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Abstract. The negation map can be used to speed up the Pollard rho
method to compute discrete logarithms in groups of elliptic curves over
finite fields. It is well known that the random walks used by Pollard rho
when combined with the negation map get trapped in fruitless cycles. We
show that previously published approaches to deal with this problem are
plagued by recurring cycles, and we propose effective alternative coun-
termeasures. As a result, fruitless cycles can be resolved, but the best
speedup we managed to achieve is by a factor of only 1.29. Although this
is less than the speedup factor of

√
2 generally reported in the literature,

it is supported by practical evidence.

Keywords: Pollard’s rho method, fruitless cycles, negation map.

1 Introduction

The difficulty of the elliptic curve discrete logarithm problem (ECDLP) un-
derlies the security of cryptographic schemes based on elliptic curves over finite
fields [11,13]. The best method known to solve ECDLP for curves without special
properties is the parallelized [17] Pollard rho method [15]. A common optimiza-
tion is to halve the search space by identifying a point with its inverse [18,9,7].
Because representatives for the equivalence classes can quickly be computed us-
ing the negation map, this equivalence relation may result in a speedup by a
factor of up to

√
2 when solving ECDLP. For the elliptic curves over binary

extension fields F2t from [12], order t equivalence relations can be used as well,
resulting in a speedup by a factor of up to

√
2t [18,9].

Usage of the negation map in the context of the Pollard rho method leads
to fruitless cycles, useless cycles trapping the random walks. An analysis of
their likelihood of occurrence appeared in [7]. Various methods have been pro-
posed [18,9] to deal with them, all leading to costlier random walks and admin-
istrative overhead. The literature suggests that the resulting inefficiencies are
negligible, and that a speedup by a factor of

√
2 is attainable [1, Section 19.5.5].

We analyze fruitless cycles and the previously published methods to avoid
their ill effects and show that current approaches to escape from cycles suffer
from recurring cycles. These may have contributed to the lack of practical usage
of the negation map to solve prime field ECDLPs: it was not used for the solutions
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[10,6] of the 79-, 89-, 97- and 109-bit prime field Certicom challenges [5]. Neither
was it used by the independent current 112-bit prime field record [3].

We present and analyze alternative methods to deal with fruitless cycles. All
our analyses are supported by experiments. We found that the negation map
indeed leads to a speedup, but we have not been able to reach more than a
factor of 1.29, somewhat short of the

√
2 that we had hoped for. We also found

that the best attainable speedup depends on the platform one uses: for instance,
if the Pollard rho method is parallelized in SIMD fashion, it is a challenge to
achieve any speedup at all. This has consequences for the applicability of the
negation map in large scale prime field ECDLP solution attempts. For such ef-
forts, all participating processors must use the same random walk definition, so
one may desire to gear the implementation towards processors with the best per-
formance/price ratio, such as graphics cards (which are SIMT, a SIMD variant).

The negation map (while dealing with cycles) slows down random walks in
three ways. In the first place, on average more elliptic curve group operations are
required per step of each walk. This is unavoidable and attempts should be made
to minimize the number of additional operations. Secondly, dealing with cy-
cles entails administrative overhead and branching, which cause a non-negligible
slowdown when running multiple walks in SIMD-parallel fashion. Finally, the
best way to counter the effect of the higher average number of group operations
per step is making the walks “more random” by allowing a finer grained decision
per step. However, the beneficial effects of this approach are, in most circum-
stances on current processors, wiped out by cache inefficiencies. It will be seen
that it is best to strike a balance between the first and third of these slowdowns.
The second slowdown somewhat affects regular PCs, but is a major obstacle to
the negation map in SIMD environments.

This paper is organized as follows. Section 2 recalls background on ECDLP,
the Pollard rho method and fruitless cycles. Section 3 introduces recurring cycles
and presents and analyzes new methods to deal with them. Section 4 compares
the various cycle reduction, detection, and escape methods in practice.

2 Preliminaries

2.1 The Elliptic Curve Discrete Logarithm Problem

Let Fp denote a finite field of odd prime characteristic p. Any a, b ∈ Fp with
4a3+27b2 �= 0 define an elliptic curve Ea,b over Fp. The additively written group
of points Ea,b(Fp) of Ea,b over Fp is defined as the zero point o along with the
set of pairs (x, y) ∈ Fp × Fp that satisfy the shortened Weierstrass equation
y2 = x3 + ax + b. Let p, a, b and g ∈ Ea,b(Fp) of prime order q be such that the
index [Ea,b(Fp) : 〈g〉] is small. For h ∈ 〈g〉, the ECDLP is to find an integer m
such that mg = h. For curves without special properties, solving ECDLP is
believed to require an effort on the order of

√
q. Pollard’s rho method achieves

this run time, while requiring more or less constant memory.
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2.2 Pollard’s Rho Method

If objects are selected truly at random and with replacement from q objects, the
conditional probability at step n + 1 of finding the first duplicate (or collision)
is n

q (if n < q). Via straightforward arguments this leads to
√

πq/2 for the
expected number of steps until the first collision. If random objects are selected
as ug + vh ∈ 〈g〉 for random integer multipliers u, v, a collision corresponds
to u, v, ū, v̄ such that ug + vh = ūg + v̄h. Unless v̄ ≡ v mod q, the value m =
u−ū
v̄−v mod q solves the discrete logarithm problem. The expected number of steps
of this idealized version of Pollard’s rho method [15] is

√
πq/2.

r-adding and r+s-mixed walks. Pollard’s rho method uses an approximation
of a truly random walk in 〈g〉. Let, for a small integer r, an index function � :
〈g〉 �→ [0, r − 1] induce an r-partition 〈g〉 = ∪r−1

i=0 Gi of 〈g〉, where Gi = {x : x ∈
〈g〉, �(x) = i} and all Gi have cardinality close to q

r . For random integers ui, vi,
elements fi = uig + vih ∈ 〈g〉 are precomputed for 0 ≤ i < r. Starting at a
random but known multiple of g, the successor of a point p of the walk is defined
as p + f�(p) ∈ 〈g〉. It is easy to keep track of the u, v such that p = ug + vh.

