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Abstract. The best known algorithm to compute the Jacobi symbol
of two n-bit integers runs in time O(M(n) log n), using Schönhage’s fast
continued fraction algorithm combined with an identity due to Gauss. We
give a different O(M(n) log n) algorithm based on the binary recursive
gcd algorithm of Stehlé and Zimmermann. Our implementation — which
to our knowledge is the first to run in time O(M(n) log n) — is faster than
GMP’s quadratic implementation for inputs larger than about 10000
decimal digits.

1 Introduction

We want to compute the Jacobi symbol3 (b|a) for n-bit integers a
and b, where a is odd positive. We give three algorithms based on
the 2-adic gcd from Stehlé and Zimmermann [13]. First we give an

algorithm whose worst-case time bound is O(M(n)n2) = Õ(n3); we
call this the cubic algorithm although this is pessimistic since the
algorithm is quadratic on average as shown in [5], and probably also
in the worst case. We then show how to reduce the worst-case to
O(M(n)n) = Õ(n2) by combining sequences of “ugly” iterations
(defined in Section 1.1) into one “harmless” iteration. Finally, we
obtain an algorithm with worst-case time O(M(n) logn). This is,
up to a constant factor, the same as the time bound for the best
known algorithm, apparently never published in full, but sketched
in Bach [1] and in more detail in Bach and Shallit [2] (with credit to
Bachmann [3]).

3 Notation: we write the Jacobi symbol as (b|a), since this is easier to typeset and less
ambiguous than the more usual

(
b

a

)
. M(n) is the time to multiply n-bit numbers.

Õ(f(n)) means O(f(n)(log f(n))c) for some constant c ≥ 0.
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The latter algorithm makes use of the Knuth-Schönhage fast con-
tinued fraction algorithm [9] and an identity of Gauss [6]. Although
this algorithm has been attributed to Schönhage, Schönhage him-
self gives a different O(M(n) logn) algorithm [10, 15] which does not
depend on the identity of Gauss. The algorithm is mentioned in
Schönhage’s book [11, §7.2.3], but no details are given there.

With our algorithm it is not necessary to compute the full con-
tinued fraction or to use the identity of Gauss for the Jacobi symbol.
Thus, it provides an alternative that may be easier to implement.

It is possible to modify some of the other fast GCD algorithms
considered by Möller [8] to compute the Jacobi symbol, but we do not
consider such possibilities here. At best they give a small constant
factor speedup over our algorithm.

We recall the main identities satisfied by the Jacobi symbol:
(bc|a) = (b|a)(c|a); (2|a) = (−1)(a2−1)/8; (b|a) = (−1)(a−1)(b−1)/4(a|b)
for a, b odd; and (b|a) = 0 if (a, b) 6= 1.

Note that all our algorithms compute (b|a) with b even positive
and a odd positive. For the more general case where b is any integer,
we can reduce to b even and positive using (b|a) = (−1)(a−1)/2(−b|a)
if b is negative, and (b|a) = (b+a|a) if b is odd.

We first describe a cubic algorithm to compute the Jacobi sym-
bol. The quadratic algorithm in Section 2 is based on this cubic
algorithm, and the subquadratic algorithm in Section 3 uses the
same ideas as the quadratic algorithm but with an asymptotically
fast recursive implementation.

For a ∈ Z, the notation ν(a) denotes the 2-adic valuation ν2(a)
of a, that is the maximum k such that 2k|a, or +∞ if a = 0.

1.1 Binary Division with Positive Quotient

Throughout the paper we use the binary division with positive quo-
tient defined by Algorithm 1.1. Compared to the “centered division”
of [13], it returns a quotient in [1, 2j+1−1] instead of in [1−2j, 2j−1].
Note that the quotient q is always odd.

