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Abstract. In this paper, we describe the MaxStream federated stream
processing architecture to support real-time business intelligence appli-
cations. MaxStream builds on and extends the SAP MaxDB relational
database system in order to provide a federator over multiple underlying
stream processing engines and databases. We show preliminary results
on usefulness and performance of the MaxStream architecture on the
SAP Sales and Distribution Benchmark.
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1 Introduction

Business intelligence (BI) is a broad term that encompasses a wide range of
skills, processes, tools, technologies, applications, and practices for gathering,
storing, analyzing, modeling, integrating, providing access to, and presenting
information about a business or industry. The main goal is to support better
decision-making for a business by leveraging data, or facts, and relationships
between these facts. In addition to factual information providing historic and
current views of various business operations, business intelligence technologies
may also provide predictive views to further facilitate complex decision-making.
In order to automate such decision-making and reporting processes, the busi-
ness intelligence software market provides a wide spectrum of technologies from
databases and online analytical processing (OLAP), data mining and data ware-
housing, to business performance management and predictive analysis [1, 2].

With the emergence of new applications and advances in other relevant tech-
nologies, the list above has recently been extended with another critical func-
tionality: real-time business intelligence. Well-known examples of real-time BI in-
clude fraud detection, real-time marketing, inventory management, and supply-
chain optimization. All of these applications require real-time or near real-time
response to relevant business events as they occur.
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In a recent article, Agrawal listed the following as the main enabling tech-
nologies for real-time BI: online updates, stream analysis and management, au-
tomated data integration, new declarative query languages for analytical pro-
cessing, and scalable parallel query processing on large data volumes [3]. Each of
these technologies would help to address one or more of the requirements raised
by Schneider [4], who argues that real-time BI raises two critical requirements:
(i) reducing latency, and (ii) providing rich contextual data that is directly ac-
tionable. Schneider’s list of possible architectural alternatives to address these
needs includes enterprise data warehouses, database federation systems, stream
processing engines, or custom systems. While warehouses and database federa-
tion are good at providing reliable access to detailed and aggregated contextual
data (requirement (i)), stream processing and custom systems are better for low-
latency processing of large volumes of events and alerts (requirement (ii)). It is
well-known that custom solutions are costly, and none of the remaining alter-
natives can effectively address both critical requirements on its own. Hence, we
are at a stage where the critical requirements of real-time business intelligence
applications and their enabling technologies are well understood, and there is an
increasing need for system architectures and platforms to build on this under-
standing.

We believe that the MaxStream federated stream processing architecture is
one such platform. MaxStream is designed to provide the necessary support for
real-time (or near real-time) business intelligence applications [5, 6]. MaxStream
combines capabilities for data management, data federation, and stream process-
ing in a single system. It therefore allows seamless exploitation of the strengths
of each architecture. Continuous queries can be passed to stream processing en-
gines for immediate analysis of live data, and both input and output streams
can be persisted for further historic analysis.

In this paper, we demonstrate that a federated stream processing system can
be a useful platform for real-time BI. We describe the architecture and imple-
mentation of MaxStream (Section 3) and discuss how it can be used in real-time
analytics scenarios (Section 4). In Section 5, we show that a federated stream
processing system is practical: it can handle a real business intelligence work-
load while providing for extended stream processing capabilities with minimal
overhead. Section 6 concludes with thoughts on future work. We begin with a
brief description of related work in Section 2 below.

2 Related Work

Our work lies at the intersection of federated databases and stream processing
systems. It is clearly also related to data management systems developed for
business intelligence applications. In this section, we place MaxStream in the
context of earlier work in each of these three research areas.

Federated Databases. From one perspective, MaxStream is a data integration
system. It builds a federation over multiple stream processing engines (SPEs)
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and databases. As such, it closely relates to the work on traditional database
federation. In federated databases, middleware (typically an extension of a re-
lational database management system) provides uniform access to a number of
heterogeneous data sources (e.g., [7, 8, 9]). Similarly, we have built MaxStream
as a middle layer between clients and underlying systems, extending a relational
engine infrastructure. However, MaxStream has a fundamental difference in fo-
cus from database federation. Traditional database federations are motivated
by the need to leave data in situ, and yet provide a unified view of the data.
Exploiting data locality for efficient query processing is key. While they do need
to bridge some heterogeneity in terms of capability, powerful data models and
standards provide a framework for integration. In the stream world, by contrast,
functional heterogeneity is a major issue due to a lack of standards and agree-
ment on core features and semantics. Exploiting data locality is not as critical,
as the data is streaming to begin with, and thus can be routed to an appropriate
SPE. Integration of data is not the major focus. Thus the work we are doing
benefits from the work on data federation, but has unique challenges to address
in dealing with stream processing and the functional heterogeneity of SPEs.