Such an r-adding walk results in an expected number of steps until a collision
occurs that is somewhat larger than

√
πq/2, as shown by Brent and Pollard [4]

and expanded upon in [2]. Assume that � is perfectly random. Let pi = #Gi

q .
A point in the walk is said to belong to class i if its predecessor upon its first
occurrence belongs to Gi. If the nth point belongs to Gj (with probability pj)
and the (n + 1)st point produces the first collision, the collision point cannot be
of class j (this happens with probability pj), since then the collision would have
occurred in step n. Therefore, the probability that the first collision occurs at
step n + 1 is

n

q
(1 −

r−1∑

j=0

p2
j).

With q′ = q

1−∑ r−1
j=0 p2

j

this is n
q′ . We get via the same arguments referred to above

√
πq′

2
=
√

πq

2(1 −∑r−1
j=0 p2

j)
(1)

for the expected number of steps until the first collision.
Pollard [15] uses r = 3, f0 = h, and f2 = g, but replaces the i = 1 case by the

doubling 2p. Teske [16] shows that a larger r, such as r = 20, leads to better
performance on average, conform the analysis, even if none of the choices does
an explicit doubling, as Pollard’s i = 1 case.

Inclusion of doublings leads to r + s-mixed walks : with � : 〈g〉 �→ [0, r + s− 1]
partitioning 〈g〉 into r+s parts of cardinality close to q

r+s , the next point equals
p + f�(p) if 0 ≤ �(p) < r, but 2p if �(p) ≥ r. Pollard’s walk is a 2 + 1-mixed walk.
The analysis above applies again, assuming that we consider the doublings as one
class, hit with probability pD. Experiments by Teske show that best performance
is achieved for s

r between 1
4 and 1

2 but that apart from the case r = 3 mixed
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walks are not significantly better. The analysis and our own experiments, as
reported below, suggest that the optimal ratio s

r is close to zero.
Per step the occurrence probability of the event p = fi (and thus a chance to

solve the discrete logarithm problem) is negligible compared to the probability of
a birthday collision. So, for r-adding walks doublings most likely will not occur.

Parallelized random walks. Parallelization of Pollard’s rho method does not
consist of running any number of random walks in parallel, until one of them
collides: on M processors the expected speedup would be by a factor of

√
M , so

overall it would require
√

M more processing power than a single processor. The
proper way to parallelize Pollard’s rho method is presented in [17]. It achieves
an M -fold speedup on M processors, thus requiring the same overall processing
power as a single process, but in 1

M th of the time. Different processes must be
able to efficiently recognize if, probably at different points in time, their walks
collide. To achieve this, each process generates a single random walk, each from
its own random starting point, but all using the same index function � and the
same fi’s. As soon as a walk hits upon a distinguished point, this point is reported.
The idea is that when two walks collide – without noticing it – they will keep
taking the same steps (because they use the same walk definition) and will thus
both ultimately reach the same distinguished point. This will be noticed when
the colliding distinguished point is reported. The discrete logarithm can then be
computed from the two, hopefully distinct, pairs of integer multipliers u, v that
correspond to the same distinguished point.

A distinguished point must be easy to recognize, occur with low enough prob-
ability to make it possible to store them all and to efficiently find collisions, but
occur often enough for every walk to hit one. The distinguishing property could
be that k specific bits of the point’s x-coordinate are zero, in which case walks
may hit a distinguished point once every 2k steps.

The parallelized version of Pollard’s rho method requires a unique, and thus
affine, point representation to make the walks well-defined and to recognize dis-
tinguished points. The fastest suitable type of elliptic curve group arithmetic
uses the affine Weierstrass point representation. Per group operation, it requires
a (usually expensive) modular inversion. Its cost is amortized among the walks
running in parallel per processor, at the cost of three modular multiplications per
step per walk, using Montgomery’s simultaneous inversion [14]. Point doubling
requires an extra modular squaring compared to regular non-doubling point
addition. This makes doubling on average about 7

6 times slower than regular
addition when parallelized walks and simultaneous inversion are used.

Using automorphisms. Following [18], define an equivalence relation ∼ on 〈g〉
by p ∼ −p for p ∈ 〈g〉 and, instead of searching 〈g〉 of size q, search 〈g〉/∼ of size
about q

2 . Denoting the equivalence class containing p and −p by ∼p, it may be
represented by the element with y-coordinate of least absolute value. It is trivial
to calculate since −(x, y) = (x,−y) for (x, y) ∈ 〈g〉. Thus, using this negation
map one would expect to save a factor of

√
2 in the number of steps.

For r-adding and r + s-mixed walks the speedup by a factor of
√

2 is slightly
too pessimistic. Let the definitions of pi, pD, and of class i be as above. Assume
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Table 1. Number of steps required by the Pollard rho method in random elliptic curve
groups of 31-bit prime order q over prime fields of random 31-bit prime characteristic p,
divided by

√
πq/2 or by

√
πq/4 (without or with the negation map). Lowest and highest

averages are over 10 measurements. Each measurement calculates the average number
of steps taken until a collision occurs, over 100 000 collision searches where for each
search a prime p and an elliptic curve over Fp are randomly selected until the order q of
the group of points is prime. Overall average is the average of the 10 averages (thus, the
average over one million searches). Expression (1) and (2) columns are the quotients as
expected based on expressions (1) (with pi = 1

r
for 0 ≤ i < r) and (2) (with pi = 1

r+s

for 0 ≤ i < r and pD = s
r+s

), respectively. Those expressions are for q → ∞ and indeed
for larger (smaller) q they give a better (worse) fit.