With this binary division, we define Algorithm CubicBinary-
Jacobi, where the fact that the quotient q is positive ensures that all



Algorithm 1.1 BinaryDividePos
Input: a, b ∈ N with ν(a) = 0 < ν(b) = j
Output: q and r = a+ qb/2j such that 0 < q < 2j+1, ν(b) < ν(r)
1: q ← −a/(b/2j) mod 2j+1 ⊲ q is odd and positive
2: return q, r = a+ qb/2j .

a, b terms computed remain positive, and a remains odd, thus (b|a)
remains well-defined.4

Algorithm 1.2 CubicBinaryJacobi
Input: a, b ∈ N with ν(a) = 0 < ν(b)
Output: Jacobi symbol (b|a)
1: s← 0, j ← ν(b)
2: while 2ja 6= b do

3: b′ ← b/2j

4: (q, r)← BinaryDividePos(a, b)
5: s← (s+ j(a2 − 1)/8 + (a− 1)(b′ − 1)/4 + j(b′

2
− 1)/8) mod 2

6: (a, b)← (b′, r/2j), j ← ν(b)

7: if a = 1 then return (−1)s else return 0

Theorem 1. Algorithm CubicBinaryJacobi is correct (assuming it
terminates).

Proof. We prove that the following invariant holds during the algo-
rithm, if a0, b0 are the initial values of a, b:

(b0|a0) = (−1)s(b|a).

This is true before we enter the while-loop, since s = 0, a = a0, and
b = b0. For each step in the while loop, we divide b by 2j , swap a and
b′ = b/2j , replace a by r = a + qb′, and divide r by 2j. The Jacobi
symbol is modified by a factor (−1)j(a2−1)/8 for the division of b by
2j, by a factor (−1)(a−1)(b′−1)/4 for the interchange of a and b′, and

by a factor (−1)j(b′2−1)/8 for the division of r by 2j. At the end of
the loop, we have gcd(a0, b0) = a; if a = 1, since (b|1) = 1, we have
(b0|a0) = (−1)s, otherwise (b0|a0) = 0.

4 Möller says in [8]: “if one tries to use positive quotients 0 < q < 2k+1, the [binary
gcd] algorithm no longer terminates”. However, with a modified stopping criterion
as in Algorithm CubicBinaryJacobi, the algorithm terminates (we prove this below).



Lemma 1. The quantity a+2b is non-increasing in Algorithm Cubic-
BinaryJacobi.

Proof. At each iteration of the “while” loop, a becomes b/2j, and b
becomes (a+ qb/2j)/2j. In matrix notation

(
a
b

)
←

(
0 1/2j

1/2j q/22j

)(
a
b

)
. (1)

Therefore a+ 2b becomes

b

2j
+ 2

(
a + qb/2j

2j

)
=

2a

2j
+ (1 + 2q/2j)

b

2j
. (2)

Since j ≥ 1, the first term is bounded by a. In the second term,
q ≤ 2j+1 − 1, thus the second term is bounded by (5/2j − 2/22j)b,
which is bounded by 9b/8 for j ≥ 2, and equals 2b for j = 1.

If j ≥ 2, then a + 2b is multiplied by a factor at most 9/16. If
j = q = 1 then a + 2b decreases, but by a factor which could be
arbitrarily close to 1. The only case where a + 2b does not decrease
is when j = 1 and q = 3; in this case a+ 2b is unchanged.

This motivates us to define three classes of iterations: good, bad,
and ugly. Let us say that we have a good iteration when j ≥ 2, a
bad iteration when j = q = 1, and an ugly iteration when j = 1
and q = 3. Since q is odd and 1 ≤ q ≤ 2j+1 − 1, this covers all
possibilities. For a bad iteration, (a, b) becomes (b/2, a/2+ b/4), and
for an ugly iteration, (a, b) becomes (b/2, a/2+3b/4). We denote the
matrices corresponding to good, bad and ugly iterations by G, B
and U respectively. Thus

G = Gj,q =

(
0 1/2j

1/2j q/4j

)
, B =

(
0 1/2
1/2 1/4

)
, U =

(
0 1/2
1/2 3/4

)
.

