probabilistic behavior of Π is provided by a random
source R, the success probability Succ(A;R) of the adversary is given by

Succ(A;R) := Pr[r ←R; (s, x)← Π(r); g ← A(x); b← Eval(g, s) : b = 1] (5)

(see Figure 1 for a picture of the security game). Here, in order to focus on the random source R, a random
output r of R used in the protocol Π is regarded as the input for Π, and any original input for Π given
independently of r (if exists) is regarded as an implicit parameter for Π.

random
source R

- protocol
Π

- secret
s

?
adversary’s
input x

- attack
A

- guess
g

- Eval - 1 : success
0 : failure

?

Figure 1: Security game in the example

Let R, S, X and G denote the set of possible choices of the objects r, s, x and g, respectively. LetA denote
the set of the possible attack algorithms A : X → G considered by the security notion. If we are discussing
information-theoretic security, the definition of A is not relevant to any constraint on computational costs
(despite that an attack algorithm may be ruled out by some other reason, e.g., Marking Assumption for
fingerprint codes [2]). Now the protocol Π is regarded as secure in the current sense, if Succ(A;R) is
sufficiently small for every attack algorithm A ∈ A and an ideal random source R on the set R. (Note that
our present argument is based on exact security such as (t, ϵ)-security, rather than the usual asymptotic
security. See also a related discussion in Section 3.)

The aim of this paper is to present a proof technique to prove that the attack success probability
Succ(A;R) for any A ∈ A is almost unchanged when the ideal random source R is replaced with a pseudo-
random source R′, i.e., the protocol with the pseudorandom source R′ also has the desired security. For the
computational indistinguishability of R′, we put the following assumption:
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Definition 1. In the above setting, let Class be a class of algorithms (distinguishers) D : R→ {0, 1} for the
pseudorandom source R′, and let εClass > 0. We say that R′ is (Class, εClass)-secure, if for any distinguisher
D ∈ Class, the advantage AdvR′(D) of D defined by

AdvR′(D) := |Pr[1← D(R)]− Pr[1← D(R′)]| (6)

is not larger than εClass.

Usually, such a class Class of distinguishers is defined in terms of some kind of computational cost, i.e., a
distinguisher D belongs to Class if and only if the computational cost of D is lower than a certain specified
level. For example, if Class is the class of distinguishers with computational time shorter than T , then
the above security notion is the same as the (T, ε)-security of PRGs appeared sometimes in the literature
(e.g., [4]). We assume that R′ is (Class, εClass)-secure for a certain specified class Class of distinguishers. We
introduce some more definitions and notations. Let X =

∪n
i=1 Xi be a partition of X into disjoint subsets

X1, . . . , Xn. For each index 1 ≤ i ≤ n, let Ci be the set of all probabilistic functions FA|Xi
: Xi → G, where

“|Xi” denotes the restriction of a function on Xi. For any finite set Bi of probabilistic functions Xi → G,
let C′(Bi) denote the set of all probabilistic ensembles

∑
f∈Bi

pff of the members of Bi. Moreover, for each
probabilistic function f : Xi → G, let Gamei,f denote the probabilistic function R → {0, 1} whose value is
determined in the following manner:

1. Given r ∈ R, first calculate (x, s) := Π(r), and if x ̸∈ Xi then let the final output be 0.

2. If x ∈ Xi, then calculate g := f(x), and let the final output be Eval(g, s) ∈ {0, 1}.

Now we have the following result:

Theorem 1. In the above setting, suppose that for each index 1 ≤ i ≤ n, there exists a finite set Bi of
probabilistic functions Xi → G with the following properties:

• For each i and f ∈ Bi, there exists an algorithm Ai,f satisfying that FAi,f
= Gamei,f and Ai,f ∈ Class.

• For each i, we have r(Ci, C′(Bi)) ≤ δ for a common constant δ ≥ 0

(note that C′(Bi) may have a member not belonging to Ci). Then for any A ∈ A, we have

|Succ(A;R)− Succ(A;R′)| ≤ 2|G| · δ + n · εClass . (7)

Proof. First, for any algorithm A ∈ A, we have

Succ(A;R) =
∑

(r,s,x,g)∈R×S×X×G

Pr[r ←R]Pr[(s, x)← Π(r)]Pr[g ← A(x)]Pr[1← Eval(g, s)]

=

n∑
i=1

∑
(r,s,x,g)∈R×S×Xi×G

Pr[r ← R]p(FΠ)(s,x),rp(FA)g,xp(FEval)1,(g,s)

=
n∑

i=1

∑
(r,s,x,g)∈R×S×Xi×G

Pr[r ← R]p(FΠ)(s,x),rp(FA|Xi
)g,xp(FEval)1,(g,s) .

(8)

For each 1 ≤ i ≤ n, we have infg∈C′(Bi) d(FA|Xi , g) ≤ δ by the assumption r(Ci, C′(Bi)) ≤ δ. Therefore, for an
arbitrary δ′ > δ, there exists a probability distribution (qf )f∈Bi on Bi satisfying that d(FA|Xi ,

∑
f∈Bi

qff) <
δ′, i.e., |p(FA|Xi)g,x − p(

∑
f∈Bi

qff)g,x| < δ′ for every x ∈ Xi and g ∈ G. Now we put

Succ′(R) :=
n∑

i=1

∑
(r,s,x,g)∈R×S×Xi×G

Pr[r ←R]p(FΠ)(s,x),rp(
∑
f∈Bi

qff)g,xp(FEval)1,(g,s) . (9)
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Then by the triangle inequality, we have

|Succ(A;R)− Succ′(R)|

≤
n∑

i=1

∑
(r,s,x,g)∈R×S×Xi×G

Pr[r ← R]p(FΠ)(s,x),r ·

∣∣∣∣∣∣p(FA|Xi)g,x − p(
∑
f∈Bi

qff)g,x

∣∣∣∣∣∣ · p(FEval)1,(g,s)

≤
n∑

i=1

∑
(r,s,x,g)∈R×S×Xi×G

Pr[r ← R]p(FΠ)(s,x),r · δ′ · p(FEval)1,(g,s)

= δ′
∑

(r,s,x,g)∈R×S×X×G

Pr[r ←R]p(FΠ)(s,x),rp(FEval)1,(g,s)

≤ δ′
∑

(r,s,x,g)∈R×S×X×G

Pr[r ←R]p(FΠ)(s,x),r = δ′
∑

(r,g)∈R×G

Pr[r ←R] = δ′
∑
g∈G

1 = |G| · δ′ .

(10)

When we consider R′ instead of R, the same argument implies that |Succ(A;R′)− Succ′(R′)| ≤ |G| · δ′. On
the other hand, by the definition of probabilistic ensembles of probabilistic functions, we have

Succ′(R) =
n∑

i=1

∑
(r,s,x,g)∈R×S×Xi×G

Pr[r ←R]p(FΠ)(s,x),r

∑
f∈Bi

qfp(f)g,x

 p(FEval)1,(g,s)

=

n∑
i=1

∑
f∈Bi

qf
∑

(r,s,x,g)∈R×S×Xi×G

Pr[r ←R]p(FΠ)(s,x),rp(f)g,xp(FEval)1,(g,s)

=

n∑
i=1

∑
f∈Bi

qfPr[1← Gamei,f (R)]

(11)

and similarly Succ′(R′) =
∑n

i=1

∑
f∈Bi

qfPr[1← Gamei,f (R′)]. Therefore we have

|Succ′(R)− Succ′(R′)| ≤
n∑

i=1

∑
f∈Bi

qf |Pr[1← Gamei,f (R)]− Pr[1← Gamei,f (R′)]|

=
n∑

i=1

∑
f∈Bi

qfAdvR′(Ai,f ) ,

(12)

where Ai,f is the algorithm specified in the statement associated to Gamei,f . As R′ is assumed to be
(Class, εClass)-secure, the assumption Ai,f ∈ Class implies that

|Succ′(R)− Succ′(R′)| ≤
n∑

i=1

∑
f∈Bi

qfεClass = εClass

n∑
i=1

∑
f∈Bi

qf = εClass

n∑
i=1

1 = n · εClass . (13)

Hence, by the triangle inequality and the above results, we have

|Succ(A;R)− Succ(A;R′)|
≤ |Succ(A;R)− Succ′(R)|+ |Succ′(R)− Succ′(R′)|+ |Succ′(R′)− Succ(A;R′)|
≤ |G| · δ′ + n · εClass + |G| · δ′ = 2|G| · δ′ + n · εClass .

(14)

Finally, by the fact that the value δ′ > δ is arbitrarily chosen, it follows that |Succ(A;R) − Succ(A;R′)| ≤
2|G| · δ + n · εClass, as desired. This concludes the proof of Theorem 1.

We explain an intuition behind the above proof technique. A main idea is to approximate each attack
algorithm (which may be computationally unbounded) by a probabilistic ensemble of a common collection of
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algorithms, which we call basic attack algorithms in this discussion. The parameter δ in the statement of the
theorem bounds the approximation errors. First we consider the simplest case that each attack algorithm is
precisely expressed, not just approximated, by such a probabilistic ensemble (i.e., δ = 0). In this case, it is
naively expected that the computational cost of the original attack algorithm is composed of the following
two parts; the cost of sampling the probability distribution associated to the probabilistic ensemble to choose
a basic attack algorithm, and the cost of computing each basic attack algorithm. The former cost varies
according to the arbitrary choice of the original attack algorithm, hence may be unbounded, while the latter
cost is independent of the original attack algorithm, hence is bounded. Now the above proof shows that,
when evaluating the difference of the attack success probabilities between the cases of the ideal random
source R and of the pseudorandom source R′, the former computational cost (which is the unbounded part
of the total cost) is in fact not relevant to the evaluation result. Therefore, as the remaining part of the
computational cost is bounded, the computational indistinguishability of R′ becomes sufficient to bound
the difference of the attack success probabilities even if the original attack algorithm is computationally
unbounded.

For the latter computational cost mentioned above, the cost for the basic attack algorithms is expected
to have positive correlation to the size of the domain X of the algorithms (for example, in the smallest case
|X| = 1, the basic attack algorithms can be defined to be constant functions; see Section 2.3). Therefore,
in order to decrease the cost for the basic attack algorithms, we divided the domain X into smaller parts
X1, . . . , Xn and considered the basic attack algorithms with each smaller domain Xi. This idea introduced
a trade-off between the cost for the basic attack algorithms and the size n of the partition of X.