Without negation map With negation map
Averages Expression Averages Expression

lowest overall highest (1) lowest overall highest (2)
8-adding 1.079 1.083 1.085 1.069 1.035 1.039 1.042 1.033
16-adding 1.032 1.037 1.040 1.033 1.015 1.017 1.020 1.016
32-adding 1.014 1.018 1.019 1.016 1.007 1.009 1.011 1.008
16 + 4-mixed 1.041 1.043 1.044 1.043 1.036 1.038 1.040 1.031
16 + 8-mixed 1.075 1.078 1.081 1.078 1.075 1.077 1.079 1.069

that the nth point belongs to Gj and that the (n + 1)st point produces the first
collision while hitting the representative p, directly or after negation. If this step
is a doubling then the analysis is as above. This happens with probability p2

D.
Otherwise, we only exclude the case that, as a result of just the addition, the

two predecessors hit the same point (p or −p). This happens with probability
p2

j

2 .
Therefore, the probability that the first collision occurs at step n + 1 is

2n

q
(1 − p2

D −
r−1∑

j=0

p2
j

2
).

As above we get
√

πq

4(1 − p2
D − 1

2

∑r−1
j=0 p2

j)
(2)

for the expected number of steps until the first collision. For the same parameter
values this expression is more than

√
2 smaller than Expression (1). However,

usage of the negation map requires modifications to the iteration function due
to the occurrence of fruitless cycles. This disadvantage of the negation map was
already pointed out in [9,18]. It is the focus of this article.

The group 〈g〉 may admit other trivially computable maps. For Koblitz curves
the Frobenius automorphism of a degree t binary extension field leads to a further√

t-fold speedup. This does not apply to the case considered here.

Small scale experiments. We checked the accuracy of predictions based on
expressions (1) and (2). The results, for 31-bit primes q, are listed in Table 1.
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With all averages larger than 1, both r-adding and r+s-mixed walks on average
perform worse than truly random walks. For most walks with the negation map
the averages are lower than their negation-less counterparts, indicating that the
reduction factor in the expected number of steps is indeed larger than

√
2. This

does not imply a speedup by the same factor, because to obtain the figures costly
fruitless cycle detection methods had to be used. It can be seen that r+s-mixed
walks are disadvantageous if s > r

4 .

2.3 Fruitless Cycles

Straightforward application of the negation map to Pollard’s rho method with
r-adding or r + s-mixed walks does not work due to fruitless cycles. This section
describes the current state-of-the-art of dealing with those cycles.

Length 2 cycles. If a random walk step goes from p to −p − fi (with proba-
bility 1

2 , for some i) and −p − fi ∈ Gi (with probability 1
r ), then the next point

after −p − fi is p again (with probability 1), thereby cancelling the effect of the
previous step. It follows that a fruitless 2-cycle starts from a random point with
probability 1

2r , cf. [7, Proposition 31]. This 2-cycle is denoted as

p
(i,−)−→ −(p + fi)

(i,−)−→ p.

Here “(i, s)” with s ∈ {−, +} indicates that addition constant fi is added to a
point p after which the result is left as is (s = +) or negated (s = −) to find the
correct representative (p + fi if s = +, or −p − fi if s = −). Any walk with two
consecutive steps “(i,−)” is trapped in an infinite loop. Because this happens
with probability 1

2r , all walks can be expected to end up in fruitless cycles after
a moderate number of steps when the negation map is used with r-adding walks.

Looking ahead to reduce 2-cycles. To reduce the occurrence of 2-cycles,
Wiener and Zuccherato propose to use a more costly iteration function that
results in a lower probability that two successive points belong to the same
partition [18]. This can be achieved by using the first i of �(p), �(p) + 1, . . .,
�(p) + r − 1 such that i mod r �= �(∼ (p + fi)), if such an index exists (here and
in the sequel indices i in fi are understood to be taken modulo r). Thus, define
the next point as f(p) with f : 〈g〉 → 〈g〉 defined by

f(p) =
{

E(p) if j = �(∼(p + fj)) for 0 ≤ j < r
∼(p + fi) with i ≥ �(p) minimal s.t. �(∼(p + fi)) �= i mod r.

The function E : 〈g〉 → 〈g〉 may restart the walk at a new random initial point.
The latter is expected to happen once every rr steps and will therefore not affect
the efficiency. The expected cost per step of the walk is increased by a factor of∑r

i=0
1
ri , which lies between 1 + 1

r and 1 + 1
r−1 .

Dealing with fruitless cycles in general. Although the look-ahead technique
reduces the frequency of 2-cycles, they may still occur [18]. This is elaborated
upon in Section 3. Even so, it is well known that just addressing 2-cycles does
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Fig. 1. Total number of steps per second as a function of r, taken by 200 parallel
r-adding walks sharing the modular inversion and not using the negation map, for
Pollard’s rho method applied to a 131-bit prime ECDLP

not solve the problem of fruitless cycles, because longer cycles will occur as
well. Reducing their occurrence requires additional overhead on top of what is
already incurred to reduce 2-cycles. Given that fruitless cycles are unavoidable,
they must be effectively dealt with when they occur.

In [9] a general approach is proposed to detect cycles and to escape from
them: after α steps record a length β sequence of successive points and compare
the next point to these β points. If a cycle is detected a cycle representative p is
chosen deterministically from which the cycle is escaped. One may add f�(p)+c

for a fixed c ∈ [2, r− 1] (the choice c = 1 is bad as it could lead to an immediate
cycle recurrence). Instead one may add a distinct precomputed value f′ that does
not depend on the escape-point, or one may add f′′�(p) from a distinct list of r

precomputed values f′′0 , f′′1 , . . . , f′′r−1.
In the next section we discuss fruitless cycles in greater detail and propose

alternative methods that avoid problems that the method from [9] may run into.