The effect of m successive ugly iterations is easily seen to be given
by the matrix

Um =
1

5

(
1 + 4(−1/4)m 2− 2(−1/4)m
2− 2(−1/4)m 4 + (−1/4)m

)
. (3)



Assume we start from (a, b) = (a0, b0), and after m > 0 successive
ugly iterations we get values (am, bm). Then, from Equation (3),

5am = (a+ 2b) + 2(2a− b)(−1/4)m, (4)

5bm = 2(a+ 2b)− (2a− b)(−1/4)m. (5)

We can not have 2a0 = b0 or the algorithm would have terminated.
However, am must be an integer. This gives an upper bound on
m. For a0, b0 of n bits, the number of successive ugly iterations is
bounded by n/2 +O(1) (a precise statement is made in Lemma 2).

If there were no bad iterations, this would prove that for n-bit
inputs the number of iterations is O(n2), since each sequence of ugly
iterations would be followed by at least one good iteration. Bad
iterations can be handled by a more complicated argument which we
omit, since they will be considered in detail in §2 when we discuss the
complexity of the quadratic algorithm (see the proof of Theorem 2).

Since the number of iterations is O(n2) from Theorem 2, and
each iteration costs time O(M(n)), the overall time for Algorithm

CubicBinaryJacobi is O(n2M(n)) = Õ(n3). Note that this worst-
case bound is almost certainly too pessimistic (see §4).

2 A Provably Quadratic Algorithm

Suppose we have a sequence of m > 0 ugly iterations. It is possible
to combine the m ugly iterations into one harmless iteration which
is not much more expensive than a normal (good or bad) iteration.
Also, it is possible to predict the maximal such m in advance. Us-
ing this trick, we reduce the number of iterations (good, bad and

harmless) to O(n) and their cost to O(M(n)n) = Õ(n2).
Without loss of generality, suppose that we start from (a0, b0) =

(a, b). Since a is odd, we never have a = 2b.

Lemma 2. If µ = ν(a− b/2), then we have exactly ⌊µ/2⌋ ugly iter-
ations starting from (a, b), followed by a good iteration if µ is even,
and by a bad iteration if µ is odd.

Proof. We prove the lemma by induction on µ. If µ = 0, a − b/2
is odd, but a is odd, so b/2 is even, which yields j ≥ 2 in Binary-
DividePos, thus a, b yield a good iteration. If µ = 1, a− b/2 is even,



which implies that b/2 is odd, thus we have j = 1. If we had q = 3
in BinaryDividePos, this would mean that a+ 3(b/2) = 0 mod 4, or
equivalently a − b/2 = 0 mod 4, which is incompatible with µ = 1.
Thus we have q = 1, and a bad iteration.

Now assume µ ≥ 2. The first iteration is ugly since 4 divides a−
b/2, which implies that b/2 is odd. Thus j = 1, and a− b/2 = 0 mod 4
implies that q = 3. After one ugly iteration (a, b) becomes (b/2, a/2+
3b/4), thus a − b/2 becomes −(a − b/2)/4, and the 2-valuation of
a− b/2 decreases by 2.

From the above, we see that, for a sequence of m ugly iterations,
a0, a1, . . . , am satisfy the three-term recurrence

4ai+1 − 3ai − ai−1 = 0 for 0 < i < m,

and similarly for b0, b1, . . . , bm. It follows that ai = a mod 4, and
similarly bi = b mod 4, for 1 ≤ i < m.

We can modify Algorithm CubicBinaryJacobi to consolidate m
consecutive ugly iterations into one harmless iteration, using the
expressions (4)–(5) for am and bm (we give an optimised evaluation
below). It remains to modify step 5 of CubicBinaryJacobi to take
account of the m updates to s. Since j = 1 for each ugly iteration,
we have to increment s by an amount

δ =
∑

0≤i<m

(
a2i − 1

8
+

b′i
2 − 1

8
+

ai − 1

2

b′i − 1

2

)
mod 2,

where we write b′i for bi/2. However, ai+1 = b′i for 0 ≤ i < m, so the
terms involving division by 8 “collapse” mod 2, leaving just the first
and last terms. The terms involving two divisions by 2 are all equal
to (a− 1)/2 · (b′ − 1)/2 mod 2, using the observation that ai mod 4
is constant for 0 ≤ i ≤ m. Thus

δ =

(
a20 − 1

8
+

a2m − 1

8
+m

a0 − 1

2

a1 − 1

2

)
mod 2.