For a general case that the probabilistic ensembles of the basic attack algorithms are just approximations
of arbitrary attack algorithms (i.e., δ > 0), the derived bound for the difference of the attack success
probabilities involves additional term 2|G| · δ. For example, when the security notion under consideration is
some kind of indistinguishability, we usually have |G| = 2 and hence the additional term will be significantly
small if δ is sufficiently small. On the other hand, in general, the size of G may be very large. In such a
case, it is desirable to let the parameter δ being 0, which makes the size of G irrelevant to the bound in our
result. For the purpose, we present the following corollary of the above theorem:

Corollary 1. In the above setting, suppose that for every 1 ≤ i ≤ n and every deterministic function
f : Xi → G, there exists an algorithm Ai,f satisfying that FAi,f

= Gamei,f and Ai,f ∈ Class. Then for any
A ∈ A, we have

|Succ(A;R)− Succ(A;R′)| ≤ n · εClass . (15)

Proof. For each 1 ≤ i ≤ n, let Bi be the set of all deterministic functions Xi → G. Then for any algorithm
A ∈ A, the probabilistic function FA|Xi : Xi → G can be expressed as a probabilistic ensemble of the members
of Bi; the coefficient of f ∈ Bi in the expression of FA|Xi is given by qf :=

∏
x∈Xi

p(FA|Xi)f(x),x. Indeed, for
each x ∈ Xi and g ∈ G, we have

p(
∑
f∈Bi

qff)g,x =
∑
f∈Bi

qfp(f)g,x =
∑

f∈Bi ; f(x)=g

qf

= p(FA|Xi)g,x
∑

f∈Bi ; f(x)=g

∏
y∈Xi\{x}

p(FA|Xi)f(y),y

= p(FA|Xi)g,x
∏

y∈Xi\{x}

∑
f(y)∈G

p(FA|Xi)f(y),y

= p(FA|Xi)g,x
∏

y∈Xi\{x}

1 = p(FA|Xi)g,x .

(16)

This implies that r(Ci, C′(Bi)) = 0, therefore the second condition in Theorem 1 is satisfied by putting δ := 0.
Hence the claim follows from Theorem 1.

Remark 1. The former of the two conditions in the statement of Theorem 1 implies that the protocol Π itself
can be executed in sufficiently low computational cost to let the function Gamei,f (involving Π as a part)
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be computable by an algorithm in Class. We emphasize that this condition does not mean that the protocol
should always be implemented in such a low-cost manner in a practical application; the above condition
requires only existence of such a low-cost implementation. Similarly, the condition in Theorem 1 also implies
that the (in)correctness of the adversary’s guess g about the secret s can be efficiently checked.

2.3 Comparison to preceding results

Here we discuss differences of our result above from the preceding results on pseudorandomization of
information-theoretically secure schemes. First, our result above is a generalization and an improvement
of the preceding result of Nuida and Hanaoka [11, 12]. Indeed, when we use the partition X =

∪
x∈X{x} of

the set X into subsets with single elements (hence n = |X|), the result of Corollary 1 in this case coincides
with the one by their result. In the preceding result, the size n of the domain X of attack algorithms is
required to be significantly small due to the term n · εClass of the inequality in the theorem. Intuitively, our
improved technique introduces a trade-off between the size n of the partition of X and the costs for the basic
attack algorithms, which can reduce the constraint on the (small) size of X. Owing to the improvement, our
proof technique would be applicable to more various situations than the technique in [11, 12].

On the other hand, a method for pseudorandomization of some kinds of information-theoretically secure
schemes was also presented by Dubrov and Ishai [3], by introducing an extended notion for PRGs (that is,
PRGs against distinguishers whose output sets consist of more than two but bounded numbers of elements).
When applying their method to the above example, the protocol Π is regarded as the extended distinguisher
for the pseudorandom source R′, in order to show that the distributions of the outputs (s, x) of Π themselves
in the random and pseudorandom cases are statistically almost equal, resulting in almost equal attack success
probabilities even by computationally unbounded attack algorithms. However, the argument requires the
size of the output set S ×X of the “distinguisher” Π, in particular the size of S, to be significantly small,
which seems frequently not practical (as a secret s is frequently chosen from a large number of candidates
to achieve a desired security against brute-force attacks). In contrast, our proof technique does not require
any constraint on the size of S, therefore the potential applications of our technique are wider than those of
the method in [3].

3 On types of distinguishers for the PRGs

In the preceding result by Nuida and Hanaoka [11, 12], it was mainly supposed that the PRGs used in the
pseudorandomization are of the following type: The class of distinguishers in the definition of indistinguisha-
bility are determined in terms of constraints on time complexity, and the formulation of indistinguishability
is based on exact security rather than asymptotic security. There are in fact two drawbacks in the choice
of PRGs. First, the existing PRGs against those time-bounded distinguishers require some hardness as-
sumptions (not only the computational constraints on distinguishers) to prove their indistinguishability.
As a result, if we use such kinds of PRGs in our pseudorandomization of information-theoretically secure
schemes, then the proof requires some hardness assumption even though there are no computational con-
straints on the attack algorithms, which somewhat spoils the advantage of information-theoretic security.
Secondly, for PRGs against time-bounded distinguishers, the formulation of indistinguishability based on
asymptotic security rather than exact security has mainly been adopted in the literature. When we want to
convert the result based on exact security into asymptotic security, we will face a gap between non-uniform
and uniform models of computation (cf., an article [7] by Koblitz and Menezes). Namely, in the case that
the security game under discussion is scalable with respect to security parameter 1k, it would be possible
that there is a basic attack algorithm (i.e., a member of Bi) for each parameter 1k for which the difference
of attack success probabilities between random and pseudorandom cases is not significantly small, but there
does not exist an efficient uniform algorithm that agrees with the undesired basic attack algorithm at each
parameter 1k (in other words, it may happen that an undesired algorithm exists at each parameter 1k, but
these cannot be unified as an efficient uniform algorithm). If it happens, then even provable indistinguisha-
bility of a PRG cannot rule out such undesired basic attack algorithms, which prevents us to transfer from
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exact security to asymptotic security.
To resolve the above two drawbacks, in this paper we propose to use PRGs of different types rather than

those against time-bounded distinguishers. More precisely, we use PRGs against distinguishers whose con-
straints are determined by the amount of memories (instead of computational times). A concrete example
of such PRGs are the one proposed by Impagliazzo, Nisan and Wigderson [6], which is henceforth called
INW PRG. A central advantage of INW PRG is that the indistinguishability against memory-bounded dis-
tinguishers can be proven in exact security formulation without any hardness assumption. This property fits
our result well, and by combining the PRG to our result, pseudorandomization of information-theoretically
secure schemes without any hardness assumption is achieved. In the following sections, we investigate a con-
crete computational model suitable for describing memory-bounded distinguishers for INW PRGs, for the
purpose of quantitative evaluation of the performance of our proof technique, i.e., appropriate seed lengths
for the PRGs used in the pseudorandomization.

Remark 2. One may think that the PRGs (more precisely, PRGs in the extended sense mentioned in Section
2.3) given in Section 3.2.1 of [3], whose indistinguishability against distinguishers with constant-depth circuits
was proven without any hardness assumption, can be used in our result instead of INW PRGs. However,
as the indistinguishability of those PRGs was considered in the form of asymptotic security, we will face
the same problem as the above case of PRGs against time-bounded distinguishers about the gap between
uniform and non-uniform computational models. On the other hand, if the indistinguishability of some other
PRG (against a class of distinguishers) can be proven without any hardness assumption in the form of exact
security, then such a PRG can be combined with our proof technique as well as INW PRGs.

4 The computational model

For quantitative evaluation of the indistinguishability of INW PRGs against memory-bounded distinguishers,
a computational model was introduced by Impagliazzo, Nisan and Wigderson [6] (see also papers by Babai,
Nisan and Szegedy [1] and by Nisan [9]). As the description of the model in the paper [6] is not enough
rigorous to perform detailed evaluations, in this section we give a formal description of this model.

In the computational model, which we call the bucket-brigade model, an execution of an algorithm using
a random input tape is interpreted as a multi-party protocol played by the cells of the random tape; the
computation process since the content of j-th cell is read until the content of (j + 1)-th cell is read is
interpreted as a local computation by j-th cell and a communication from j-th cell to (j + 1)-th cell, where
the communicated message represents the intermediate computation result stored in the memory at the
time of reading the content of (j + 1)-th cell. Figure 2 shows an illustrated example of the bucket-brigade
model. To rigorously deal with the bucket-brigade model in terms of multi-party protocols, in the following
subsections we summarize a formalization of the concept of multi-party protocols and present a precise
definition of the bucket-brigade model.

4.1 Notations and terminology

Here we summarize some notations and terminology used below. Unless otherwise specified, each (undirected)
graph and directed graph are finite and simple (i.e., without self-loops and multiple edges). We write
[n] := {1, 2, . . . , n} for an integer n. For sets X and Y , let f : X→p Y mean that f is a partial map from X
to Y , that is, f is a map with range ran(f) = Y and the domain dom(f) of f is a subset of X (including
the simplest case dom(f) = X).

4.2 Multi-party protocols

This subsection summarizes a formulation of the concept of multi-party protocols adopted in this paper. We
also give a lemma for multi-party protocols used later.

Let Π be a µ-party protocol, consisting of input phase, communication phase and output phase. We use
the following notations. Let P1, . . . , Pµ denote the µ players of Π, and put P(Π) := {P1, . . . , Pµ}. Let Ii
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input

?

m1

m2

m3



r1

?

m1 ⊕ r1
m2

m3


C1,2

r2

?

m1 ⊕ r1
m2 ⊕ r2

m3


C2,3

r3

6HHj outputm1 ⊕ r1
m2 ⊕ r2
m3 ⊕ r3


C3,⊥

random
tape

memj

memj

Figure 2: Algorithm A(m) = m ⊕ r, m ∈ {0, 1}3, r ←R {0, 1}3 described in the bucket-brigade model (see
Section 4.3 for some notations)

and Oi be the input space and the output space, respectively, for i-th player Pi. A joint input space I is
determined as a subset of I1 × · · · × Iµ. We say that a subset I ′ ⊂ I is rectangular if I ′ = I ′1 × · · · × I ′µ
for some subsets I ′i ⊂ Ii, i ∈ [µ]. LetM denote the common message space used during the communication
phase. Let C be the set of communication channels (or simply channels); each C ∈ C is a channel from a
single source source(C) ∈ P(Π) to the non-empty set of targets target(C) ⊂ P(Π). For each index i ∈ [µ],
we define

Ci→ := {C ∈ C | source(C) = Pi} , C→i := {C ∈ C | Pi ∈ target(C)} , (17)

i.e., the outgoing and incoming channels for player Pi. Moreover, let Li = (Li,0;Li,1;Li,2; · · · ) denote the
communication log for player Pi, updated stepwise during the protocol.

In the input phase, a µ-tuple x = (x1, . . . , xµ) ∈ I of local inputs xi for players Pi is chosen in a certain
specified manner. Then each communication log Li is initialized as Li := (Li,0) with Li,0 := xi.