3 Improved Fruitless Cycle Handling

The probability to enter a fruitless cycle decreases with increasing r [7]. This
does not imply that it suffices to take r large enough to make the probability suf-
ficiently low. Fig. 1 depicts the effect of increasing r-values on the performance
of an r-adding walk, measured as number of steps per second. The performance
deterioration can be attributed to the increasing rate of cache misses during
retrieval of the addition constants fi. The effect varies between processors, im-
plementations, and elliptic curves. It is worsened for more contrived walks, such
as those using the negation map where cycle reduction, detection and escape
methods are unavoidable. Unless the expected overall number of steps (of or-
der

√
q) is too small to be of interest, r cannot be chosen large enough to both
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p
−p−fi
= q

p
−p−fi
= q

(i−1, ..) (i−1, ..) (i−1, ..) (i−1, ..)

�(∼(p+fi−1))
= i−1

�(∼(q+fi−1))
= i−1

p̄ =
∼(p+fi−1)

q̄ =
∼(q+fi−1)

�(∼(p̄+fj))
∈ {i−1, j}

�(∼(q̄+fk))
∈ {i−1, k}

(i,−)

(i,−)

(k, ..)(j, ..)

(i,−)

(i,−)

Fig. 2. 2-cycles caused by 2-cycle reduction (left) and 4-cycle reduction. The dotted
steps are prevented.

avoid fruitless cycles and achieve adequate performance. Therefore, in this sec-
tion we concentrate on other ways to deal with fruitless cycles. We first discuss
short-cycle reduction techniques, next discuss cycle detection methods and ana-
lyze their behavior, and finally propose alternative methods.

3.1 Short Fruitless Cycle Reduction

2-cycles. Unfortunately, the look-ahead technique to reduce 2-cycles presented
above introduces new 2-cycles. The dotted lines in the left example in Fig. 2 are
the steps taken by the regular iteration function, the new cycle is depicted by
the solid lines which are the steps taken as a result of f(p) and f(q). This new
cycle occurs with probability 1

2r3 . It is the most likely 2-cycle introduced by the
look-ahead technique.

Lemma 1. The probability to enter a fruitless 2-cycle when looking ahead to
reduce 2-cycles while using an r-adding walk is

1
2r

(
r−1∑

i=1

1
ri

)2

=
(rr−1 − 1)2

2r2r−1(r − 1)2
=

1
2r3

+ O

(
1
r4

)
.

Proof. With i as in the definition of f , the probability is r−c that i ≥ �(p) + c
for 0 ≤ c < r (considering the case E(p) as i = ∞), hence i = �(p) + c with
probability r−1

r
1
rc .

We compute the probability of entering a cycle consisting of points p and q
starting at p. Let j = �(p) and k = �(q), and let the steps from p to q and back
be adding fj+c and fk+d, respectively. This implies that j + c ≡ k + d mod r and
that the step from p to q involves a negation. From the definition of f it follows
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�(∼(p̃+ fk)) ∈ {i, k} �(∼(q̃+ fn) ∈ {j, n}

p̃ =∼(p+ fi) ∼(−p− fj+1 + fj) = q̃

p

(j + 1,−)

−p− fj+1

p+ fi+1

(j + 1,−)

−p− fi+1 − fj+1

p̄ =∼(p+ fi+1 + fj) ∼(−p− fi+1 − fj+1 + fi) = q̄

�(∼(p̄+ fl)) ∈ {j, l} �(∼ (q̄+ fm)) ∈ {i,m}

(i+ 1,+) (i+ 1,+)

(i, ..)

(k, ..)

(j, ..)

(n, ..)

(j, ..)

(l, ..)

(i, ..)

(m, ..)

Fig. 3. A 4-cycle when the 4-cycle reduction method is used

that �(q) �≡ j + c mod r, thus d �= 0 and by symmetry c �= 0. Since j is given
and k is determined by j, c and d, the probabilities must be summed over all
possible c and d. The probability for a c, d pair is the product of the following
probabilities:

• r−1
r

1
rc for the first step being c;

• 1
2 for the sign;

• 1
r−1 for �(∼(p + fj+c)) = k

(we know already that �(∼(p + fj+c)) �≡ j + c �≡ k mod r);
• 1

rd for the second step being d (since �(∼(q + fk+d)) �≡ k + d mod r).

This results in the probability
1
2r

r−1∑

c=1

r−1∑

d=1

1
rc

1
rd

. ��

We conclude that, even when the look-ahead technique is used, 2-cycles are still
too likely to occur for relevant values of q and r. Some of the new 2-cycles are
prevented by other short-cycle reduction methods, but the remaining ones must
be dealt with using detection and escape methods. This is discussed below.

4-cycles. Unless the addition constants fi have been chosen poorly, 3-cycles do
not occur as a direct result of the negation map, so that 4-cycles are the next
type of short cycles to be considered. Excluding again that the fi have unlikely
properties, a fruitless 4-cycle without proper sub-cycle is of the form

p
(i,+)−→ p + fi

(j,−)−→ −p − fi − fj
(i,+)−→ −p − fj

(j,−)−→ p.

The cycle may be entered at any of its four points. Hence, a fruitless 4-cycle
starts from a random point with probability r−1

4r3 . This is a lower bound for the
probability of occurrence of 4-cycles when looking ahead to reduce 2-cycles.
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An extension of the 2-cycle reduction method looks ahead to the first two
successors of a point, thereby reducing the frequency of 2-cycles and 4-cycles,
while still being deterministic:

g(p) =

⎧
⎪⎪⎨

⎪⎪⎩

E(p) if j ∈ {�(q), �(∼(q + f�(q)))} or �(q) = �(∼(q + f�(q)))
where q =∼(p + fj), for 0 ≤ j < r,

q =∼(p + fi) with i ≥ �(p) minimal s.t.
i mod r �= �(q) �= �(∼(q + f�(q))) �= i mod r.