Stream Processing. MaxStream acts as a stream processing system from the
viewpoint of its client applications; however, it is not by itself a full-fledged
SPE. Rather, the goal is to leverage the stream processing capabilities of the
underlying SPEs as much as possible, while keeping the federation layer itself
as lean as possible (i.e., with “just enough” streaming capability) in order to
avoid complexity and overhead. Nevertheless, we can still compare MaxStream
to existing work on stream processing in terms of the following two aspects.
First, distributed SPEs such as Borealis [10] and System S [11] also employ mul-
tiple SPE nodes that share a continuous query processing workload; however,
unlike MaxStream, autonomy and heterogeneity is not an issue for these sys-
tems as each processing node runs a controlled and identical SPE instance with
the same capabilities and execution model semantics. Second, a few SPEs such
as TelegraphCQ [12], Truviso [13], and DejaVu [14] have explored creating a
streaming engine from a relational database engine. In doing so, these so-called
“stream-relational” SPEs face many of the same issues and gain many of the same
advantages as we do. However, our goals are different: MaxStream is focused on
exploiting parts of relational technology that will facilitate our federation needs
(e.g., streaming inputs and outputs, persistence, hybrid queries, model mapping,
and so forth), rather than on building a complete SPE into the relational en-
gine. In line with these goals, we have so far needed to introduce only two basic
streaming capabilities into the SAP MaxDB relational engine - for being able
to stream inputs and outputs through our federator, optionally with or without
persistence (details are presented in Section 3.2). Stream-relational systems have
similar mechanisms (and much more, such as sliding window processing, which
we have not needed so far since we wanted to leverage the underlying SPEs
for processing such advanced queries). For example, Truviso provides a “chan-
nel object” for explicitly creating a stream archive from a live stream. This is
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similar to our persistent input streaming mechanism with one key difference. In
MaxStream, if the persistence option is turned on, then the input stream is per-
sisted and streamed as part of the same transaction, whereas in Truviso, these
two parts seem to be decoupled from each other [13]. Also, to our knowledge,
Truviso does not provide a special output streaming mechanism, whereas we
have to do this in order to be able to continue supporting the pull-based client
interfaces of SAP MaxDB.

Though not implemented on a relational database engine, we should also note
that STREAM [15] bases its query model on relational semantics. In particular,
our ISTREAM operator (Section 3.2) has been inspired by the relation-to-stream
operator of the same name in STREAM [16], but there are some fundamental
differences in its implementation and use, as we explain later in Section 3.2.

Business Intelligence. Business intelligence can be classified into three main
types: strategic, tactical, and operational [17]. The first two deal with man-
aging (long-term) business plans and goals based on historical data, while the
last one focuses on managing and optimizing daily business operations. In op-
erational BI, low-latency processing over business events as they happen is a
critical need. “Real-time” or “right-time” BI also falls into this latter category.
Though MaxStream can potentially serve all three forms of BI applications, we
believe that with its emphasis on integrating SPEs and databases it can make a
real contribution in the operational BI domain. Business intelligence is a key fo-
cus area for industry, with many of the recent advances being made by vendors.
Industrial products such as SAP Business Objects [18] and IBM Cognos Now!
[19] also employ some form of streaming dataflow engine to support operational
BI. MaxStream’s novelty lies in the way it can seamlessly integrate business
events from multiple organizational units of an enterprise, each of which might
be running a different specialized SPE for its local analytics tasks, as well as the
tight integration with database processing. To the best of our knowledge, we are
the first to explore this promising new direction of stream engine federation.

3 The MaxStream Federated Stream Processing System

MaxStream follows the typical architecture of a database federation system [9],
providing a middleware layer between the application program and the data
sources, and connecting to those sources via wrappers. Like a database federa-
tion engine, it provides a common programming interface and query language to
the applications, and queries are translated into the languages supported by the
underlying systems. MaxStream is built as an extension of a database federation
engine, SAP MaxDB. We extend MaxStream with wrappers (called Data Agents
in MaxDB) for stream processing engines, and two important operations (Sec-
tion 3.2) that allow it to support stream queries. It inherits from SAP MaxDB
the ability to federate additional databases, and it can also leverage MaxDB’s
local store.
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Fig. 1. MaxStream Architecture

In general, basing our stream federation engine on a database federator allows
us to take advantage of all the basic relational functionality, including transac-
tions, persistence, and the query processing architecture. Tools built for rela-
tional systems will work, and, because the system is SQL-based, existing rela-
tional applications can be easily ported to our platform and then extended as
needed to work with streams. This is particularly convenient in a business intelli-
gence environment where we want to leverage existing sophisticated tools [18, 20]
to analyze data.