The j-th step (j ≥ 1) of the communication phase proceeds as follows:

1. Each player Pi chooses a collection mout
i,j : Ci→→p M of outgoing messages from Pi during the step.

That is, Pi uses the channels in the (possibly empty) subset dom(mout
i,j ) ⊂ Ci→, and for each channel

C ∈ dom(mout
i,j ) the message mout

i,j (C) ∈ M is sent to every player in target(C). We suppose that the
(possibly probabilistic) choice of mout

i,j depends solely on the 0-th to (j − 1)-th parts of Li.

2. Each player Pi consequently receives a collection min
i,j : C→i→p M of incoming messages to Pi. That is,

dom(min
i,j) := C→i ∩

∪
i′ dom(mout

i′,j), and min
i,j(C) := mout

source(C),j(C) for each C ∈ dom(min
i,j).

3. The communication log Li for each Pi is updated by appending a new component Li,j := (mout
i,j ,m

in
i,j)

to the last; Li := (Li,0; · · · ;Li,j−1;Li,j).

4. If dom(mout
i,j ) = ∅ for every i ∈ [µ], i.e., no messages are communicated during the present step, then

the communication phase halts (note that each dom(min
i,j) is also empty in this case).

We assume, unless otherwise specified, that Π always halts within a finite number of steps.
Finally, in the output phase, each player Pi chooses a local output yi ∈ Oi according to a (possibly

probabilistic) manner depending solely on Pi’s communication log Li. Then the output of the protocol Π is
the µ-tuple y = (y1, . . . , yµ), denoted by y = Π(x) = Π(x1, . . . , xµ).

In the above setting, we introduce the following definitions:

Definition 2. First, we divide each mout
i,j defined in the communication phase into mout.self

i,j and mout.other
i,j

in such a way that

dom(mout.self
i,j ) = {C ∈ dom(mout

i,j ) | target(C) = {i}} , dom(mout.other
i,j ) = dom(mout

i,j )\dom(mout.self
i,j ) . (18)
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Then we define the conditional communication capacity c(Π|I ′) of Π conditioned on a subset I ′ ⊂ I (or
the communication capacity c(Π) of Π, when I ′ = I) to be the number of possible matrices mout.other :=
(mout.other

i,j )i,j of outgoing messages during the communication phase, with input for Π chosen from I ′.
(Intuitively, it counts the number of possible communication patterns during the protocol.)

Here we present the following lemma, which is an explicitly stated and slightly generalized version of a
fact mentioned (without proof) in the proof of Theorem 1 in [6]:

Lemma 1. Let Π be a µ-party deterministic protocol (i.e., the communication and output phases are not
probabilistic). Let I ′ = I ′1 × · · · × I ′µ be a rectangular subset of I. Suppose that the number of possible
outputs y of Π with input chosen from I ′ is not larger than k ∈ Z. Then there exist subsets Si,j ⊂ I ′i for
i ∈ [µ] and j ∈ [kc(Π|I ′)], with the property that I ′ is the disjoint union of the subsets S1,j × · · · × Sµ,j over
j ∈ [kc(Π|I ′)] and the output of Π is constant on each subset S1,j × · · · × Sµ,j of possible inputs.

Proof. Put N := c(Π|I ′), and let m(1), . . . ,m(N) denote the possible matrices mout.other appeared in the
definition of c(Π|I ′). For each x = (x1, . . . , xµ) ∈ I ′, let mout(x) denote the matrix mout := (mout

i,j )i,j arising

from the input x for Π (which is uniquely determined, as Π is now deterministic). We define mout.self(x),
mout.other(x) and min(x) similarly. Now for each i ∈ [µ], h ∈ [N ] and possible output y of Π, define Si,h,y

to be the set of all xi ∈ I ′i satisfying that mout.other(x1, . . . , xµ) = m(h) and Π(x1, . . . , xµ) = y for some
xi′ ∈ I ′i′ , i′ ∈ [µ] \ {i}.

To prove the lemma, it suffices to show that, for each h ∈ [N ] and possible output y,

{x ∈ I ′ | mout.other(x) = m(h) and Π(x) = y} = S1,h,y × · · · × Sµ,h,y (19)

(note that there are at most k possibilities for y). The inclusion ⊂ is trivial. For the other direction, let
xi ∈ Si,h,y for each i ∈ [µ], and put x = (x1, . . . , xµ). Note that x ∈ I ′, as I ′ is now rectangular. By
the definition of the sets Si,h,y, for each i, there exists a zi = (zi,1, . . . , zi,µ) ∈ I ′ satisfying that zi,i = xi,
mout.other(zi) = m(h) and Π(zi) = y. Let Li(x) and Li(zi′) denote the communication logs for Pi arising
from inputs x and zi′ , respectively. Now we have Li,0(x) = (xi) = (zi,i) = Li,0(zi) for every i ∈ [µ]. Suppose
that Li,j′(x) = Li,j′(zi) for every i ∈ [µ] and 0 ≤ j′ ≤ j − 1. Then, as the outgoing messages from each
player Pi at j-th step are determined solely by (Li,0; · · · ;Li,j−1), we have mout.self(x)i,j = mout.self(zi)i,j

for any i ∈ [µ], and mout.other(x)i′,j = mout.other(zi′)i′,j = m
(h)
i′,j = mout.other(zi)i′,j for any i, i′ ∈ [µ]. These

relations imply that mout(x)i,j = mout(zi)i,j and min(x)i,j = min(zi)i,j , therefore we have Li,j(x) = Li,j(zi)
for every i. Hence, by induction, we have Li(x) = Li(zi) for every i, and mout(x) = m(h). This also implies
that the local output of each Pi for the case of input x is equal to that for the case of input zi (i.e., yi),
therefore Π(x) = y. Hence the proof of Lemma 1 is concluded.

4.3 Bucket-brigade computational model

From now, we give a precise formulation of the bucket-brigade model for probabilistic algorithms. As
mentioned above, this model interprets an algorithm A as a multi-party protocol Π(A) played by the cells
of the random input tape, in which the intermediate computation results stored in the memory are updated
and communicated by the “players” (cells) according to the original algorithm. We define the multi-party
protocol Π(A) associated to an algorithm A in the following manner (see Figure 2 above for a toy example).

We adopt the following settings. We suppose that the algorithm A uses a random tape with µ ≥ 2 cells.
The protocol Π(A) has µ players Pi (i ∈ [µ]), each endowed with a random variable ri on a finite set Ri,
which represents the content of i-th cell of the random tape. Moreover, each player Pi is also endowed with
his/her own communication log, by which he/she can record what messages he/she received and sent at
previous steps. Let M denote the (finite) set of possible states of the memory in the algorithm A, which is
regarded as the message space for the protocol Π(A). We assume that |M | ≥ 2, as otherwise the memory
has a constant state and hence is useless.

To express the configuration of the random tape used by the algorithm A, we introduce a directed graph
G(A) with vertex set [µ], called the configuration graph. An edge in G(A) from i ∈ [µ] to i′ ∈ [µ] means that

11



the tape head of the random tape can move from i-th cell directly to i′-th cell (for example, G(A) is the
path 1 → 2 → · · · → µ in the case of a read-once one-way random tape). Then we introduce the following
two kinds of channels for Π(A). A channel Ci,i′ of the first type with source Pi and target set {Pi′} is
introduced for each edge in G(A) from i ∈ [µ] to i′ ∈ [µ]. On the other hand, a channel Ci,⊥ of the second
type with source Pi and target set {Pµ} is introduced for each i ∈ [µ], which will be used in the last of the
communication phase of Π(A).

In the input phase of Π(A), each player Pi receives the local input ri ∈ Ri chosen according to the
random variable ri. Moreover, the first player P1 also receives an initial state mem0 ∈M of the memory as
input (which depends on the input for the original algorithm A), therefore the local input for P1 is indeed
the pair (mem0, r1). Hence the joint input space is I := M ×R1 × · · · ×Rµ and an input for Π(A) is given
by x := (mem0, r1, . . . , rµ).

In j-th step (j ≥ 1) of the communication phase, only one player Pij is active at the step, that is,
any other player Pi′ (i

′ ̸= ij) sends no messages at the step (i.e., dom(mout
i′,j) = ∅). We suppose that, when

j ≥ 2, the active player Pij received a message memj−1 ∈ M at the previous (i.e., (j − 1)-th) step. For the
first step, we set i1 := 1. Then the j-th step proceeds as follows.

• If j ≥ 2, ij = µ and Pµ received the message memj−1 at (j − 1)-th step via a channel Cij−1,⊥ of the
second type, then the communication phase is going to halt, hence all players including Pµ send no
messages at the step.

• Otherwise, the active player Pij calculates a new memory state memj ∈M from memj−1, rij and the
communication log of Pij in a manner specified by the original algorithm A (we emphasize that the
local calculation has no computational constraints). Now

– if the original algorithm A should halt at this stage, then Pij sets ij+1 := µ and sends the message
memj via the channel Cij ,⊥ of the second type;

– otherwise, Pij also determines ij+1 for which a channel Cij ,ij+1 of the first type exists, and sends
the message memj via Cij ,ij+1 .

Naively speaking, boundedness of the memory size |M | implies boundedness of the communication capacity
of Π(A). See Section 6.1 for more details.

Suppose that the communication phase has halted at j-th step, therefore the last message received by
Pµ is memj−1 ∈ M at (j − 1)-th step. Then in the output phase, the local outputs of the players other
than Pµ are set as empty, while the local output yµ of Pµ is calculated from memj−1 and the communication
log of Pµ in a manner specified by the algorithm A (we emphasize again that the local calculation has no
computational constraints). For simplicity, we identify the output y of the protocol Π(A) with yµ rather
than the µ-tuple (∅, ∅, . . . , ∅, yµ).

5 Impagliazzo–Nisan–Wigderson PRGs

In this section, we summarize the construction of INW PRGs given in [6]. The PRGs were first described in
the context of pseudorandomization of random inputs for multi-party protocols, and then applied to usual
algorithms via the above-mentioned computational model. We also study some properties of INW PRGs.

5.1 Notations and terminology

Here we summarize some notations and terminology used below. For integers n ≥ 0 and m ≥ 1, let “n
mod m” denote the remainder of nmodulom, which is taken in such a way that n mod m ∈ {0, 1, . . . ,m−1}.
Then we define an operation mod+1

m on non-negative integers by mod+1
m (x) := (x mod m) + 1 ∈ [m], 0 ≤

x ∈ Z. On the other hand, for integers n ≥ 0 and m ≥ 1, we put

ρ(n,m) :=
(n mod m) · (m− (n mod m))

nm
. (20)
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Let UX denote the uniform random variable over a finite set X. Moreover, let ∆(r1, r2) denote the statistical
distance between two random variables r1, r2 over a common finite set X:

∆(r1, r2) :=
1

2

∑
x∈X

|Pr[x← r1]− Pr[x← r2]| . (21)

For any undirected graph G = (V,E), we suppose that some linear orderings on the vertex set V and on
the edge set E are implicitly fixed to let expressions such as “k-th vertex” and “k-th edge” make sense. We
say that G is δ-regular, if each vertex of G has precisely δ edges. Let A(G) denote the adjacency matrix of
undirected graph G, that is, a |V | × |V | symmetric {0, 1}-matrix for which the (i, j)-entry is 1 if and only if
i-th vertex of G is adjacent to j-th vertex of G. If G is a δ-regular graph and λ1 ≥ λ2 ≥ · · · ≥ λ|V | are the
eigenvalues of A(G) (note that λ1 = δ), then we put λ = λ(G) := max{|λ2|, |λ|V ||} which is called the second
largest eigenvalue for G.