Compared to f(p), the probability that E is called increases from (1
r )r to at least

(2
r )r because �(∼(q+ f�(q))) ∈ {j mod r, �(q)} with probability 2

r for each j. This
iteration function is at least r+4

r times slower than the standard one, because
with probability 2

r at least two additional group operations need to be carried
out, an effect that is slightly alleviated by a factor of ( r−1

r )
1
2 since the image of g

is a subset of 〈g〉 of cardinality approximately r−1
r q. The value ∼(q+f�(q)) can be

stored for use in the next iteration. Usage of g reduces the occurrence of 4-cycles,
and also prevents some of the 2-cycles newly introduced by the 2-cycle reduction
method (such as the one depicted on the left in Fig. 2). But g introduces new
types of 2-cycles and 4-cycles as well, both of which do indeed occur in practice.
A newly introduced 2-cycle is shown in the right example in Fig. 2. There the
points p̄ and q̄ are �∈ Gi−1 ∪ Gi. This 2-cycle occurs with probability 2(r−2)2

(r−1)r4 ,
which is therefore a lower bound for the probability of 2-cycles when using the
4-cycle reduction method. Fig. 3 depicts an example of a newly introduced 4-
cycle: the points reached via dotted lines belong to a partition different from
their predecessors. The probability that such a 4-cycle starts from a random
point is at least 4(r−2)4(r−1)

r11 .
We have not been able to design or to find in the literature short-cycle reduc-

tion methods that do not introduce other (lower probability) short cycles. We
therefore turn our attention to cycle detection and escape methods.

3.2 Cycle Detection and Escape

Recurring cycles. The cycle detection and escape method from [9] described
in Section 2.3, does not prevent recurrence to the same cycle. When using f�(p)+c

to escape (we fixed c = 4 as it worked as well as any other choice �= 1), Fig. 4
depicts how the (wavy) escape from the (solid) 4-cycle recurs to the 4-cycle via
one of the dotted possibilities. The probability of recurrence depends on the
escape method and on which point in the cycle the walk recurs to. With f�(p)+c

as escape, immediate recurrence to the escape point happens with probability 1
2r

when no cycle reduction is used, recurrence happens with probability at least 1
2r2

with 2-cycle reduction, and with probability at least (r−2)2

r4 with 4-cycle and thus
2-cycle reduction. Similar recurrences occur, with lower probabilities, when f′ or
f′′�(p) are used to escape.

Lemma 2. Lower bounds for the probabilities to enter 2-cycles or 4-cycles or
to recur to cycles for three different cycle escape methods are listed in Table 2
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−p− fi − fj

p

−p− fj

(i,+)

(j,−)

p+ fi

(j,−)

(i,+)

p+ fk

(k,+) −p− fk − fj

(j,−)

(k,+)

−p− fi − fk

(i,−)

(k,−)

Fig. 4. Escaping from a fruitless 4-cycle, and recurring to it (i �= j �= k �= i)

if no cycle reduction, or 2-cycle reduction (f), or 4-cycle reduction (g) is used,
along with a lower bound for the slowdown factor caused by f or g.

Proof. The proofs for many entries of Table 2 were given earlier. We prove the
entries in rows four and five.

Let p be the escape point and let q be the point it escapes to. Using f′ or f′′�(p)

one can recur to the escape point p by entering another cycle at q and escaping
from it at q again. This new cycle could be a 2-cycle. For this to happen the first
escape step to q has to involve a negation (probability 1

2 ), a 2-cycle has to be
entered at q (probabilities in first row, but see below), the escape point of this
2-cycle has to be q (probability 1

2 ), and, in the case of f′′i , the partition that q
belongs to has to be the same as the one p belongs to (probability 1

r ). In the
case of 4-cycle reduction the probability to enter a 2-cycle at q is slightly lower
since we do not have the information that �(∼(q + f�(q))) �= �(q); a calculation
analogous to the one done at the end of Section 3.1 produces the values listed
in the table. ��
6-cycles. With proper fi and no sub-cycle, a common 6-cycle is of the form

p
(i,+)−→ p+fi

(j,−)−→ −p−fi−fj
(k,+)−→ −p−fi−fj+fk

(i,+)−→ −p−fj+fk
(j,−)−→ p−fk

(k,+)−→ p

(i �= j �= k �= i) where with appropriate sign changes steps four and five may be
swapped. It may be entered at any of its six points and occurs, when using 4-cycle
reduction, with probability 1

4r3 + O( 1
r4 ). A lower bound to recur to it follows by

multiplying this probability with the recurring probabilities from Table 2.
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Table 2. Summary of effect of cycle reduction, detection, and escape methods. With
the exception of the two bold entries, all figures are lower bounds.

Cycle reduction method: none 2-cycle 4-cycle

Probability to enter

{
2-cycle

4-cycle

1
2r

1
2r3

2(r−2)2

(r−1)r4

r−1
4r3

r−1
4r3

4(r−2)4(r−1)

r11

Probability to recur to escape point using

⎧
⎪⎨

⎪⎩

f�(p)+c

f′

f′′�(p)

1
2r

1
2r2

(r−2)2

r4

1
8r

1
8r3

(r−2)2

2r5

1
8r2

1
8r4

(r−2)2

2r6

Slowdown factor of iteration function n/a r+1
r

r+4
r

3.3 Alternative Approaches

The purpose of using the negation map is to obtain a speedup, hopefully by a
factor of

√
2. From Fig. 1 it follows that large r-values cannot be used. From

Table 2 it follows that for small r-values and relevant q-values fruitless cycles
are likely to occur and recur. Medium r-values look the most promising, but are
not compatible with all environments.

Since fruitless cycle occurrence and recurrence cannot be rooted out, alterna-
tive methods are needed if we want to make the negation map useful. In this
section several possibilities are offered.

Heuristic. A cycle with at least one doubling is most likely not fruitless.