Today, MaxStream must push an entire stream query to an underlying SPE,
though it can also take advantage of its local store for persistence, and to join the
persisted data with streaming data. As we will show in more depth in Section 4,
these are already useful capabilities for business intelligence applications. They
provide for a seamless integration between the incoming streams and more static
reference data, so that, for example, the streamed data can be easily persisted
for regulatory compliance. In addition, they allow for an incoming stream of data
to be enriched by joining it with local reference data before sending the stream
on to an SPE for processing. However, we see much richer possibilities ahead;
this minimal set of features is only a necessary first step that allows us to test
the feasibility of our proposed architecture (Section 5).
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3.1 Architecture

MaxStream’s architecture is shown in Figure 1. It consists of a federation en-
gine (MaxStream Federator) and a set of data agents (wrappers) for SPEs or
databases. These interact as described below.

When an application submits a query to MaxStream, it is parsed, and, if there
are no streaming features involved (i.e., if the query is a standard relational
query), it is passed to the usual rewrite engine and compiler. If it includes a
stream query, however, that is routed today directly to the Query Executer and
thence, to the SQL Dialect Translator. The translator creates an appropriate
stream query in the language of the underlying engine, and returns it to the
Executer, which sends it on to the Data Agent for the SPE. Data Agents handle
registration of queries to the SPE; they also stream input events to the SPE
for processing. The output stream from the SPE is written directly back to
MaxStream through an ODBC connection from the SPE.

Using MaxStream in an application requires a few simple steps. We describe
these briefly via a simple example below.

1. Create the stream. If the stream has not been previously created, it must
be generated and also registered with MaxStream. MaxStream allows inserts
on a base table to be streamed out to the SPE. This is needed where the
business is receiving a lot of event data and wants to process it as it comes
in, leveraging a stream engine. For example, suppose in a Call Center every
call is captured with some metadata in a single table, Calls. The company
realizes that they can provide better service if they can analyze the call
patterns in real-time, so they decide to stream the data to an SPE. This
would be done as follows:

CREATE STREAM CallStream ...;

INSERT INTO STREAM CallStream

SELECT ...

FROM ISTREAM(Calls);

The first statement tells MaxStream about the stream, and the second turns
inserts into the existing table into a stream. We explain this mechanism in
Section 3.2 below.

2. Create a table for the output stream. The SPE needs some place to
put the results of its analysis, so we must create a table (which can be either
persistent or transient) to store the output stream. This allows the SPE
to use standard INSERT statements and an ODBC connection to get the
output back to MaxStream. This can be done with a standard CREATE
TABLE statement, e.g.:

CREATE TABLE CallAnalysis ...;

3. Create a query to push to the SPE. Now that there is a stream, and a
place to put the output, we need to tell the SPE what to do. For example,
we might issue a query such as:
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INSERT INTO TABLE CallAnalysis

SELECT Region, COUNT(*) as Cnt, AVG(WaitTime) as AvgWait,

AVG(Duration) as CallLength

FROM CallStream

GROUP BY Region

KEEP 1 HOUR;

This continuous query tracks the number of calls, the average wait time for an
agent, and the average length of calls by region, on an hourly basis, allowing
the company to find hot spots where perhaps they need to assign more staff,
or areas where the call center staff are not efficient enough. MaxStream will
push this query to the SPE, after any necessary translations. The SPE will
insert results back into CallAnalysis, using the ODBC connection that is set
up when the Data Agent is instantiated.

4. Set up monitoring for the output. Finally, we will want to do something
with the results of the analysis, so we need a way to find out when there
is new data in the output table. MaxStream provides a way of monitoring
changes to a base table. This mechanism is invoked by means of a hint on a
SELECT statement, as follows:

SELECT *

FROM /*+Event*/ CallAnalysis

WHERE AvgLength > 5;

In this example, the predicate might be used to identify regions where the
average call length was beyond some threshold (i.e., where the call center is
not being sufficiently efficient). The monitoring mechanism is also described
in Section 3.2.

In summary, we have extended a typical database federation engine, SAP
MaxDB Federator, with the concept of a stream, and the ability to push stream-
ing queries to an SPE. MaxStream has the ability to create streams from inserts
to a base table, and to monitor base tables which are receiving the results of
analysis from an SPE. We explain how both of these novel features work in the
next subsection.