5.2 A building block

Each INW PRG is constructed by composing smaller building-block PRGs according to some binary tree
structure. In this subsection, we describe the construction of the building-block PRGs gGN0;N1,N2

. The
parameters are chosen as follows: Let G = (V,E) be a δ-regular (undirected) graph with ν vertices (|V | = ν),
and let N0, N1 and N2 be integers satisfying N0 ≥ νδ and 1 ≤ Ni ≤ ν (i ∈ {1, 2}).

Definition 3. In the above setting, the PRG gGN0;N1,N2
is defined as a map [N0] → [N1] × [N2], where the

value gGN0;N1,N2
(x) for x ∈ [N0] is determined in the following manner:

1. Decompose x uniquely as x = a1νδ + a2δ + a3, where a1, a2, a3 are non-negative integers with a2 < ν
and a3 < δ.

2. Take a2-th vertex v ∈ V of G.

3. Take a3-th edge e ∈ E of G among the δ edges adjacent to v. Let v′ denote the other vertex of e.

4. Take the index a4 ∈ {0, 1, . . . , ν − 1} satisfying that v′ is a4-th vertex of G.

5. Finally, set gGN0;N1,N2
(x) := (mod+1

N1
(a2),mod+1

N2
(a4)) ∈ [N1]× [N2] (see Section 5.1 for the notations).

We notice that gGN0;N1,N2
coincides with composition of the following three maps; mod+1

νδ : [N0] → [νδ],

gGνδ;ν,ν : [νδ]→ [ν]× [ν], and mod+1
N1
×mod+1

N2
: [ν]× [ν]→ [N1]× [N2].

Roughly speaking, it can be shown without any hardness assumption that the PRG gGN0;N1,N2
is indis-

tinguishable against distinguishers given by 2-party protocols with bounded communication capacity. More
precisely, we have the following lemma, which is an improvement of Theorem 1 in [6] and Lemma 1 in [6]
(namely, the degree 1/2 of the positive integer term kc(Π|I ′) in the following lemma is lower than the degree
1 derived by the argument of [6]):

Lemma 2. Let Π be a 2-party protocol, I ′ = I ′1×I ′2 be a rectangular subset of the joint input space I of Π,
and let N ∈ Z. We identify each I ′i with [ni], where ni := |I ′i|. Suppose that N ≥ νδ, ν ≥ n1 and ν ≥ n2.
Suppose further that the number of possible outputs of Π arising from inputs chosen from I ′ is not larger
than k ∈ Z. Then we have

∆(Π(gGN ;n1,n2
(U[N ])),Π(U[n1], U[n2])) ≤

λ(G)
2δ

√
kc(Π|I ′) + ρ(N, νδ) + ρ(ν, n1) + ρ(ν, n2) (22)

(see Section 5.1 for notations).

Proof. First we present the following three lemmas (we notice that Lemma 3 and Lemma 5 are better than
the counterparts in the proofs in [6], which result in the above-mentioned improvement in Lemma 2):
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Lemma 3 (Expander Mixing Lemma; see e.g., Section 2.4 of [5]). Let G = (V,E) be a δ-regular graph with
ν vertices. Put E(S, T ) := {(s, t) ∈ S × T | s and t are adjacent in G} for any subsets S, T ⊂ V . Then∣∣∣∣|E(S, T )| − δ|S| · |T |

|V |

∣∣∣∣ ≤ λ(G)
√
|S| · |T | . (23)

Lemma 4 (see Lemma 1 of [11]). For integers n ≥ 0 and m ≥ 1, we have ∆(mod+1
m (U[n]), U[m]) = ρ(n,m).

Lemma 5. For any x1, . . . , xn ≥ 0, we have
∑n

i=1 xi ≤
√
n
∑n

i=1 xi
2.

Proof. We have

n

n∑
i=1

xi
2 −

(
n∑

i=1

xi

)2

= (n− 1)

n∑
i=1

xi
2 − 2

∑
1≤i<j≤n

xixj

=

n−1∑
i=1

(
(n− i)xi

2 +

n∑
ℓ=i+1

xℓ
2

)
− 2

∑
1≤i<j≤n

xixj

=
n−1∑
i=1

n∑
j=i+1

(xi
2 + xj

2 − 2xixj) =
n−1∑
i=1

n∑
j=i+1

(xi − xj)
2 ≥ 0 ,

(24)

therefore (
∑n

i=1 xi)
2 ≤ n

∑n
i=1 xi

2, as desired.

To prove Lemma 2, we may assume without loss of generality that the 2-party protocol Π is deterministic,
as a general Π can be expressed as a probabilistic ensemble of deterministic ones. For simplicity, we put

σ1 := mod+1
n1

, σ2 := mod+1
n2

, σ := σ1 × σ2 , τ := mod+1
νδ . (25)

Moreover, let Πσ denote the 2-party deterministic protocol that, given an input (a1, a2) ∈ [ν]× [ν], simulates
the protocol Π with input σ(a1, a2) ∈ I ′. Then by the relation gGN ;n1,n2

= σ ◦ gGνδ;ν,ν ◦ τ , we have

∆(Π(gGN ;n1,n2
(U[N ])),Π(U[n1], U[n2]))

≤ ∆(Π(gGN ;n1,n2
(U[N ])),Π((σ ◦ gGνδ;ν,ν)(U[νδ]))) + ∆(Π((σ ◦ gGνδ;ν,ν)(U[νδ])),Π(σ(U[ν], U[ν])))

+ ∆(Π(σ(U[ν], U[ν])),Π(U[n1], U[n2]))

≤ ∆(τ(U[N ]), U[νδ]) + ∆(Πσ(gGνδ;ν,ν(U[νδ])),Π
σ(U[ν], U[ν])) + ∆(σ(U[ν], U[ν]), U[n1] × U[n2])

(26)

where we used the triangle inequality (to deduce the first inequality) and the fact (to deduce the second
inequality) that ∆(f(r1), f(r2)) ≤ ∆(r1, r2) for any random variables r1, r2 over the same set and any map
f . Lemma 4 implies that ∆(τ(U[N ]), U[νδ]) = ρ(N, νδ) and

∆(σ(U[ν], U[ν]), U[n1] × U[n2]) = ∆(σ1(U[ν])× σ2(U[ν]), U[n1] × U[n2])

≤ ∆(σ1(U[ν]), U[n1]) + ∆(σ2(U[ν]), U[n2]) = ρ(ν, n1) + ρ(ν, n2) .
(27)

To evaluate the remaining value ∆(Πσ(gGνδ;ν,ν(U[νδ])),Π
σ(U[ν], U[ν])), put c := c(Π|I ′) = c(Πσ). Take the

subsets Si,h ⊂ [ν] (i ∈ {1, 2}, h ∈ [kc]) given by Lemma 1 applied to Πσ. For each possible output y of Πσ,
define Iy ⊂ [kc] in such a way that we have Πσ(x1, x2) = y if and only if (x1, x2) ∈ S1,h × S2,h for some
h ∈ Iy. Note that [kc] is the disjoint union of those Iy. Moreover, for each (x1, x2) ∈ [ν] × [ν], let ι(x1, x2)
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denote the index h ∈ [kc] with (x1, x2) ∈ S1,h × S2,h. Then

∆(Πσ(gGνδ;ν,ν(U[νδ])),Π
σ(U[ν], U[ν]))

=
1

2

∑
y

|Pr[y ← Πσ(gGνδ;ν,ν(U[νδ]))]− Pr[y ← Πσ(U[ν], U[ν])]|

=
1

2

∑
y

|Pr[(x1, x2)← gGνδ;ν,ν(U[νδ]) : ι(x1, x2) ∈ Iy]− Pr[(x1, x2)← U[ν] × U[ν] : ι(x1, x2) ∈ Iy]|

≤ 1

2

∑
y

∑
h∈Iy

(
|Pr[(x1, x2)← gGνδ;ν,ν(U[νδ]) : (x1, x2) ∈ S1,h × S2,h]

−Pr[(x1, x2)← U[ν] × U[ν] : (x1, x2) ∈ S1,h × S2,h]|
)

.

(28)

Now by the construction of gGνδ;ν,ν , the probability that gGνδ;ν,ν(U[νδ]) outputs an element in S1,h × S2,h is
equal to |E(S1,h, S2,h)|/(νδ) (see Lemma 3 for the notation), while the probability that U[ν] × U[ν] outputs
an element in S1,h × S2,h is |S1,h| · |S2,h|/ν2. Therefore the right-hand side of (28) is equal to

1

2

∑
h∈[kc]

∣∣∣∣ |E(S1,h, S2,h)|
νδ

− |S1,h| · |S2,h|
ν2

∣∣∣∣ = 1

2νδ

∑
h∈[kc]

∣∣∣∣|E(S1,h, S2,h)| −
δ|S1,h| · |S2,h|

ν

∣∣∣∣
≤ 1

2νδ

∑
h∈[kc]

λ(G)
√
|S1,h| · |S2,h|

≤ λ(G)
2νδ

√
kc
∑

h∈[kc]

|S1,h| · |S2,h| =
λ(G)
2νδ

√
kc · ν2 =

λ(G)
2δ

√
kc ,

(29)

where the first inequality is implied by Lemma 3, the second inequality is implied by Lemma 5, and the
second last equality follows from the fact that [ν]× [ν] is the disjoint union of S1,h×S2,h for h ∈ [kc]. Hence
the proof of Lemma 2 is concluded.

5.3 The overall construction

From now, we describe the way of composing the building-block PRGs introduced in Section 5.2 to construct
an INW PRG. Let Π be a µ-party protocol (µ ≥ 2) with bounded communication capacity. For simplicity, we
assume that Π is deterministic, which is in fact sufficient for our purpose (as an arbitrary Π is a probabilistic
ensemble of deterministic ones). We suppose that the inputs for Π are chosen from a rectangular subset
I ′ = I ′1 × · · · × I ′µ of I. We identify each I ′i with [ni], where ni := |I ′i|.