One further simplification is possible. Since a0 = a1 mod 4, and a0 is
odd, we can replace a1 by a0 in the last term, and use the fact that
x2 = x mod 2 to obtain

δ =

(
a20 − 1

8
+

a2m − 1

8
+m

a0 − 1

2

)
mod 2. (6)



We can economise the computation of am and bm from (4)–(5) by
first computing

d = a− b′, m = ν(d) div 2, c = (d− (−1)m(d/4m))/5,

where the divisions by 4m and by 5 are exact; then am = a − 4c,
bm = b+ 2c.

From these observations, it is easy to modify Algorithm Cubic-
BinaryJacobi to obtain Algorithm QuadraticBinaryJacobi. In this
algorithm, steps 7–11 implement a harmless iteration equivalent to
m > 0 consecutive ugly iterations; steps 13–14 implement bad and
good iterations, and the remaining steps are common to both. Step 5
of Algorithm CubicBinaryJacobi is split into three steps 4, 13 and 15.
In the case of a harmless iteration, the computation of δ satisfying (6)
is implicit in steps 4, 10 and 15.

Algorithm 2.1 QuadraticBinaryJacobi
Input: a, b ∈ N with ν(a) = 0 < ν(b)
Output: Jacobi symbol (b|a)
1: s← 0, j ← ν(b)
2: while 2ja 6= b do

3: b′ ← b/2j

4: s← (s+ j(a2 − 1)/8) mod 2
5: (q, r)← BinaryDividePos(a, b)
6: if (j, q) = (1, 3) then
7: d← a− b′

8: m← ν(d) div 2
9: c← (d− (−1)md/4m)/5
10: s← (s+m(a− 1)/2) mod 2
11: (a, b)← (a− 4c, b+ 2c) ⊲ harmless iteration
12: else

13: s← (s+ (a− 1)(b′ − 1)/4) mod 2
14: (a, b)← (b′, r/2j) ⊲ good or bad iteration

15: s← (s+ j(a2 − 1)/8) mod 2, j ← ν(b)

16: if a = 1 then return (−1)s else return 0

Theorem 2. Algorithm QuadraticBinaryJacobi is correct and ter-
minates after O(n) iterations of the “while” loop (steps 2–15) if the
inputs are positive integers of at most n bits, with 0 = ν(a) < ν(b).



Proof. Correctness follows from the equivalence to Algorithm Cubic-
BinaryJacobi. To prove that convergence takes O(n) iterations, we
show that a+ 2b is multiplied by a factor at most 5/8 in each block
of three iterations. This is true if the block includes at least one good
iteration, so we need only consider harmless and bad iterations. Two
harmless iterations do not occur in succession, so the block must
include either (harmless, bad) or (bad, bad). In the first case, the
corresponding matrix is BUm = BU · Um−1 for some m > 0. We
saw in §1.1 that the matrix U leaves a+2b unchanged, so Um−1 also
leaves a+2b unchanged, and we need only consider the effect of BU .
Suppose that (a, b) is transformed into (ã, b̃) by BU . Thus

(
ã

b̃

)
= BU

(
a
b

)
=

(
1/4 3/8
1/8 7/16

)(
a
b

)
.

We see that

ã+ 2b̃ =
a

2
+

5b

4
≤ 5

8
(a+ 2b).

The case of two successive bad iterations is similar – just replace BU
by B2 in the above, and deduce that ã+ 2b̃ ≤ (a+ 2b)/2.

We conclude that the number of iterations of the while loop is at
most cn+O(1), where c = 3/ log2(8/5) ≈ 4.4243.

Remarks

1. A more complicated argument along similar lines can reduce the
constant c to 2/ log2(1/ρ(BU)) = 2/ log2((11 −

√
57)/2) ≈ 2.5424.