We have prototyped these features with the goal of understanding the feasi-
bility of this approach. In particular, we wished to see whether we could provide
sufficient performance to handle the demands of our envisioned business intelli-
gence applications, despite the insertion of a federation layer between the appli-
cation and the streaming engine(s). We also wanted to explore the usefulness of
integrating persistence and streaming capabilities as described above. In pursuit
of these two goals, we have focused to date on getting the architecture running,
with a first Data Agent for a popular SPE, SPE X. We will show in Section 5
evidence that we have met these goals, and our future work will focus on ex-
tending our prototype with additional Data Agents and richer query processing
features as needed for a broad range of business intelligence applications.
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3.2 Two Key Building Blocks

In addition to changes to the SAP MaxDB query compiler to handle continuous
queries and additional Data Agents to connect to SPEs, we made two substantive
additions to the MaxDB core functionality to enable it to play the role of the
federator in a streaming environment. We added capabilities for creating or
passing streams through the federator to the SPE, so that we could provide
stream inputs. We also added a monitoring select capability, to permit efficient
monitoring of stream outputs. In the rest of this section, we describe these two
capabilities.

Streaming Inputs

To have a continuous query on a stream, you must first have a stream. MaxStream
can provide a stream to an SPE in two ways. If the data does not need to be
persisted, an in-memory tuple queue mechanism is used to move streamed tuples
quickly through the federator. In this case, a DDL statement would define the
stream to the federator, and the application generating the stream can write
directly to the stream. This mechanism is particularly useful if the application
has relatively high data rates and/or relatively strict latency requirements. For
example, to monitor and maintain service level agreements, an SPE needs re-
ports on response times and latencies for a stream of jobs of different priorities.
The application generating those reports could proceed as follows:

CREATE STREAM JobStream ...;

INSERT INTO STREAM JobStream

VALUES(:job#, :timein, :timedone, ...);

If the streamed data needs to be persisted, it is first stored in a base table,
and then a new operator, ISTREAM, turns inserts on that table into a stream
for consumption by the SPE. The ISTREAM operator, first suggested in [16], is
a relation-to-stream operator. At any point in time τ , the value of ISTREAM(T)
on a table T is the set of records that are in T at time τ and that were not in T
at time τ −1. If we were to persist the JobStream created above, we would need
two INSERT statements, one to store the incoming tuples, and one to stream
them out, as follows:

INSERT INTO Jobs VALUES (:job#, :timein, :timedone, ...);

INSERT INTO STREAM JobStream

SELECT *

FROM ISTREAM(Jobs);

where Jobs is the base table created to hold the persistent tuples.
We would like to note that, although we are not the first ones to propose the

ISTREAM operator, we have implemented and used it in a completely new way.
In the STREAM system, ISTREAM is logically a relation-to-stream operator,
but it was never implemented within the context of a relational database engine.
Also, it was only used in the SELECT clause of a CQL query to indicate that the
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result of the query should be of streaming type [16]. In MaxStream, ISTREAM is
truly a relation-to-stream operator and it is used in the FROM clause to create
a stream out of a given relational table. Furthermore, we have implemented
ISTREAM directly within the context of the SAP MaxDB relational database.

Loosely speaking, our ISTREAM implementation works as follows. A trans-
action inserts tuples into a base table. When the transaction commits the new
tuples are copied to an associated side-table, and a corresponding “stream job”
is created and added to a queue of stream jobs, with a timestamp based on the
logical commit time. A separate “stream thread” processes the side-table. The
stream thread has a list of compiled query plans, each corresponding to one of
the potentially multiple streaming inserts that select from ISTREAM on that
table. It executes those plans on each stream job in the queue, sending them the
relevant tuples out of the newly inserted set. For a more detailed description of
our ISTREAM implementation, please see our technical report [5].

Monitoring Select

We have discussed how to get streamed data in from applications using tuple
queues or the ISTREAM operator. Likewise, we need to be able to get result
streams from the SPE, through MaxStream and out to the clients. However,
MaxStream applications are fundamentally database applications, and database
applications are pull-based: they ask queries and pull on a cursor to get results.
SPEs, by contrast, are push-based. We explored several mechanisms for get-
ting the results back to the clients, including continual polling, periodic selects,
database triggers, and adding a subscription mechanism to the client interface,
but found none of them adequate for our purposes [5]. All either scaled badly as
the number of streams and queries on them grew, or were inefficient.