To construct INW PRGs, first we introduce the following objects. Let T be a rooted binary tree with
µ leaves, where i-th leaf is identified with i-th player Pi of Π. Let dp(v) denote the depth of a vertex v in
T , i.e., the number of edges in the path from the root to v. Let dp(T ) := maxv dp(v) be the depth of the
tree T . We choose positive integers ν0, δ1, ν1, . . . , δdp(T ), νdp(T ) in such a way that νi−1 ≥ νiδi for every
i ∈ [dp(T )] and νdp(Pi) ≥ ni for every i ∈ [µ]. Moreover, for each i ∈ [dp(T )], let Gi be a δi-regular graph
with νi vertices. In this setting, the INW PRG gINW is defined as a map [ν0] → [n1] × · · · × [nµ] in the
following manner:

Definition 4. To define the value gINW(x) of the INW PRG gINW for input x ∈ [ν0], we determine an inter-
mediate value xv associated to each vertex v of T inductively, and then we set gINW(x) := (xP1 , xP2 , . . . , xPµ).
Each intermediate value xv is determined as follows. First, for the root v0 of T , we simply set xv0 := x.
For the other values, suppose that an element xv ∈ [νi] has been determined for a non-leaf vertex v of
depth i. If the left (respectively, right) child vL (respectively, vR) of v in T is a leaf (say, Ph), then we put
mL := nh (respectively, mR := nh); otherwise we put mL := νi+1 (respectively, mR := νi+1). Then we set

(xvL , xvR
) := g

Gi+1
νi;mL,mR(xv) ∈ [mL]× [mR].
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Roughly speaking, it can be shown without any hardness assumption that the INW PRG gINW is indis-
tinguishable against distinguishers given by µ-party protocols with bounded communication capacity. The

proof of indistinguishability is reduced to the indistinguishability of the building-blocks g
Gi+1
νi;mL,mR against

2-party distinguishers. For the sake of the reduction, we explain a conversion method as follows, which was
used in [6], of a µ-party protocol Π into a 2-party protocol Π:

Definition 5. For a µ-party protocol Π, we choose a partition P(Π) = P1 ∪P2 of P(Π) into two non-empty
disjoint subsets. Then we convert Π into a 2-party protocol Π = ΠP1 by gathering all players in P1 and in
P2 as the first player P (1) and the second player P (2) of Π, respectively. Namely, the local inputs for P (1)

and for P (2) in Π are collections of local inputs in Π for the players in P1 and in P2, respectively. In the
communication phase, P (1) and P (2) simulate the roles of all players in P1 and in P2, respectively. More
precisely, for each channel C of Π, we introduce a channel C of Π in such a way that the source of C is P (1)

(respectively, P (2)) when source(C) ∈ P1 (respectively, source(C) ∈ P2), and P (1) (respectively, P (2)) is in
the target of C when some player in P1 (respectively, P2) belongs to target(C). Now if a message is sent at a
step in the communication phase of Π via a channel C, then the same message is sent at the corresponding
step in the communication phase of Π via the corresponding channel C. Finally, the local outputs for P (1)

and for P (2) in Π are collections of local outputs in Π for the players in P1 and in P2, respectively.

We introduce some more notations. For each non-leaf vertex v of T , let Tv,left and Tv,right denote the
subtrees of T with the roots being the left and the right children of v in T , respectively. Let Lv,left and
Lv,right denote the sets of leaves of Tv,left and Tv,right, respectively, and let Lv,out denote the sets of leaves
of T not belonging to Lv,left ∪ Lv,right. Now for each collection xv,out of possible local inputs for the players
of Π in Lv,out, let I ′xv,out

denote the subset of I ′ satisfying that each component of any element of I ′xv,out

corresponding to a player in Lv,out coincides with the component of xvout corresponding to the same player.
Note that I ′xv,out

is rectangular as well as I ′. We define

ctwo := max
v,xv,out

min{c(ΠLv,left
|I ′xv,out

), c(ΠLv,right
|I ′xv,out

)} , (30)

where the maximum is taken over all non-leaf vertices v of T and over all possible xv,out.
Now we have the following result, which is an improvement of Theorem 2 in [6] (by virtue of the above-

mentioned improvement of Lemma 2 from the counterpart in [6]):

Theorem 2. In the above setting, suppose that the number of possible outputs of Π with inputs chosen from
I ′ is not larger than k ∈ Z. Let Vh(T ), 0 ≤ h ≤ dp(T ) − 1, denote the set of non-leaf vertices of T with
depth h. Then we have

∆(Π(gINW(U[ν0])),Π(U[n1], . . . , U[nµ]))

≤
dp(T )−1∑

h=0

|Vh(T )|
(
λ(Gh+1)

2δh+1

√
kctwo + ρ(νh, νh+1δh+1)

)
+

µ∑
i=1

ρ(νdp(Pi), ni)
(31)

(see Section 5.1 for notations).

Proof. We notice that the basic strategy of the proof is the same as the proof of Theorem 2 in [6]. In the
proof, to each vertex v of T we associate a set Iv in such a way that we have Iv = [νh] if v is not a leaf of
T and dp(v) = h, while we have Iv = [ni] if v = Pi (which is a leaf of T ). Let T∧v denote the subtree of T
with root v. We define B to be the family of sets consisting of vertices of T , in such a way that a set X of
vertices of T belongs to B if and only if every leaf of T is contained in a unique subtree T∧v with v ∈ X.
For example, the set L(T ) of all the leaves of T and the one-element set {v0} consisting of the root v0 of T
are members of B. Now for each X ∈ B, we define an auxiliary map gX :

∏
v∈X Iv → [n1]× · · · × [nµ] in the

following manner analogous to gINW. Given (xv)v∈X ∈
∏

v∈X Iv, we determine elements xu ∈ Iu for vertices
u of subtrees T∧v (v ∈ X) inductively as follows:
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Suppose that an element xu ∈ Iu has been determined for a non-leaf vertex u with depth i. Then

we put (xuL
, xuR

) := g
Gi+1

|Iu|;|IuL
|,|IuR

|(xu) ∈ IuL
× IuR

, where uL and uR are the left and the right

children of u in T , respectively.

Then we set gX((xv)v∈X) := (xP1
, . . . , xPµ

).

By the above construction, we have g{v0} = gINW, while gL(T ) is the identity map on [n1] × · · · × [nµ].
From now, to evaluate the left-hand side of (31), we choose a sequence X0 := L(T ), X1, . . . , Xs := {v0} of
elements of B in a certain manner and evaluate the statistical distance between Π(gXh−1((UIv )v∈Xh−1

)) and
Π(gXh((UIv )v∈Xh

)) for every h ∈ [s]. Then these evaluation results will be gathered (by using the triangle
inequality) to deduce the inequality (31).

We define the elements Xt of B inductively as follows: If Xt has been chosen and Xt ̸= {v0}, then
take a vertex ut+1 of T whose left child ut+1,L and right child ut+1,R are both members of Xt, and define
Xt+1 := (Xt \{ut+1,L, ut+1,R})∪{ut+1}. Note that such a vertex ut+1 always exists (for example, the parent
of an element of Xt with largest depth satisfies the condition for ut+1) and the new set Xt+1 is also a member
of B. Note also that the process halts within finitely many steps, as the sizes of Xt are strictly decreasing.

For each t ∈ [s], put u := ut for notational simplicity, and let gu : IuL →
∏

Pi∈Lu,left
[ni], g

′
u : IuR →∏

Pi∈Lu,right
[ni] and g′′u :

∏
v∈Xt\{u} Iv →

∏
Pi∈Lu,out

[ni] be maps defined in the same way as gXt . Then

by the triangle inequality, the statistical distance between Π(gXt−1((UIv )v∈Xt−1)) and Π(gXt((UIv )v∈Xt)) is
bounded by the (weighted) average of statistical distances between Π(gu(UIuL

), g′u(UIuR
), ξ) and Π((gu ×

g′u)(g(UIu)), ξ), where we put ξ := g′′u((xv)v∈Xt\{u}), G := Gdp(u)+1 and g := gG|Iu|;|IuL
|,|IuR

| for notational

simplicity, over all collections (xv)v∈Xt\{u} of xv ∈ Iv for v ∈ Xt \ {u}. Now we define an auxiliary
2-party protocol Π′ (respectively, Π′′) in such a way that, given inputs xuL ∈ IuL and xuR ∈ IuR for
the two players, they perform the protocol ΠLu,left

with inputs gu(xuL
) and (g′u(xuR

), ξ) (respectively, the

protocol ΠLu,right
with inputs g′u(xuR) and (gu(xuL), ξ)). Then we have c(Π′) = c(ΠLv,left

|I ′ξ) and c(Π′′) =

c(ΠLv,right
|I ′ξ) by the definitions. We suppose for simplicity that c(Π′) ≤ c(Π′′) (the other case is similar).

Then we have c(Π′) ≤ ctwo by the definition of ctwo. Now we have Π(gu(UIuL
), g′u(UIuR

), ξ) = Π′(UIuL
, UIuR

)
and Π((gu × g′u)(g(UIu)), ξ) = Π′(g(UIu)), therefore it suffices to evaluate the statistical distance between
Π′(UIuL

, UIuR
) and Π′(g(UIu)). By Lemma 2, the statistical distance is not larger than

λ(Gdp(u)+1)

2δdp(u)+1

√
kctwo + ρ(|Iu|, νdp(u)+1δdp(u)+1) + ρ(νdp(u)+1, |IuL |) + ρ(νdp(u)+1, |IuR |) (32)

regardless of the choice of ξ. This implies that the statistical distance between Π(gXh−1((UIv )v∈Xh−1
)) and

Π(gXh((UIv )v∈Xh
)) is also bounded by (32). Note that dp(u) ≤ dp(T )−1 in this case, therefore |Iu| = νdp(u).

In summing up the values in (32) over all the specified vertices u = ut for t ∈ [s],

• for the first two terms
λ(Gdp(u)+1)

2δdp(u)+1

√
kctwo + ρ(νdp(u), νdp(u)+1δdp(u)+1), for each 0 ≤ h ≤ dp(T )− 1, the

case dp(u) = h appears precisely |Vh(T )| times;

• for the remaining two terms ρ(νdp(u)+1, |IuL |) + ρ(νdp(u)+1, |IuR |), it sums up ρ(νdp(v), |Iv|) for all
vertices v of T other than the root of T , and we have |Iv| = ni if v is a leaf Pi of T , while we have
ρ(νdp(v), |Iv|) = ρ(νdp(v), νdp(v)) = 0 if v is not a leaf of T .

Hence the resulting sum is equal to the right-hand side of (31), concluding the proof of Theorem 2.

6 On pseudorandomization using INW PRGs

Based on the results in the previous sections, in this section we give quantitative evaluations of advantages
of distinguishers for INW PRGs based on the above-mentioned bucket-brigade model. More precisely, as the
bound for the statistical distance in Theorem 2 is a function of the (conditional) communication capacity
of the multi-party protocol, the main task in this section is to estimate, in terms of the memory size |M |
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for a distinguisher, the (conditional) communication capacity of the multi-party protocol Π(A) associated
to the distinguisher A under the bucket-brigade model. The communication capacity, hence the resulting
advantage, becomes smaller as the memory size is decreasing. A numerical example for some existing
information-theoretically secure scheme will be given in Section 7.