Here ρ denotes the spectral radius: ρ(A) = limk→∞ ||Ak||1/k.
2. In practice QuadraticBinaryJacobi is not much (if any) faster
than CubicBinaryJacobi. Its advantage is simply the better worst-
case time bound. A heuristic argument suggests that on average only
1/4 of the iterations of CubicBinaryJacobi are ugly.
3. Our implementations of CubicBinaryJacobi and QuadraticBinary-
Jacobi are slower than GMP’s O(n2) algorithm (which is based on
Stein’s binary gcd, as in Shallit and Sorenson [12]). However, in the
next section we use the ideas of our QuadraticBinaryJacobi algo-
rithm to get an O(M(n) logn) algorithm. We do not see how to
modify the algorithm of Shallit and Sorenson to do this.5

5 In Algorithm Binary Jacobi in [12], it is necessary to know the sign of a−n (b−a in
our notation) to decide whether to perform an interchange. This makes it difficult
to construct a recursive O(M(n) log n) algorithm like Algorithm HalfBinaryJacobi.



3 An O(M(n) log n) Algorithm

Algorithm HalfBinaryJacobi is a modification of Algorithm Half-GB-
gcd from [13]. The main differences are the following:

1. binary division with positive (not centered) quotient is used;
2. the algorithm returns an integer s such that if a, b are the inputs,

c, d the output values defined by Theorem 3, then

(b|a) = (−1)s(d|c);

3. at steps 4 and 27, we reduce mod 22k1+2 (resp. 22k2+2) instead of
mod 22k1+1 (resp. 22k2+1), so that we have enough information to
correctly update s0 at steps 10, 17, 21 and 25;

4. we have to “cut” some harmless iterations in two (step 15).

Remarks. The matrix Q occurring at step 19 is just 22mUm, where
Um is given by Equation (3). Similarly, the matrix Q occurring at
step 23 is 22j0Gj0,q. In practice, steps 13–20 can be omitted (so the al-
gorithm becomes a fast version of CubicBinaryJacobi) – this variant
is simpler and slightly faster on average.

Theorem 3. Let a, b, k be the inputs of Algorithm HalfBinaryJacobi,
and s, j, R the corresponding outputs. If

(
c
d

)
= 2−2jR

(
a
b

)
, then:

(b|a) = (−1)s(d|c) and ν(2jc) ≤ k < ν(2jd).

Proof (outline). We prove the theorem by induction on the param-
eter k. The key ingredient is that if we reduce a, b mod 22k1+1 in
step 4, then the GB sequence of a1, b1 matches that of a, b, for the
terms computed by the recursive call at step 5. This is a consequence
of [13, Lemma 7] (which also holds for binary division with positive
quotient). It follows that in all the binary divisions with inputs ai, bi
in that recursive call, ai and bi/2

ji match modulo 2ji+1 the corre-
sponding values that would be obtained from the full inputs a, b
(otherwise the corresponding binary quotient qi would be wrong).
Since here we reduce a, b mod 22k1+2 instead of mod 22k1+1, ai and
bi/2

ji now match modulo 2ji+2 — instead of modulo 2ji+1 — the val-
ues that would be obtained from the full inputs a, b, where 2ji+2 ≥ 8
since ji ≥ 1.



Algorithm 3.1 HalfBinaryJacobi
Input: a ∈ N, b ∈ N ∪ {0} with 0 = ν(a) < ν(b), and k ∈ N

Output: two integers s, j and a 2× 2 matrix R
1: if ν(b) > k then ⊲ b = 0 is possible

2: Return 0, 0,

(
1 0
0 1

)

3: k1 ← ⌊k/2⌋
4: a1 ← a mod 22k1+2, b1 ← b mod 22k1+2

5: s1, j1, R← HalfBinaryJacobi(a1, b1, k1)
6: a′ ← 2−2j1 (R1,1a+R1,2b), b′ ← 2−2j1 (R2,1a+R2,2b)
7: j0 ← ν(b′)
8: if j0 + j1 > k then