To better bridge between our pull-based clients and push-based streaming
engines, we have added a new capability, monitoring select. Monitoring select is
inspired by existing industry blocking selects [21, 22]. A monitoring SELECT
statement is different than a typical select in that it only returns new rows,
and when no new rows are found, it blocks until new rows appear. Thus, it
saves the client from periodically polling. In essence, it emulates a subscription
interface, without requiring substantial changes to the clients. Monitoring select
is indicated by hints as illustrated in Section 3.1 above.

Under the covers this operator works a bit like ISTREAM, with a side-table
for recently arrived tuples, and a waiting list or queue of jobs to be processed
against them. The jobs for monitoring select are blocked queries, not stream
inserts as with ISTREAM. Briefly, for each base table being monitored, there
is a waiting list with the set of tasks monitoring that table, and a timestamp
for each. As an application tries to “pull” data from the table, new rows that
have come in since the last time it asked, if any, are returned, and if there are
none, it is blocked. As new rows are inserted to the base table, they are also
written to a side-table, and on commit the insert transaction wakes up any
relevant select tasks in the waiting list. These tasks check whether the new rows
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match their predicates (if any). If they do, the new rows are returned, otherwise
the task is again suspended. Of course, there are several complexities, including
possibilities for concurrency problems which must be handled; details are given
in our technical report [5].

Note that monitoring select can be used with either permanent or transient,
in-memory tables. The use of transient tables gets the stream output to the
application for handling. Use of a permanent base table also persists a copy of
the streamed result. While somewhat higher overhead, this can be particularly
useful for business intelligence applications that want to save the results of a
stream query for further analysis. For example, given an operational application
that monitors service level agreements, we might persist the results of the stream
query that detects violations, for further analysis into root cause, trends, and so
on.

3.3 Hybrid Queries: Using Persistence with Streams

So far, we have shown how MaxStream can handle streams and queries over
streams. But with business intelligence scenarios that will rarely be sufficient.
Warehouses typically have fact tables and dimension tables. Fact tables tend to
change more frequently than the dimension tables, and are usually much larger.
For example, the fact table might capture sales transactions, while the dimension
tables add information about the products sold, the store at which the transac-
tion occurred, etc. Clearly, new transactions occur much more frequently than
the addition of a new product or a new store. Business intelligence applications
combine the fact and dimension tables to explore the data in different ways.
Similarly, to do business intelligence analytics over a stream, the rapidly chang-
ing data in the stream must be combined with descriptive data in other tables.
For many scenarios, in fact, the stream can be viewed as playing the role of the
fact table. Fortunately, MaxStream provides the ability to join this frequently
changing data with the more static dimension or descriptive data that might be
persisted either in the local store or in one of the federated databases.

Returning to our call center scenario, remember that metadata about every
call was being recorded, and streamed to the SPE, which was returning some
statistics for various regions. We can easily imagine how persistent data might
supplement both the input stream (the raw calls information) and the output
stream (the grouped statistical information) for different purposes. For example,
suppose the actual incoming data from the call center has an operator code, an
arrival time for the call, a start time at which the operator began serving the
customer, and an end time for the call. In other words, refining the example
from Section 3.1 above, suppose the Calls table is defined as:

CREATE TABLE Calls

(Opcode integer, ArrivalTime Timestamp,

StartTime Timestamp, EndTime Timestamp);

Note that there is no region field in the table. Hence, to be able to do the
aggregation on region, our SPE will need some additional information, namely,
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the mapping from operator codes to regions. That can be supplied by joining the
ISTREAM’ed Calls table to a persistent table, OperatorsbyRegion as follows:

INSERT INTO STREAM CallStream

SELECT o.RegionNm as Region,

c.StartTime-c.ArrivalTime as WaitTime,

c.EndTime-c.StartTime as Duration

FROM ISTREAM(Calls) c, OperatorsbyRegion o

WHERE c.Opcode = o.Operator;

This join injects the additional information needed into the stream passed to
the SPE, so that the query asked in Section 3.1 can be processed by the SPE.
As a reminder, the query is repeated here:

INSERT INTO TABLE CallAnalysis

SELECT Region, COUNT(*) as Cnt, AVG(WaitTime) as AvgWait,

AVG(Duration) as CallLength

FROM CallStream

GROUP BY Region

KEEP 1 HOUR;

This example demonstrates both the usefulness and the simplicity of being
able to join an input stream to persistent data. Note that since MaxStream is also
a database federation engine by heritage, the table OperatorsbyRegion could
be stored locally, or, equally easily, could be stored at any federated database.