6.1 Advantages of distinguishers in bucket-brigade model

In principle, the (conditional) communication capacity appeared in Theorem 2 can be estimated for the
multi-party protocols Π(A) associated to algorithms A described in bucket-brigade model with arbitrary
configuration graphs. However, the analysis of the case of arbitrary configuration graphs is too complicated,
therefore here we focus on a special case that the random tape is a one-way tape of circular shape. In terms
of configuration graphs, this means that the configuration graph G(A) for the random tape is the directed
cycle 1→ 2→ · · · → µ→ 1, where µ ≥ 2 is the number of cells in the random tape (hence Π(A) is a µ-party
protocol).

To evaluate the communication capacity of Π = Π(A), we introduce the following quantity: Let Nread

denote the maximum, taken over all i ∈ [µ], of the number of steps during the communication phase of Π
in which player Pi sends some message via a channel of the form Ci,i′ with i′ ∈ [µ] ∪ {⊥}. Intuitively, this
means that in an execution of the algorithm A, the content of each cell of the random tape is read at most
Nread times. Now we have the following result:

Lemma 6. In the above setting, suppose further that the initial memory state mem0 ∈M for Π = Π(A) is a
constant value; consequently, the joint input space I for Π is identified with R1×· · ·×Rµ. Then the quantity
ctwo defined by (30) in the case I ′ = I associated to Π = Π(A) is bounded by ctwo ≤ C(µ, |M |), where

C(µ, |M |) := ((µ− 1)|M |2 + 1)
|M |2Nread − 1

|M |2 − 1
. (33)

Proof. First, by the construction of the tree T and the definitions of the subsets Lv,left and Lv,right of leaves
of T , it suffices to show that c(ΠP1) ≤ C(µ, |M |) for any partition P(Π) = P1 ∪ P2 of P(Π) = {P1, . . . , Pµ}
satisfying that P1 = {Ph, Ph+1, . . . , Ph′−1, Ph′} for some 1 ≤ h ≤ h′ ≤ µ − 1 (note that we have supposed
Pµ ̸∈ P1).

To count the communication patterns of ΠP1 , first we consider the case that h ≥ 2, hence P1, Pµ ̸∈ P1.
Suppose that a communication phase of Π halts at (sµ+t+1)-th step, where 1 ≤ t ≤ µ and 0 ≤ s ≤ Nread−1,
therefore the last (non-empty) message in the communication phase is sent via a channel Ct,⊥ (recall that
the configuration graph G(A) is a cycle). Now we divide the argument into the following subcases:

Case 1-1: h ≥ 2, 1 ≤ t ≤ h− 1. By the shape of the configuration graph G(A), the channel for Π used at
each, say, j-th step is uniquely determined by j, therefore the communication patterns for Π is expressed by
a sequence m1,m2, . . . ,msµ+t of messages mj ∈M sent at j-th step. Moreover, in the definition of c(ΠP1),
only the messages sent in Π from a player in P1 to a player in P2 and the messages sent from a player in
P2 to a player in P1 are concerned and the other messages are ignored. In the present case, the former ones
are mh′ ,mµ+h′ , . . . ,m(s−1)µ+h′ (all sent from Ph′ to Ph′+1 via the channel Ch′,h′+1), s messages in total,
and the latter ones are mh−1,mµ+h−1, . . . ,m(s−1)µ+h−1 (all sent from Ph−1 to Ph via the channel Ch−1,h),

s messages in total. Therefore, the number of communication patterns counted by c(ΠP1) in this case is not
larger than |M |2s.

Case 1-2: h ≥ 2, h ≤ t ≤ h′. We apply an argument similar to Case 1-1. Now, among the messages
m1,m2, . . . ,msµ+t sent during the communication phase of Π, the messages sent from a player in P1 to a
player in P2 are mh′ ,mµ+h′ , . . . ,m(s−1)µ+h′ (from Ph′ to Ph′+1 via Ch′,h′+1) and msµ+t (sent from Pt to Pµ

via the channel Ct,⊥), s + 1 messages in total. On the other hand, the messages sent from a player in P2

to a player in P1 are mh−1,mµ+h−1, . . . ,msµ+h−1 (from Ph−1 to Ph via Ch−1,h), s + 1 messages in total.
Therefore, the number of communication patterns counted by c(ΠP1) in this case is not larger than |M |2s+2.
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Case 1-3: h ≥ 2, h′ + 1 ≤ t ≤ µ. We apply an argument similar to Case 1-1 and Case 1-2. Now, among
the messages m1,m2, . . . ,msµ+t sent during the communication phase of Π, the messages sent from a player
in P1 to a player in P2 are mh′ ,mµ+h′ , . . . ,msµ+h′ (from Ph′ to Ph′+1 via Ch′,h′+1), s+1 messages in total.
On the other hand, the messages sent from a player in P2 to a player in P1 are mh−1,mµ+h−1, . . . ,msµ+h−1

(from Ph−1 to Ph via Ch−1,h), s + 1 messages in total. Therefore, the number of communication patterns
counted by c(ΠP1) in this case is not larger than |M |2s+2.

By summing up the above results over all 0 ≤ s ≤ Nread − 1 and 1 ≤ t ≤ µ, we have

c(ΠP1) ≤
Nread−1∑

s=0

((h− 1)|M |2s + (µ− h+ 1)|M |2s+2) = (h− 1 + (µ− h+ 1)|M |2) |M |
2Nread − 1

|M |2 − 1
(34)

(recall that we have assumed |M | ≥ 2). Under the current condition h ≥ 2, the coefficient h − 1 + (µ −
h + 1)|M |2 takes the maximal value at h = 2, which is (µ − 1)|M |2 + 1. Hence the desired relation
c(ΠP1) ≤ C(µ, |M |) holds in the case h ≥ 2.

Secondly, we consider the case that h = 1, hence P1 ∈ P1 and Pµ ̸∈ P1. In the same way as above, we
suppose that a communication phase of Π halts at (sµ+t+1)-th step, where 1 ≤ t ≤ µ and 0 ≤ s ≤ Nread−1.
We divide the argument into the following subcases:

Case 2-1: h = 1, 1 ≤ t ≤ h′. Now, among the messages m1,m2, . . . ,msµ+t sent during the communication
phase of Π, the messages sent from a player in P1 to a player in P2 are mh′ ,mµ+h′ , . . . ,m(s−1)µ+h′ (from Ph′

to Ph′+1 via Ch′,h′+1) and msµ+t (sent from Pt to Pµ via Ct,⊥), s+1 messages in total. On the other hand,
the messages sent from a player in P2 to a player in P1 are mµ,m2µ, . . . ,msµ (from Pµ to P1 via Cµ,1), s
messages in total. Therefore, the number of communication patterns counted by c(ΠP1) in this case is not
larger than |M |2s+1.

Case 2-2: h = 1, h′ + 1 ≤ t ≤ µ. Now, among the messages m1,m2, . . . ,msµ+t sent during the communi-
cation phase of Π, the messages sent from a player in P1 to a player in P2 are mh′ ,mµ+h′ , . . . ,msµ+h′ (from
Ph′ to Ph′+1 via Ch′,h′+1), s + 1 messages in total. On the other hand, the messages sent from a player in
P2 to a player in P1 are mµ,m2µ, . . . ,msµ (from Pµ to P1 via Cµ,1), s messages in total. Therefore, the
number of communication patterns counted by c(ΠP1) in this case is not larger than |M |2s+1.

By summing up the above results over all 0 ≤ s ≤ Nread − 1 and 1 ≤ t ≤ µ, we have

c(ΠP1) ≤
Nread−1∑

s=0

µ|M |2s+1 = µ|M | |M |
2Nread − 1

|M |2 − 1
. (35)

Now the conditions µ ≥ 2 and |M | ≥ 2 imply that µ|M | ≤ (µ − 1)|M |2 + 1, therefore the inequality
c(ΠP1) ≤ C(µ, |M |) also holds in this case. Hence the proof of Lemma 6 is concluded.

From now, we construct INW PRG gINW : [ν0] → [n1] × · · · × [nµ] that pseudorandomizes the random
input tape for Π(A), where for each i ∈ [µ], we put ni := |Ri| and identify Ri with [ni] (see Section 4.3
for the notations). We take a rooted binary tree T in such a way that its depth dp(T ) attains the minimal
possible value ⌈log2 µ⌉ and the leaves P1, . . . , Pµ of T (identified with the µ players of Π(A)) are arranged
in this order from left to right. This implies that, for any vertex v of T , the set of leaves of the subtree
T∧v of T with root v are of the form {Ph, Ph+1, . . . , Ph′−1, Ph′} with 1 ≤ h ≤ h′ ≤ µ. Then we define gINW

as in Section 5.3 according to the tree T . We put Π := Π(A) and ARnd := Π(U[n1], . . . , U[nµ]) (where, for
simplicity, the part mem0 ∈M of the input for Π is made implicit), which means the output distribution of
the algorithm A with contents of the random tape given uniformly at random. On the other hand, we put
APRnd := Π(gINW(U[ν0])), which means the output distribution of A with the contents of the random tape
given by the PRG gINW. Moreover, let Nout denote the number of possible outputs of Π (or equivalently,
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of A). Then the statistical distance ∆(ARnd,APRnd), which is the advantage of the distinguisher, can be
evaluated by using Theorem 2 and the above result:

Theorem 3. In the above setting, ∆(ARnd,APRnd) is not larger than

dp(T )−2∑
h=0

2h
(
λ(Gh+1)

2δh+1

√
NoutC(µ, |M |) + ρ(νh, νh+1δh+1)

)

+ (µ− 2dp(T )−1)

(
λ(Gdp(T ))

2δdp(T )

√
NoutC(µ, |M |) + ρ(νdp(T )−1, νdp(T )δdp(T ))

)
+

µ∑
i=1

ρ(νdp(vi), ni)

(36)

(see (33) for the definition of C(µ, |M |), and see Section 5.3 for notations). Hence, if for every h we
have λ(Gh)/(2δh) ≤ εg for a common εg ∈ R, and for every h and i we have ρ(νh, νh+1δh+1) ≤ ερ and
ρ(νdp(vi), ni) ≤ ερ for a common ερ ∈ R, then we have

∆(ARnd,APRnd) ≤ (µ− 1)εg
√
NoutC(µ, |M |) + (2µ− 1)ερ . (37)

Proof. The latter inequality (37) follows from the former part of the statement and direct calculation,
therefore we prove the former part from now. As the choice of mem0 ∈ M in the input phase of Π is
independent of the other parts r1, . . . , rµ of the input, we may assume without loss of generality (due to
the triangle inequality) that mem0 is a constant value. Then Lemma 6 can be applied, and it follows that
ctwo ≤ C(µ, |M |) where we put I ′ = I in the definition of ctwo. Now we use Theorem 2 with I ′ = I (note
that k = Nout). By the construction of the binary tree T , we have |Vh(T )| = 2h for 0 ≤ h ≤ dp(T ) − 2
and |Vdp(T )−1| = µ − 2dp(T )−1. Therefore, the bound in the statement is derived by using the inequality
ctwo ≤ C(µ, |M |) and by substituting these values of |Vh(T )| into Theorem 2.