9: Return s1, j1, R

10: s0 ← j0(a
′2 − 1)/8 mod 2

11: q, r ← BinaryDividePos(a′, b′)
12: b′′ ← b′/2j0

13: if (j0, q) = (1, 3) then
14: d← a′ − b′′

15: m← min(ν(d) div 2, k − j1)
16: c← (d− (−1)md/4m)/5
17: s0 ← s0 +m(a′ − 1)/2 mod 2
18: (a2, b2)← (a′ − 4c, 2(b′′ + c)) ⊲ harmless iteration

19: Q←

(
(4m + 4(−1)m)/5 2(4m − (−1)m)/5
2(4m − (−1)m)/5 (4m+1 + (−1)m)/5

)

20: else

21: s0 ← s0 + (a′ − 1)(b′′ − 1)/4 mod 2
22: (a2, b2)← (b′′, r/2j0 ) ⊲ good or bad iteration

23: Q←

(
0 2j0

2j0 q

)

24: m← j0

25: s0 ← s0 + j0(a
2
2 − 1)/8 mod 2

26: k2 ← k − (m+ j1)
27: s2, j2, S ← HalfBinaryJacobi(a2 mod 22k2+2, b2 mod 22k2+2, k2)
28: Return (s0 + s1 + s2) mod 2, j1 + j2 +m, S ×Q×R



At step 10, s0 depends only on j0 mod 2 and a′ mod 8, at step 17
it depends on m mod 2 and a′ mod 4, and at step 21 on a′ mod 4
and b′′ mod 4. Since a′ and b′′ at step 21 correspond to some ai and
bi/2

ji, it follows that a′ and b′′ agree mod 8 with the values that
would be computed from the full inputs, and thus the correction s0
is correct. This proves by induction that (b|a) = (−1)s(d|c).

Now we prove that ν(2jc) ≤ k < ν(2jd). If there is no harmless
iteration, ν(2jc) ≤ k < ν(2jd) is a consequence of the proof of Theo-
rem 1 in [13]. In case there is a harmless iteration, first assume that
m = ν(d) div 2 at step 15. The new values a2, b2 at step 18 corre-
spond to m successive ugly iterations, which yield j = j1 +m ≤ k.
Thus ν(2ja2) ≤ k: we did not go too far, and since we are computing
the same sequence of quotients as Algorithm QuadraticBinaryJa-
cobi, the result follows. Now if k − j1 < ν(d) div 2, we would go too
far if we performed ν(d) div 2 ugly iterations, since it would give
j0 := ν(d) div 2 > k − j1, thus j := j1 + j0 > k, and ν(2ja2) would
exceed k. This is the reason why we “cut” the harmless iteration at
m = k − j1 (step 15). The other invariants are unchanged.

Finally we can present our O(M(n) logn) Algorithm FastBinary-
Jacobi, which computes the Jacobi symbol by calling Algorithm Half-
BinaryJacobi. The general structure is similar to that described in [8]
for several asymptotically fast GCD algorithms.

Algorithm 3.2 FastBinaryJacobi
Input: a, b ∈ N with 0 = ν(a) < ν(b)
Output: Jacobi symbol (b|a)
1: s← 0, j ← ν(b)
2: while 2ja 6= b do

3: k ← max(ν(b), ℓ(b) div 3) ⊲ ℓ(b) is length of b in bits
4: s′, j, R← HalfBinaryJacobi(a, b, k)
5: s← (s+ s′) mod 2
6: (a, b)← 2−2j(R1,1a+R1,2b,R2,1a+R2,2b), j ← ν(b)

7: if a = 1 then return (−1)s else return 0

Daireaux, Maume-Deschamps and Vallée [5] prove that, for the
positive binary division, the average increase of the most significant
bits is 0.65 bits/iteration (which partly cancels an average decrease



of two least significant bits per iteration); compare this with only
0.05 bits/iteration on average for the centered division.6

4 Experimental Results

We have implemented the different algorithms in C (using 64-bit
integers) and in GMP (using multiple-precision integers), as well as
in Maple/Magma (for testing purposes).