Proof. Let p = ug + vh be a point on the cycle. The subsequent points are
obtained by adding one of the fi or by doubling, and negating if needed, thus
are up to sign linear combinations of the fi and a power-of-two multiple of p. If
c ≥ 1 is the number of doublings in the cycle, we get a relation of the form

p = ±2cp +
r−1∑

i=0

cifi = ±2cp +
r−1∑

i=0

ciuig +
r−1∑

i=0

civih and thus

(

(1 ∓ 2c)u −
r−1∑

i=0

ciui

)

g +

(

(1 ∓ 2c)v −
r−1∑

i=0

civi

)

h = 0,

where ci ∈ Z. Since 1 ∓ 2c �= 0, the expression
(
(1 ∓ 2c)u −∑r−1

i=0 ciui

)
is most

likely not divisible by the group order. This also holds if {fi : 0 ≤ i < r} is
enlarged with f′ or with {f′′i : 0 ≤ i < r}. This concludes our heuristic argument.

Cycle reduction by doubling. The regular structure required for cycles is
caused by repeated addition and subtraction using the same set of constants.
This structure would be broken effectively by using an occasional doubling, i.e.,
a mixed walk. If such walks are used, the heuristics suggest that cycles occur
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only between two doublings. If the doubling frequency is sufficiently high, only
short cycles would have to be dealt with.

As borne out by expressions (1) and (2) when using the idealized values pi =
1

r+s for 0 ≤ i < r and pD = s
r+s for r > 0, and as supported by the experiments

reported in Table 1, an r + s-mixed walk with s > 1 always displays noticeably
less random behavior than a well-partitioned r′-adding walk for any r′ > r.
Nevertheless, using properly tuned r + s-mixed walks may be a way to address
the cycle problem while avoiding impractically large r-values.

However, r + s-mixed walks have disadvantages caused by the underlying
arithmetic. Given the relative speeds of addition and doubling, an r + s-mixed
walk is r+7s/6

r+s times slower than an r-adding walk. In a SIMD environment
where many walks are processed simultaneously, per step a fraction of about

r
r+s of the walks will do an addition, whereas the others do a doubling. If the
addition and doubling code differ, as is the case for the affine Weierstrass rep-
resentation, the two types of steps cannot be executed simultaneously. Thus, in
such environments, to avoid a slowdown by a factor of more than 2 one needs
to swap walks to make all parallel step-operations identical (at non-negligible
overhead), or one has to settle for a suboptimal affine point representation that
allows identical code. SIMD-application of the negation map and the possibility
of another point representation are subjects for further study.

Doubling based cycle reduction and escape. Taking into account that dou-
bling should not be used too frequently, usage could be limited to cycle reduction
or escape. This would not solve the SIMD-issue, but the relative inefficiency and
non-randomness would be addressed. If doublings are used to escape from fruit-
less cycles, they would not recur, as that would contradict the heuristics. Cycle
reduction using doubling replaces f(p) and g(p) by f̄(p) and ḡ(p), respectively,
where

f̄(p) =
{∼(p + f�(p)) if �(p) �= �(∼(p + f�(p))),
∼(2p) otherwise,

ḡ(p) =
{

q =∼(p + f�(p)) if �(q) �= �(p) �= �(∼(q + f�(q))) �= �(q),
∼(2p) otherwise.

It follows from the heuristics that these functions avoid recurring fruitless cycles.

Alternative cycle detection. Because shorter cycles are more frequent, a
potentially interesting modification of the cycle detection method from [9] (de-
scribed at the end of Section 2.3) would be to occasionally compare a point to
its kth successor, where k is the least common multiple of all even short cycle
lengths that one wants to catch. Detecting, for instance, cycles up to length
12 requires only 1

120 th comparison per step. This can be done in several steps,
recording every 12th point to catch 4- and 6-cycles, recording every 10th of
these recorded points to catch 8- and 10-cycles, etc. It can be combined with the
regular method with large α and β to catch longer cycles infrequently.

However, if a cycle has been detected the k points need to be recorded as
before, so an escape point can be chosen deterministically. This argues against



On the Use of the Negation Map in the Pollard Rho Method 79

using large k. It also suggests that an improvement can be expected only if cycles
occur with low probability, and therefore that the improvement will be marginal
at best (cf. α and β choices in Section 4). For this reason we did not conduct
extensive experiments with this method.

4 Comparison

We implemented and compared on a traditional non-SIMD platform all previ-
ously published and newly proposed methods to deal with fruitless cycles when
using the negation map. Here we report on our findings. It quickly turned out
that the cycle detection methods from [9] when combined with doubling based
cycle reduction and escape, are considerably more efficient than r+s-mixed walks
with their on average slower steps and less random behavior. Mixed walks are
therefore not further discussed. Experiments with the alternative cycle detection
method were quickly abandoned as well.

For each combination of iteration function, escape method, and r-value a
search was conducted to determine the α and β to be used for the cycle detection
method from [9]. Using a heuristic argument that for β = 2k with k much smaller
than r, cycles of length ≥ β occur with probability on the order of (k−1)!

(2r)k , values
for k that make this probability low enough resulted in good initial values for
the search for close to optimal α and β. To give some examples, for “f , e,” as
explained in Table 3 we used α = 31 and β = 20 for r = 16, α = 3264 and
β = 12 for r = 128, and α = 52 418 and β = 10 for r = 256. For “f̄ , ē” and
the same r-values we used the same β-values but replaced the α-values by 1 618,
838 848, and 53 687 081, respectively.

Each of the benchmarks presented in Table 3 was run on a single core of an
AMD Phenom 2.2GHz 4-core processor, with each of the four cores processing
a different combination. A 10-bit distinguishing property was used to get a sig-
nificant amount of data in a reasonable amount of time. This somewhat affects
the performance, but not the cycle behavior as walks continue after hitting a
distinguished point. The figures in millions as given in the table are thus an
underestimate for the actual per-core yield in units when a more realistic 30-bit
distinguishing property would be used (since 230/210 = 220 ≈ 106).