In a similar fashion, it is possible, and useful, to join an output stream with
additional data. This might allow further analytics on the stream, or just create
richer context for a report. For example, perhaps an analyst might want to un-
derstand why certain regions have longer wait times than others. The Regions
table might have important information about each region such as the number
of operators, training method for operators, hours of training, number of super-
visors – and so on. Rather than just getting back the rolling statistics by region
delivered by the SPE above, a more interesting query for the analyst might be
the following:

SELECT a.Region, a.AvgWait, a.AvgDuration, r.NOps, r.Training, ...

FROM /* +Event */ CallAnalysis a, Regions r

WHERE AvgWait > 10

AND a.Region = r.RegName;

This lets the analyst see the information about average call waiting time and
duration in the context of additional information about that region, for those
regions which have long wait times (10 minutes or more!), potentially helping
them diagnose the problem at these centers. Again, the query is specified as
a simple join, and clearly, more complex queries with additional grouping and
analysis would also be possible. Again, the static tables could be local or in a
federated database.

We would like to note that both forms of hybrid queries illustrated above
(i.e., enriching the input stream with static information as well as doing so for
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the output stream) merely leverage our two key building blocks, ISTREAM
and monitoring select. We did not have to add any other sophisticated stream
processing capability into the federator. This fits well with our design goal about
keeping the federator lean 1.

This section has described the overall architecture of MaxStream, and demon-
strated features of MaxStream that make it ideally suited for use in business
intelligence scenarios. MaxStream allows us to feed standard business intelli-
gence tools and applications with real-time information, and complement or
extend that information with information from static tables. It also allows us
to leverage the power of a stream processing engine to do on-the-fly analysis
of rapidly growing event streams, persisting as desired both input and output
streams for further, richer analytics. We believe these are critical features for
real-time business intelligence applications, and we elaborate on this point in
the next two sections.

4 Using MaxStream in Real-Time BI Scenarios

Section 3 provided an overview of MaxStream’s architecture, illustrating the
concepts with some small examples with an operational BI feel. In this section,
we describe in more depth a few concrete application scenarios that are inspired
by real business intelligence use cases. Our goal is to show the role MaxStream
might play in supporting these diverse business scenarios.

4.1 Reducing Latency in Event-Driven Business Intelligence

Consider a global mail delivery company (e.g., FedEx, UPS, DHL, etc.) with
company locations in many cities in various countries. Packages to be delivered
must first be received. This can be done in several ways, for example, via staffed
drop-off stores, self-service drop boxes, or arranged pick-up from the customer’s
address. Next, the collected packages must be distributed towards their destina-
tions in a multi-hop fashion, travelling through a series of company facilities, and
finally being delivered to their destination by local staff members driving trucks.
Each package to be shipped comes with a service option and at a corresponding
cost. For example, same-day delivery is the fastest delivery option (guaranteed
delivery within the same day that the package is received) and therefore is the
most expensive. This company must continuously monitor its package deliveries
all around the globe to make sure that the delivery guarantees are met, as ser-
vice violations are not acceptable and may cause financial penalties and customer
dissatisfaction.

The whole distribution process is quite complex and certainly requires care-
fully creating an optimized delivery schedule in advance. However, due to situ-
ations that cannot be foreseen in advance, companies also like to monitor what
1 The underlying mechanism that facilitates this is the fact that the stream is mate-

rialized in a table (on disk or in memory) before the join operation takes place.
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happens in reality. Thus, during the actual distribution, many business events
indicating changing package locations are generated as part of daily operations
in this company. Furthermore, processing these events with low-latency is key to
ensuring that timely package delivery can be achieved. For example, one of the
business analysts that work for our mail delivery company would like to create
analytic queries to watch the deliveries in the last 15 minutes and see how they
compare to the target delivery times. S/he can then use this information to make
on-the-fly business decisions such as routing dispatch units in different ways to
avoid potential problems or to help solve existing problems.

In this scenario, reducing latency of continuous analytic queries is key. It
would take too long to dump all delivery events into a data warehouse. Instead,
they should be processed in a streaming fashion. Furthermore, comparing live
delivery time values to target values requires a hybrid query between new event
streams and static reference data. Last but not least, the company may be using
several different SPE instances at different locations, whose results must be ag-
gregated to be able to make more informed decisions about dispatching resources.
This scenario is similar in flavor to the Service Level Agreement monitoring ex-
ample used in Section 3.2. MaxStream can support each of these needs, and
in addition, could persist the results of the operational analysis so that further
analytics could be applied later – to detect repeated trouble spots, for example,
and do more strategic levels of planning.