6.2 Asymptotic evaluation of sufficient seed lengths

Based on the arguments in Section 2.2 and Section 6.1, in this subsection we give an asymptotic evaluation
of a sufficient seed length of the INW PRG gINW for pseudorandomization of an information-theoretically
secure protocol Π. By Theorem 3, if a class Class of distinguishers D is defined by the constraints on the
quantities µ, |M | and Nread associated to D (where µ is equal to the length of the original random tape for
the protocol Π), then gINW is (Class, εClass)-secure with εClass given by (36) (note that Nout = 2 in this case,
as each distinguisher outputs either 0 or 1). Therefore, if we want to bound the difference of attack success
probabilities in random and pseudorandom cases by ε, then Corollary 1 implies that it suffices to show that
n · εClass ≤ ε, or equivalently εClass ≤ ε/n, where n is the number of components of the partition of the set X
introduced in Section 2.2.

Here we introduce some assumptions for simplicity. First, we assume that we have chosen the regular
graphs G1, . . . ,Gdp(T ) used in the construction of gINW, where dp(T ) = ⌈log2 µ⌉, in such a way that the
degrees δ1, . . . , δdp(T ) are a common value δ and νh = νh+1δ for every 1 ≤ h ≤ dp(T ) − 1. Secondly, we

assume that the second largest eigenvalues λ(Gh) of Gh satisfy that λ(Gh) ≤ 2
√
δ − 1 for every 1 ≤ h ≤ dp(T ),

i.e., all Gh are Ramanujan graphs (see e.g., [8]). On the other hand, we put R := max1≤i≤µ |Ri| (e.g., R = 2
in the case of a binary random tape). Then we have the following result:

Theorem 4. In the above setting, if the parameters are chosen in such a way that

δ = ⌈8n2ε−2µ2C(µ, |M |)⌉ , νdp(T ) = ⌈nε−1µR⌉ , ν0 = 2ν
†
0 , ν†0 = ⌈log2(n2ε−2µ2δdp(T )R)⌉ , (38)

where dp(T ) = ⌈log2 µ⌉ and C(µ, |M |) is as defined in (33), and every algorithm Ai,f specified in Corollary
1 belongs to the class Class, then the difference of attack success probabilities in random and pseudorandom
cases is bounded by ε. Moreover, when the length µ of the original random tape for the protocol Π and the
memory size |M | for the algorithms Ai,f tend to ∞ while the alphabet size R for the random tape is constant,

the asymptotic seed length ν†0 of the INW PRG gINW is given by

ν†0 ∼ 3(log2 µ)
2 + 2Nread log2 |M | log2 µ+ 2 log2(n/ε) log2 µ (µ, |M | → ∞). (39)

20



Proof. For the first part, it suffices to show that the value εClass in (36) is not larger than ε/n under the current
choice of parameters. First, the assumption that δh+1 = δ and νh = νh+1δ for every 1 ≤ h ≤ dp(T ) − 1
implies that ρ(νh, νh+1δh+1) = 0 for every 1 ≤ h ≤ dp(T ) − 1. On the other hand, we notice the following
inequality for the function ρ;

ρ(n′,m′) =
(n′ mod m′) · (m′ − (n′ mod m′))

n′m′ ≤ (m′/2)2

n′m′ =
m′

4n′ (40)

(note that 0 ≤ (n′ mod m′) ≤ m′). Then by the assumption that R ≥ |Ri| = ni for every i ∈ [µ] and the
condition that νh ≥ νh+1 for every 0 ≤ h ≤ dp(T )− 1, for every i ∈ [µ], we have

ρ(νdp(vi), ni) ≤
ni

4νdp(vi)
≤ R

4νdp(T )
≤ R

4nε−1µR
=

ε

4nµ
(41)

(where we used (38) to deduce the third inequality). The relation ν1 = νdp(T )δ
dp(T )−1 implies also that

ρ(ν0, ν1δ1) ≤
ν1δ1
4ν0

=
νdp(T )δ

dp(T )

4ν0
≤ (nε−1µR+ 1)δdp(T )

4n2ε−2µ2δdp(T )R

≤ 2nε−1µRδdp(T )

4n2ε−2µ2δdp(T )R
=

ε

2nµ
≤ ε

4n

(42)

(where we used (38) to deduce the second inequality; recall that we have assumed µ ≥ 2). Moreover, we
have λ(Gh) ≤ 2

√
δ − 1 for every 1 ≤ h ≤ dp(T ) by the assumption. By substituting these relations to (36)

and by using the value Nout mentioned above, we have

εClass ≤
√
δ − 1

δ

√
2C(µ, |M |) + ε

4n
+

dp(T )−2∑
h=1

2h
√
δ − 1

δ

√
2C(µ, |M |)

+ (µ− 2dp(T )−1)

√
δ − 1

δ

√
2C(µ, |M |) +

µ∑
i=1

ε

4nµ

= (µ− 1)

√
δ − 1

δ

√
2C(µ, |M |) + ε

2n
≤ µδ−1/2

√
2C(µ, |M |) + ε

2n
.

(43)

By using (38) further, it follows that the first term of the right-hand side is not larger than ε/(2n), therefore
we have εClass ≤ ε/n, as desired. Hence the first part of the claim holds.

For the second part of the claim, first note that C(µ, |M |) ∼ µ|M |2Nread in the limit case µ, |M | → ∞.
Therefore we have δ ∼ 8n2ε−2µ3|M |2Nread , and consequently

log2 δ ∼ 3 + 2 log2(n/ε) + 3 log2 µ+ 2Nread log2 |M | ∼ 2 log2(n/ε) + 3 log2 µ+ 2Nread log2 |M | . (44)

This and the property dp(T ) ∼ log2 µ imply that

ν†0 ∼ 2 log2(n/ε) + 2 log2 µ+ dp(T ) log2 δ + log2 R

∼ 2 log2(n/ε) + 2 log2 µ+ 2 log2 µ log2(n/ε) + 3(log2 µ)
2 + 2Nread log2 µ log2 |M |+ log2 R

∼ 2 log2 µ log2(n/ε) + 3(log2 µ)
2 + 2Nread log2 µ log2 |M |

(45)

(note that 2 log2(n/ε)+2 log2 µ log2(n/ε) ∼ 2 log2 µ log2(n/ε) and 2 log2 µ+3(log2 µ)
2+log2 R ∼ 3(log2 µ)

2).
Hence the proof of Theorem 4 is concluded.

7 Example for existing schemes

In this section, we apply the above general result to the case of specific existing schemes in order to estimate
the performance of our pseudorandomization technique further and to give comparison to the preceding
result in [11, 12].
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7.1 Summary of the comparison

We consider an existing information-theoretically secure scheme and the associated security game described
in Section 7.2 below. The choice of the security game as well as the relevant parameters are the same as
the ones used in the numerical example of the preceding result [11]. We deal with the seven choices of
parameters, and Table 1 shows the estimated seed lengths of INW PRGs gINW based on our result, together
with the original bit lengths µ of the random input and the seed lengths calculated in the example in [11] (by
using the PRGs against time-bounded distinguishers proposed by Farashahi, Schoenmakers and Sidorenko
[4]). The last two rows of the table show the ratios of our seed lengths compared to the original bit lengths
µ and the results in [11].

Table 1: Comparison of estimated seed lengths with the preceding result [11] (where µ denotes the original
bit lengths of the random input)

N 103 104 105 106 107 108 109

m 614 702 789 877 964 1052 1139

original µ 9.21E6 1.05E8 1.18E9 1.31E10 1.44E11 1.57E12 1.70E13
length in [11] 6.87E6 9.72E6 1.33E7 1.75E7 2.25E7 2.83E7 3.51E7

our length ν†0 1.28E5 1.63E5 2.09E5 2.53E5 3.10E5 3.63E5 4.21E5

ratio to µ 1.39E-2 1.55E-3 1.77E-4 1.93E-5 2.15E-6 2.31E-7 2.48E-8
ratio to [11] 1.86E-2 1.68E-2 1.57E-2 1.45E-2 1.38E-2 1.28E-2 1.20E-2

We give two remarks on the comparison. First, as explained in the following subsections, our estimate
of seed lengths is based on Theorem 4, where we assumed ideal choices of regular graphs G1, . . . ,Gdp(T ) to
construct the INW PRGs gINW, which have not been practically assured so far. Due to the assumption, a very
explicit comparison of the values in Table 1 would not make sense. However, we still expect from the table
that the required seed lengths based on our result would be at least competitive to the ones in [11], despite
the removal of hardness assumptions in contrast to the result in [11] that was based on DDH assumptions.
Secondly, in our numerical evaluation of seed lengths, only one choice of the partition X =

∪n
i=1 Xi of the

set X of the adversary’s inputs among the various possible partitions, which is the same as the one appeared
in [11, 12], is used due to the technical difficulty. Therefore, there is a room to improve the required seed
lengths in our result further by investigating better choices of the partition of the set X.

In the following subsections, we describe the details of the numerical evaluation of our seed lengths.

7.2 Security game for an information-theoretically secure scheme

The information-theoretically secure scheme studied in this section as an example is a fingerprint code
proposed by Nuida et al. [10], which is the same as the one used in [11]. The parameters, e.g., the number
c = 3 of the adversaries, are also chosen in the same way as [11]. Here we omit some details which are less
important in the present example; see [11] for those omitted details.

In the present case of the fingerprint code, the security game is described as follows, where N denotes
the number of users (i.e., codewords in the code), m denotes the code length, and 1 ≤ i1 < i2 < i3 ≤ N are
arbitrarily chosen three indices:

1. For each j ∈ [m], a bit πj ∈ {0, 1} is chosen independently and uniformly at random.

2. For each i ∈ [N ] and j ∈ [m], a bit wi,j ∈ {0, 1} is chosen independently in such a way that Pr[wi,j =
1] = p(πj), where 0 < p(0) < 1 and p(1) = 1− p(0) are certain parameters with 15-bit accuracy (i.e., the
fractional part of the binary expression of p(0) consists of 15 bits).

3. The adversary receives three codewords wit := (wit,j)j∈[m], 1 ≤ t ≤ 3.
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4. The adversary outputs a word y ∈ {0, 1, ?}m (where ‘?’ is an extra symbol), called a pirated word. (In
fact, the word y is required to satisfy a constraint called Marking Assumption [2]. Our argument here
does not depend on the constraint.)