For max(a, b) < 226 the maximum number of iterations of Algo-
rithm CubicBinaryJacobi is 64, with a = 15548029 and b = 66067306.
The number of iterations seems to be O(n) for a, b < 2n: see Table 1.
This is plausible because, from heuristic probabilistic arguments, we
expect about half of the iterations to be good, and experiments con-
firm this. For example, if we consider all admissible a, b < 220, the
cumulated number of iterations is 3.585 × 1012 for 238 calls, i.e., an
average of 13.04 iterations per call (max 48); the cumulated number
of good, bad and ugly iterations is 51.78%, 25.47%, and 22.75% re-
spectively. For a, b < 260, a random sample of 108 pairs (a, b) gave
42.72 iterations per call (max 89), with 50.54%, 25.14%, and 24.31%
for good, bad and ugly respectively. These ratios seem to be con-
verging to the heuristically expected 1/2 = 50%, 1/4 = 25%, and
1/4 = 25%.

When we consider all admissible a, b < 220, the maximum number
of iterations of QuadraticBinaryJacobi is 37 when a = 933531, b =
869894, the cumulated number of iterations is 3.405×1012 (12.39 per
call), the cumulated number of good, bad and harmless iterations is
54.51%, 26.82%, and 18.67% respectively. For a, b < 260, a random
sample of 108 pairs (a, b) gave 40.21 iterations per call (max 76), with
53.70%, 26.71%, and 19.59% for good, bad and harmless respectively.
These ratios seem to be converging to the heuristically expected
8/15 = 53.33%, 4/15 = 26.67%, and 1/5 = 20%.

We have also compared the time and average number of itera-
tions for huge numbers, using the fast gcd algorithm in GMP, say
gcd — which implements the algorithm from [8] — and an imple-
mentation of the algorithm from [13], say bgcd. For inputs of one

6 We have computed more accurate values of these constants: 0.651993 and 0.048857
respectively.



million 64-bit words, gcd takes about 45.8s on a 2.83Ghz Core 2,
while bgcd takes about 48.3s and 32,800,000 iterations: this is in ac-
cordance with the fact proven in [5] that each step of the binary gcd
discards on average two least significant bits, and adds on average
about 0.05 most significant bits. Our algorithm bjacobi (based on
Algorithms 3.1–3.2) takes about 83.1s and 47,500,000 iterations (for
a version with steps 13–20 of Algorithm 3.1 omitted in the basecase
routine), which agrees with the theoretical drift of 0.651993 bits per
iteration. The break-even point between the O(n2) implementation
of the Jacobi symbol in GMP 4.3.1 and our O(M(n) log n) imple-
mentation is about 535 words, that is about 34, 240 bits or about
10, 300 decimal digits (see Fig. 1).

5 Concluding Remarks

Weilert [15] says: “We are not able to use a GCD calculation in Z[i]
similar to the binary GCD algorithm · · · because we do not get a
corresponding quotient sequence in an obvious manner”. In a sense
we filled that gap for the computation of the Jacobi symbol, because
we showed how it can be computed using a binary GCD algorithm
without the need for a quotient sequence.

We showed how to compute the Jacobi symbol with an asymp-
totically fast time bound, using a binary GCD algorithm without the
need for a quotient sequence. Our implementation is faster than a
good O(n2) implementation for numbers with bitsize n > 35000. Our
subquadratic implementation is available from http://www.loria.

fr/~zimmerma/software/#jacobi.
Binary division with a centered quotient does not seem to give a

subquadratic algorithm; however we can use it with the “cubic” algo-
rithm (which then becomes provably quadratic) since then we control
the sign of a, b. For a better quadratic algorithm, we can choose the
quotient q so that abq < 0, by replacing q by q − 2j+1 if necessary:
experimentally, this gains on average 2.194231 bits per iteration,
compared to 1.951143 for the centered quotient, and 1.348008 for the
positive quotient. In comparison, Stein’s “binary” algorithm gains on
average 1.416488 bits per iteration [4, §7][7, §4.5.2].
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Fig. 1. Comparison of GMP 4.3.1 mpz jacobi routine with our FastBinaryJacobi

implementation in log-log scale. The x-axis is in 64-bit words, the y-axis in milliseconds
on a 2.83Ghz Core 2.