4.2 Persistent Events in Supply-Chain Monitoring

Supply-chain monitoring involves keeping track of where products appear in
time as they move from initial producers to final consumers. Product locations
are typically kept track of using auto-id technologies (e.g., RFID). Each event
indicates a product-id, event-type, product-class, event-location, and event-time.
Events can be of two types: issue or receipt. One might like to monitor various
complex events over these RFID events:

– For each product class, what is the average cycle time (i.e., the difference
between time of receipt and time of issue)?

– Show the products that arrived late, together with the name of the carrier
company and from/to location.

– Out of stock: Continuously check the available quantity of every sold item
in the back stock and raise an alert whenever the sum of the quantity drops
below the predefined threshold.

In this application, latency is not a major issue, as the sort of analysis to
be done is mostly strategic or tactical. On the other hand, events are arriving
frequently, and all events must be persisted for durability. Other scenarios with
this flavor include the Call Center application used as an example in Section 3.1,
where the main goal was to understand past performance to make tactical or
strategic improvements. As we showed in that section, these types of applications
are easily supported using MaxStream’s features.
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4.3 Other Real-time BI Applications

There are many other BI scenarios that require real-time event processing. Most
of them fall into one or the other of the two patterns sketched above. For example,
fraud detection is a common desire for financial and credit card companies. In
this case, reducing latency is critical, to be able to catch cases of fraud as they
happen. The event information will likely be the basic information about the
transaction, e.g., for credit cards, who is charging what amount for what items
to which card. Additional information about the customer and their buying pat-
terns will need to be included for the analysis. Again, MaxStream supports this
case by allowing the transaction information to be joined with the contextual
information as it streams through the system. On the other hand, quality man-
agement for manufacturing has more of a feel of the supply chain management
application: many events flow through the system as the statistics on produc-
tion flow in. Some are analyzed in real-time (for instance, to find real outliers),
but for the most part the goal is to capture the information for later strategic
analysis of yield, repair records, returns, and so on.

With large organizations, these scenarios become further complicated by the
likelihood that there is not a single stream processing engine nor a single source of
data for correlation. Instead, these organizations often have several databases,
and we may expect, several heterogeneous SPEs (e.g., to be able to exploit
specialized capabilities of different SPEs). In this case, MaxStream’s ability to
bridge across heterogeneous SPEs and data sources will be invaluable. In [5]
we give an example of a simple sales order scenario in which the corporate
headquarters gathers statistics for a map leveraging the SPEs at each of the
worldwide sites. We expect that as more businesses adopt stream processing
engines, this case will become increasingly common, and MaxStream is prepared
to handle it.

5 Feasibility Study

We have discussed MaxSteam’s architecture, and illustrated how it might be
used in real-time business intelligence scenarios. In this section we will show
that in fact, it is feasible to use MaxStream in these ways. In particular, we
will demonstrate that performance is not an issue; the overheads introduced
by MaxStream are negligible for business intelligence applications. We will also
show that the types of statements described in Section 3 above really do work,
and can, in fact, complement and extend an existing business applications.

To accomplish these goals, we use a simplified scenario from the SAP SD
Benchmark, a standard server benchmark that simulates a typical business ap-
plication [23]. The benchmark includes a variety of user transactions to create
orders and delivery documents, check on orders, issue an invoice, and look at
customer order history. Each transaction consists of several dialog steps with
ten seconds of think-time for each. The benchmark measures throughput in the
number of processed dialog steps per minute (SAPs).



Federated Stream Processing 15

SAP SD is not a stream processing benchmark, but it does represent a typical
operational scenario that could be enhanced by the ability to do some real-time
business intelligence on the data. Note that for this application, all events (orders,
deliveries, etc) must be persistently stored, so large data volumes will accumulate
over time. We added to this scenario the ability to do analytics over the incoming
data. In particular, we compared the original SD benchmark with two variations.
In the first variation, we streamed the incoming orders to the SPE for some real-
time analysis (SD + ISTREAM). In the second, we monitored sales, looking for
unusually large orders (SD + Monitoring Select). The processing time at the
SPE was not measured; we only compare the times in MaxStream to see the
effects of our new features (i.e., ISTREAM and monitoring select).

Our system was configured with the MaxStream server on a 4-way quad-core
Intel Tigerton 2.93 GHz with 128GB memory. Sixteen application server blades
were used; each blade was a 2-way quad-core Intel Clovertown 2.33GHz with
16GB memory. The stream processing engine (SPE X) ran on a 4-way dual-core
AMD Opteron 2.2GHz with 64GB memory. All systems were running Linux.
This configuration enabled us to handle 16,000 users.