5. For each i ∈ [N ], a score sci =
∑m

j=1 sci,j is calculated by

sci,j :=


uπj if yj = 1 and wi,j = 1 ,

−u1−πj if yj = 1 and wi,j = 0 ,

−uπj if yj ̸= 1 and wi,j = 1 ,

u1−πj if yj ̸= 1 and wi,j = 0 ,

(46)

where

u0 := 1.931793212890625 = (1.111011101000101)2 ,

u1 := 0.5176544189453125 = (0.1000010010000101)2 ,
(47)

each having 15-bit accuracy.

6. Let i∗ ∈ [N ] be the index for which sci∗ is the largest among all sci with i ∈ [N ] (if sci takes the
maximum at two or more indices, then let i∗ be the last one among them). Then the result of the
security game is 1 (“attack succeeded”) if i∗ ̸∈ {i1, i2, i3}, and 0 otherwise.

In the notations of Section 2.2, we have X = ({0, 1}m)3 = {0, 1}3m and G = {0, 1, ?}m.

7.3 Implementations of distinguishers in bucket-brigade model

In the above setting, the algorithms Ai,f in Corollary 1 can be implemented in bucket-brigade model in the
following manner. We use the partition X =

∪
ω∈{0,1}3m Xω, Xω := {ω} of the set X, therefore the number

of components is n := 23m. For each ω ∈ {0, 1}3m, any deterministic function f : Xω → G = {0, 1, ?}m is
identified with the element y := f(ω) ∈ G. Now for the algorithm Ai,f = Aω,y, our implementation uses
µ := (15N+1)m random bits r0,j (j ∈ [m]) and ri,j,h (i ∈ [N ], j ∈ [m], 1 ≤ h ≤ 15). (Note that the fractional
parts of the auxiliary values p(0), p(1), u0 and u1 are represented by 15 bits.) The configuration graph G(Aω,y)
of the random tape consists of the edges P0,j → P0,j+1 (1 ≤ j ≤ m − 1), P0,m → P1,1,1, Pi,j,h → Pi,j,h+1

(i ∈ [N ], j ∈ [m], 1 ≤ h ≤ 14), Pi,j,15 → Pi,j+1,1 (i ∈ [N ], 1 ≤ j ≤ m − 1) and Pi,m,15 → Pi+1,1,1

(1 ≤ i ≤ N − 1), and each cell of the random tape is read at most once (that is, Nread = 1). Hence the first
and the last cells are P0,1 and PN,m,15, respectively. Moreover, we define the format of each memory state
mem ∈M by

mem = (π1, . . . , πm, sc, scmax, flag.word, flag.index) , (48)

where each component has the following property:

• (π1, . . . , πm) ∈ {0, 1}m: The component stores the bits π1, . . . , πm appearing in the security game.

• (sc, scmax): The component stores the score sc of the currently considered index i ∈ [N ] and the
maximal score scmax. By the definition of scores and the bit lengths of u0 and u1, both 215sc and
215scmax are integers from −215mu0 to 215mu0, therefore the number of possibilities of this component
is at most (216mu0 + 1)2.

• flag.word ∈ {0, 1, 2}: First we notice that, the random variable wi,j with Pr[1 ← wi,j ] = p(πj) and
Pr[0 ← wi,j ] = 1 − p(πj) is realized by using the 15 bits ri,j,h (1 ≤ h ≤ 15), by comparing the value
(0.ri,j,1ri,j,2 · · · ri,j,15)2 with p(0). Intuitively, the cases flag.word = 0, flag.word = 1 and flag.word = 2,
respectively, mean “the value of wi,j is determined as 0”, “the value of wi,j is determined as 1” and
“the value of wi,j is not yet determined”, respectively.
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• flag.index ∈ {0, 1}: The cases flag.index = 0 and flag.index = 1, respectively, mean “the codeword
wi∗ of the highest score satisfies i∗ ∈ {i1, i2, i3}” and “the codeword wi∗ of the highest score satisfies
i∗ ̸∈ {i1, i2, i3}”, respectively.

In this setting, a µ-party protocol Π = Π(Aω,y) given by the bucket-brigade model can be defined in the
following manner (note that the parameters ω and y are hard-coded into the protocol and not included in
the memory state). For the input phase, the input for Π consists of the initial memory state mem and the
random bits r0,j (j ∈ [m]) and ri,j,h (i ∈ [N ], j ∈ [m], 1 ≤ h ≤ 15). The components of mem are initially set
as (π1, . . . , πm) := (0, . . . , 0), (sc, scmax) := (0,−mu0), flag.word := 2 and flag.index := 1.

For the communication phase, the player P0,j (j ∈ [m]) updates the component πj ofmem by πj := r0,j ,
and then sends the updated memory state mem to P0,j+1 (when j < m) or P1,1,1 (when j = m). On the
other hand, if the player Pi,j,h (i ∈ [N ], j ∈ [m], 1 ≤ h ≤ 15) has received mem via a channel which is not
of the second type C∗,⊥ (i.e., this is not the end of the communication phase), then the protocol proceeds
as follows, where ω ∈ {0, 1}3m is identified with the triple (ω1, ω2, ω3), ω1, ω2, ω3 ∈ {0, 1}m:

1. When j = 1 and h = 1, the player initializes sc by sc := 0.

2. When h = 1, the player initializes flag.word by flag.word := 2.

3. When flag.word = 2,

• if ri,j,h = 0 and h-th bit of the fractional part of p(0) is 1 (which implies that (0.ri,j,1 · · · ri,j,15)2 <
p(0)), then the player updates flag.word by flag.word := 1− πj ;

• if ri,j,h = 1 and h-th bit of the fractional part of p(0) is 0 (which implies that (0.ri,j,1 · · · ri,j,15)2 >
p(0)), then the player updates flag.word by flag.word := πj ;

• otherwise, the player does not change flag.word.

4. When h = 15 and flag.word = 2 (which implies that (0.ri,j,1 · · · ri,j,15)2 = p(0)), the player updates
flag.word by flag.word := πj .

5. When h = 15, if i = it with 1 ≤ t ≤ 3 and flag.word ̸= ωt,j (which implies that wit ̸= ωt and hence
(wi1 , wi2 , wi3) ̸= ω), then the player sends a message (0, 0, . . . , 0) ∈ M to PN,m,15 via the unique
channel of the form C∗,⊥ (i.e., this is the final message sent during the communication phase) and
skips the steps below.

6. When h = 15, the player calculates sci,j as in (46), where flag.word plays the role of wi,j , and then
updates sc by sc := sc+ sci,j .

7. When j = m and h = 15, if sc ≥ scmax, then the player updates flag.index by flag.index := 0 in the case
i ∈ {i1, i2, i3} and by flag.index := 1 in the case i ̸∈ {i1, i2, i3}, respectively.

8. When i = N , j = m and h = 15, the player sends a message (flag.index, 0, . . . , 0) ∈ M to PN,m,15

via the unique channel of the form C∗,⊥ (i.e., this is the final message sent during the communication
phase) and skips the step below.

9. The player sends the updated memory state mem to the next player (via the channel of the first type).

Finally, for the output phase, if the last player PN,m,15 has received, via a channel C∗,⊥ of the second
type, the final message of the form (b, 0, 0, . . . , 0) with b ∈ {0, 1}, then the player outputs the bit b.

It is straightforward to check that the above protocol indeed implements the algorithm Aω,y. Here the
parameters are given by µ = (15N + 1)m, |M | = 6 · 2m(216mu0 + 1)2 and Nread = 1.

Remark 3. We notice that, in the preceding result [11, 12], it is required to theoretically evaluate the time
complexity of some algorithms that are counterparts of Aω,y above, which seems practically difficult or
complicated (cf., Section 4.3 of [11]). In contrast, our theoretical evaluation of Aω,y given above seems
simpler than that in [11], which also shows an advantage of our proposed technique.
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7.4 Estimation of seed lengths

In the numerical example given in the preceding paper [11], the parameters N and m given in the first
and the second rows of Table 1 were used. On the other hand, it was aimed in the example in [11] that
the difference of the attack success probabilities between random and pseudorandom cases is bounded by
ε := 10−6. Here we adopt the same parameters N , m and ε, while we put R := 2 in Theorem 4. Moreover,
by virtue of the result in Section 7.3, we put µ := (15N + 1)m, |M | := 6 · 2m(216mu0 + 1)2, Nread := 1
and n := 23m. Then the value C(µ, |M |) in (33) is (µ− 1)|M |2 + 1, therefore the values in the statement of
Theorem 4 are estimated as

δ = ⌈8n2ε−2µ2C(µ, |M |)⌉ ≤ 8n2ε−2µ2 · µ|M |2 = 8n2ε−2µ3|M |2 (49)

and

ν†0 = ⌈log2(n2ε−2µ2δdp(T )R)⌉
≤ ⌈log2(2 · 8⌈log2 µ⌉n2⌈log2 µ⌉+2ε−2⌈log2 µ⌉−2µ3⌈log2 µ⌉+2|M |2⌈log2 µ⌉)⌉
= ⌈1 + 3⌈log2 µ⌉+ (2⌈log2 µ⌉+ 2)(3m+ 6 log2 10) + (3⌈log2 µ⌉+ 2) log2 µ+ 2⌈log2 µ⌉ log2 |M |⌉ .

(50)

Now we have 3m+ 6 log2 10 ≤ 3m+ 20 and

log2 |M | = log2(6 · 2m(216mu0 + 1)2) = m+ log2(6 · (126602m+ 1)2)

≤ m+ log2(8 · (126603m)2) = m+ 3 + 2 log2(126603m) ,
(51)

therefore we have

ν†0 ≤ 1 + 3⌈log2 µ⌉+ (2⌈log2 µ⌉+ 2)(3m+ 20) + (3⌈log2 µ⌉+ 2)⌈log2 µ⌉
+ 2⌈log2 µ⌉(m+ 3 + 2⌈log2(126603m)⌉)

≤ 3⌈log2 µ⌉2 + (8m+ 51 + 4⌈log2(126603m)⌉)⌈log2 µ⌉+ 6m+ 41 .

(52)

The resulting values of the right-hand side of (52) are given in Table 1.

8 Conclusion

In this paper, we revisited a preceding work by Nuida and Hanaoka [11, 12] on pseudorandomization of
information-theoretically secure schemes. First, we gave a proof technique for the security of such pseudo-
randomization, which admits tuning of some parameters in the proof and contains the argument appeared
in [12] as a special case. Secondly, we pointed out that, although the argument and numerical examples in
[11, 12] are mainly based on the use of PRGs against time-bounded distinguishers and consequently some
hardness assumptions are required, the use of other kinds of PRGs such as INW PRGs against memory-
bounded distinguishers can remove the requirement of the hardness assumptions. We also gave a precise
formulation of a computational model which suits the quantitative evaluation of memory costs of the distin-
guishers for INW PRGs. Finally, we gave a numerical comparison of the required seed lengths in our result
with those in the numerical example in [11], and showed that the reduction effect of required seed lengths by
our pseudorandomization result is still competitive with that of [11, 12], despite the removal of the required
hardness assumptions.
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