In order to be able to compare the long term yield figures, the expected
number of steps must be taken into account using expressions 1 and 2. As a
result, the yields are corrected by a factor of ( r−1

r )
1
2 for the iteration functions

that do not use the negation map, and by a factor of (2r−1
r )

1
2 for the others, with

an extra factor of ( r
r−1 )

1
2 for g and ḡ. After this correction, the best iteration

function without the negation map is the one with r = 64. Comparing that
one with each iteration function that uses the negation map, thus boosting the
latter’s yield ratio by a factor of C = ((2r−1

r )/(63
64 ))

1
2 or C = ((2r−1

r−1 )/(63
64 ))

1
2

for g and ḡ, leads to the long term speedup figure given in Table 3. Note that
the correction factor C depends on the iteration function, and is close to and for
some r larger than

√
2.
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Table 3. For the (iteration function, escape method, r-value) combinations specified,
the non-italics entries list the long term yield (millions of distinguished points, found
during the second half hour) and the long term speedup over the best r-value (r = 64)
without the negation map, taking into account the correction factor C as explained
in the text. Cycle detection and subsequent escape by adding f�(p)+4, f′, f′′�(p) and by
doubling is indicated by “e,” “e′,” “e′′” and by “ē,” respectively. The iteration func-
tions f (2-cycle reduction), g (4-cycle and 2-cycle reduction), f̄ (2-cycle reduction using
doubling), and ḡ (4-cycle and 2-cycle reduction using doubling) are as in sections 2.3,
3.1 and 3.3. The yields are for 256 parallel walks (sharing the inversion) for a 131-bit
ECDLP with a 131-bit prime order group. The yields during the first half hour are
almost consistently higher, considerably so for poorly performing combinations. They
are not meaningful and are thus not listed. The italics entries are A above D, followed

by the maximal achievable speedup factor of C(109−A)

109+D/6
, as explained in the text.

†: This applies to “no reduction, no escape,” “just f ,” “just f̄ ,” “just e,” and “just e′.”

r = 16 r = 32 r = 64 r = 128 r = 256 r = 512

Without negation map
7.29: 0.98 7.28: 0.99 7.27: 1.00 7.19: 0.99 6.97: 0.96 6.78: 0.94

With negation map
† 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.00: 0.00
just g 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.04: 0.01 3.59: 0.70
just ḡ 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.75: 0.15 4.90: 0.96 5.90: 1.16
just e′′ 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.61: 0.12 4.94: 0.97 5.73: 1.12
just ē 3.34: 0.64 4.89: 0.95 5.85: 1.14 6.10: 1.19 6.28: 1.23 6.18: 1.21

f , e
0.00: 0.00 0.00: 0.00 1.52: 0.30 5.93: 1.16 6.47: 1.27 6.36: 1.25

9.4e8
0.0e0}0 .08 6.6e8

0.0e0}0 .48 1.0e8
0.0e0}1 .28 3.6e7

0.0e0}1 .37 2.9e7
0.0e0}1 .38 2.5e7

0.0e0}1 .39

f , e′ 0.00: 0.00 3.24: 0.63 6.04: 1.18 6.41: 1.25 6.29: 1.23 6.21: 1.22
3.9e8
0.0e0}0 .86 8.0e7

0.0e0}1 .30 4.6e7
0.0e0}1 .35 3.3e7

0.0e0}1 .38 2.9e7
0.0e0}1 .38 2.6e7

0.0e0}1 .39

f , e′′ 0.00: 0.00 5.34: 1.04 6.21: 1.21 6.30: 1.23 6.20: 1.21 5.99: 1.17
1.3e8
0.0e0}1 .22 6.0e7

0.0e0}1 .33 4.2e7
0.0e0}1 .36 3.3e7

0.0e0}1 .38 2.9e7
0.0e0}1 .38 2.7e7

0.0e0}1 .39

f , ē
3.71: 0.72 6.36: 1.24 6.50: 1.27 6.57: 1.29 6.47: 1.27 6.30: 1.25

9.2e7
9.9e5}1 .27 6.8e7

2.8e5}1 .32 4.2e7
6.5e4}1 .36 3.3e7

1.5e4}1 .38 2.9e7
3.8e3}1 .38 2.7e7

9.7e2}1 .39

g, e
0.00: 0.00 0.01: 0.00 4.89: 0.96 6.22: 1.22 6.23: 1.22 6.05: 1.19

8.7e8
0.0e0}0 .19 3.7e8

0.0e0}0 .91 6.6e7
0.0e0}1 .34 4.2e7

0.0e0}1 .37 3.3e7
0.0e0}1 .38 1.3e7

0.0e0}1 .41

g, e′ 0.00: 0.00 0.01: 0.00 5.32: 1.05 6.26: 1.23 6.25: 1.23 6.11: 1.20
7.8e8
0.0e0}0 .32 3.0e8

0.0e0}1 .00 6.0e7
0.0e0}1 .35 4.1e7

0.0e0}1 .37 3.0e7
0.0e0}1 .38 5.5e7

0.0e0}1 .35

g, e′′ 0.00: 0.00 1.09: 0.21 5.37: 1.13 6.08: 1.20 6.06: 1.19 5.86: 1.15
7.6e8
0.0e0}0 .34 1.2e8