For the SD + ISTREAM scenario, we used the following continuous INSERT
statement to forward all orders to the SPE for processing:

INSERT INTO STREAM OrderStream

SELECT A.MANDT, A.VBELN, A.NETWR,

B.POSNR, B.MATNR, B.ZMENG

FROM ISTREAM(VBAK) A, VBAP B

WHERE A.MANDT = B.MANDT

AND A.VBELN = B.VBELN;

As new orders are inserted into the VBAK table, they are joined with VBAP
and added to OrderStream for processing by the SPE. VBAK stores order data,
and VBAP holds the line item information for each order (so these tables are
analogous to ORDERS and LINEITEMS in TPC-H [24]). With this scenario
we can observe the overhead in sending the operational data to the SPE for
analytic processing. In the SD + Monitoring Select scenario, we monitor for big
sales orders (totalling over 95 items). The query looks as follows:

SELECT A.MANDT, A.VBELN, B.KWMENG

FROM /*+ EVENT */ VBAK A, VBAP B

WHERE A.NETWR > 95

AND A.MANDT=B.MANDT

AND A.VBELN=B.VBELN;

The input data was modified so that about 1% of queries were big sales orders.
The results of our experiment are shown in Table 1. The maximum through-

put possible with 16,000 users is 96,000 SAPs (dialog steps/minute). In all three
configurations, we are able to achieve close to the maximum, showing that there
is little overhead for forwarding the orders to the SPE or for monitoring orders
with a monitoring select. Since the users order, in aggregate, 533 line items per
second, 533 events are passed to the SPE every second, and only 0.8% more
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SDB SDB + ISTREAM SDB + Monitoring Select

# of SD users 16,000 16,000 16,000

Throughput (SAPs) 95,910 95,910 95,846

Dialog response time (ms) 13 13 13

% DB server CPU utilization 49.8% 50.6% 50.1%

Table 1. MaxStream Performance Results on SAP SD Benchmark

CPU is used than in the original benchmark. Monitoring Select does reduce
the throughput slightly, but the penalty is small. Thus, using MaxStream is a
realistic approach to adding business intelligence capabilities in an operational
scenario.

Note that the main purpose of this feasibility study was to show the utility
of MaxStream in handling realistic operational BI scenarios as well as to see
how much performance overhead was introduced by using MaxStream’s basic
streaming building blocks in exchange for that benefit. We have also done an ex-
perimental study that directly focuses on how MaxStream scales with increasing
input load based on the Linear Road Benchmark [25]. The results of that study
can be found in our technical report [5].

6 Conclusions and Future Directions

Real-time business intelligence is becoming a pressing need for many companies.
Real-time BI offers businesses the ability to optimize their processes, and to get
just a little ahead of the competition, by leveraging their valuable information
assets. But delivering real-time BI requires new platforms which offer the low
latencies of stream processing, the support for analytics of data warehouses, and
the flexible, dynamic access to data of data federation engines.

In this paper, we have described MaxStream, a stream federation engine that
provides a promising approach to this challenge. MaxStream provides access to
heterogeneous stream processing engines, seamlessly integrated with a persistent
database and data federation capability. We described the MaxStream architec-
ture, including the extensions we made to allow data to be streamed through
the engine to an SPE, and back through MaxStream to a client. Through sev-
eral scenarios, we illustrated how these features could be leveraged for real-time
business intelligence applications. Finally, we demonstrated that it is feasible to
leverage these extensions to give operational applications a real-time BI capa-
bility, without incurring significant penalties in performance.

MaxStream is currently in its infancy. As we look ahead, several important
areas of research loom. As we build more data agents for MaxStream, we will need
to leverage a common model and language for the federation layer, but with the
heterogeneity of current SPEs, choosing or creating such a model is a substantial
challenge. Work is underway on this front, and our initial results are documented
in [26]. Today, MaxStream only pushes down entire queries to the SPEs; we plan
to relax this requirement. This will open up many avenues for research. For what



Federated Stream Processing 17

workloads and what types of processing will splitting work across multiple SPEs
make sense? How can we take best advantage of underlying SPEs’ capabilities?
Is there a sensible notion of optimization, and what are the choices and metrics
we need to consider? We plan to build a real business intelligence scenario to
understand what features are most necessary and to prove their value. We believe
that Maxstream can already play an important role in the next generation of
business intelligence systems, and are eager to see how much it can achieve.
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