0.0e0}1 .27 6.0e7
0.0e0}1 .35 4.2e7

0.0e0}1 .37 3.5e7
0.0e0}1 .38 4.3e7

0.0e0}1 .37

g, ē
0.76: 0.15 5.91: 1.17 6.02: 1.18 6.25: 1.23 6.13: 1.20 6.00: 1.18

3.3e8
1.6e5}0 .97 1.7e8

6.0e4}1 .19 8.1e7
8.1e3}1 .32 5.4e7

1.0e3}1 .35 4.0e7
1.2e2}1 .37 2.7e7

9.0e0}1 .39

f̄ , e
0.00: 0.00 0.00: 0.00 2.70: 0.53 5.96: 1.16 6.34: 1.24 6.20: 1.21

8.7e8
2.4e6}0 .18 4.3e8

1.7e7}0 .80 5.4e7
1.5e7}1 .34 1.1e7

7.7e6}1 .41 1.0e7
3.9e6}1 .41 1.4e7

1.9e6}1 .40

f̄ , e′ 0.01: 0.0 4.24: 0.82 6.32: 1.23 6.43: 1.26 6.33: 1.24 6.20: 1.22
2.6e8
4.3e7}1 .03 6.8e7

2.9e7}1 .31 3.9e7
1.5e7}1 .36 3.2e7

7.6e6}1 .38 2.8e7
3.8e6}1 .38 2.7e7

1.9e6}1 .39

f̄ , e′′ 1.34: 0.26 5.80: 1.13 6.23: 1.22 6.21: 1.22 6.15: 1.20 6.00: 1.18
8.9e7
5.2e7}1 .27 5.3e7

2.9e7}1 .33 3.9e7
1.5e7}1 .36 3.6e7

7.5e6}1 .37 2.8e7
3.8e6}1 .38 2.6e7

1.9e6}1 .39

f̄ , ē
5.58: 1.06 6.14: 1.18 6.34: 1.23 6.42: 1.25 6.27: 1.23 6.07: 1.19

6.1e7
4.2e7}1 .31 3.7e7

3.0e7}1 .36 1.8e7
1.5e7}1 .39 1.1e7

7.7e6}1 .41 1.0e7
3.9e6}1 .41 1.4e7

1.9e6}1 .40

ḡ, e
2.56: 0.51 5.80: 1.15 6.02: 1.18 6.09: 1.20 6.19: 1.21 5.74: 1.13

1.4e8
9.9e7}1 .23 7.9e7

5.6e7}1 .31 5.1e7
2.9e7}1 .35 4.1e7

1.5e7}1 .37 2.6e7
7.6e6}1 .39 7.7e6

3.9e6}1 .41

ḡ, e′ 4.74: 0.94 5.88: 1.16 6.14: 1.21 6.28: 1.23 6.05: 1.19 5.80: 1.14
1.2e8
1.0e8}1 .25 7.8e7

5.6e7}1 .31 5.3e7
2.9e7}1 .35 3.9e7

1.5e7}1 .37 2.6e7
7.6e6}1 .39 7.7e6

3.9e6}1 .41

ḡ, e′′ 4.72: 0.94 5.80: 1.15 6.08: 1.20 6.05: 1.19 5.91: 1.16 5.67: 1.11
1.2e8
1.0e8}1 .25 7.7e7

5.6e7}1 .31 5.3e7
2.9e7}1 .35 3.8e7

1.5e7}1 .37 1.8e7
7.6e6}1 .40 7.7e6

3.9e6}1 .41

ḡ, ē
4.83: 0.96 5.87: 1.16 6.09: 1.20 6.16: 1.21 6.09: 1.20 5.70: 1.12

1.2e8
1.0e8}1 .25 7.9e7

5.6e7}1 .31 5.2e7
2.9e7}1 .35 4.0e7

1.5e7}1 .37 2.6e7
7.6e6}1 .39 7.7e6

3.9e6}1 .41
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Non-doubling 2-cycle reduction (f) with doubling-based cycle escape (ē) and
r = 128 performed best, with an overall speedup by a factor of 1.29: although
fewer distinguished points are found than for the best case without the negation
map (r = 64), there is a considerable overall gain because fewer distinguished
points (by a factor of C, for the relevant C) should suffice. For r = 16 most
iteration functions with the negation map perform poorly.

We measured to what extent our failure to achieve a speedup by a factor of
√

2
can be blamed on cycle detection and escape and other overheads, and which part
is due to the higher average cost of the iteration function. For most combinations
in Table 3 we counted the number S of useful steps performed when doing 109

group operations, while keeping track of the number D of doublings among
them. Here a step is useful if it is not taken as part of a fruitless cycle, so all D
doublings are useful. Without the negation map, S would be 109 and D = 0; this
is the basis for the comparison. With the negation map, A = 109 − S is counted
as the number of additional additions due to cycle reductions or fruitless cycles.
The inherent slowdown of that iteration function is then 1 + A+D/6

S , so that it

can achieve a speedup by a factor of at most CS
S+A+D/6 = C(109−A)

109+D/6 , with C as
defined above.

Based on Table 3 and Fig. 1, we conclude that our failure to better approach
the optimal speedup by a factor of

√
2 is due to an onset of cache effects combined

with various overheads. The italics figures from Table 3 make us believe that
improvements may be obtained when using better implementations.

Previous results. The only publication that we know that presents practical
data about Pollard’s rho method used with the negation map is [8]. Only rela-
tively small ECDLPs were solved (42- and 43-bit prime fields) and small r-values
were avoided. The adverse cycle behavior that we witnessed can therefore not be
expected and we doubt if the results reported are significant for the sizes that
we consider. Only mixed walks were used, and an overall speedup by a factor of
about 1.35 was reported. Cycle escaping was done by jumping to the sum of all
points in a cycle, which cannot be expected to work in general because the sum
may depend just on the addition constants.

5 Conclusion

With judicious application of doubling, usage of the negation map to solve
ECDLPs over prime fields using Pollard’s rho method can indeed be recom-
mended. In the best of circumstances that we have been able to create, however,
the speedup falls short of the hoped for

√
2, but is with 1.29 still considerable.

This conclusion does not apply to SIMD-environments where occasional dou-
blings cause considerable delays. Alternative point representations need to be
considered to assess the usefulness of the negation map for SIMD platforms, in
particular because such platforms are becoming popular again.
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