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Abstract. Investigating the expressiveness of a diagrammatic logic pro-
vides insight into how its syntactic elements interact at the semantic
level. Moreover, it allows for comparisons with other notations. Various
expressiveness results for diagrammatic logics are known, such as the
theorem that Shin’s Venn-II system is equivalent to monadic first order
logic. The techniques employed by Shin for Venn-II were adapted to allow
the expressiveness of Euler diagrams to be investigated. We consider the
expressiveness of spider diagrams of order (SDoO), which extend spider
diagrams by including syntax that provides ordering information between
elements. Fragments of SDoO are created by systematically removing
each aspect of the syntax. We establish the relative expressiveness of
the various fragments. In particular, one result establishes that spiders
are syntactic sugar in any fragment that contains order, negation and
shading. We also show that shading is syntactic sugar in any fragment
containing negation and spiders. The existence of syntactic redundancy
within the spider diagram of order logic is unsurprising however, we find
it interesting that spiders or shading are redundant in fragments of the
logic. Further expressiveness results are presented throughout the paper.
The techniques we employ may well extend to related notations, such as
the Euler/Venn logic of Swoboda et al. and Kent’s constraint diagrams.

1 Introduction

Recent years have seen the development of a number of diagrammatic logics,
including constraint diagrams [1], existential graphs [2], Euler diagrams [3], Eu-
ler/Venn [4], spider diagrams [5], and Venn-II [6]. Each of these logics, except
constraint diagrams, have sound and complete reasoning systems; for constraint
diagrams, complete fragments exist, such as that in [7]. Recently, an extension
of spider diagrams has been proposed that permits the specification of ordering
information on the universal set [8]; this extension is called spider diagrams of
order and is the primary focus of this paper.

By contrast to the relatively large body of work on reasoning with these log-
ics, relatively little exploration has been conducted into their expressive power.
To our knowledge, the first expressiveness result for formal diagrammatic logics



was due to Shin, who proved that her Venn-II system is equivalent to Monadic
First Order Logic (MFOL) [6]; recall, in MFOL all predicate symbols are one
place. Her proof strategy used syntactic manipulations of sentences in MFOL,
turning them into a normal form that could easily be translated into a Venn-
II diagram. Shin’s strategy was adapted to establish that the expressiveness of
Euler diagrams with shading was also that of MFOL [9]. Thus, the general tech-
niques used to investigate and evaluate expressiveness in one notation may be
helpful in other domains.

It has also been shown that spider diagrams are equivalent to MFOL with
equality [10]; MFOL[=] extends MFOL by including =, allowing one to assert
the distinctness of elements. To establish the expressiveness of spider diagrams,
a different approach to that of Shin’s for Venn-II was utilized. The proof strategy
involved a model theoretic analysis of the closure properties of the model sets
for the formulas of the language. In the case of spider diagrams of order, so-
called becasue they provide ordering constraints on elements, it has been shown
that they are equivalent to MFOL of Order [11]; MFOL[<] extends MFOL by
including <, which is interpreted as a strict total order. MFOL[<] is strictly
more expressive than MFOL[=] which, in turn, is strictly more expressive than
MFOL. For this expressiveness result, spider diagrams of order were not directly
compared MFOL[<]. Instead, it was shown that spider diagrams of order could
define precisely the star-free regular languages. It is known that these languages
are also precisely those definable by MFOL[<] [12].

In this paper, we establish the relative expressiveness of fragments of spider
diagrams of order. If two distinct fragments are equivalent in expressive power
then this gives insight into what may be expressed by syntactically different
but semantically equivalent fragments. Such insight allows one to consider the
manner in which any particular semantic concept may be defined syntactically,
possibly leading to more helpful or more appropriate diagrams. If two fragments
have differing expressive power then this allows us to identify when certain syn-
tactic elements are necessary for formulating particular semantic concepts. This
can allow for more effective diagrams to be chosen when defining concepts. In
section 2, we define the syntax and semantics of spider diagrams of order. In sec-
tion 3, we identify natural fragments of spider diagrams of order and our novel
expressiveness results concerning their relative expressiveness.

2 Spider Diagrams of Order

This section provides a brief overview of spider diagrams of order (SDoO),
slightly modified from [8]. Diagram d1 in figure 1 contains two labelled closed
curves, called contours. The diagram d1 contains four minimal regions, called
zones: one zone is inside just P , another inside just Q, and another is outside
both P and Q. The zone inside both P and Q of d1 is shaded. This diagram
also contains two spiders, s and r. The diagram d2 � d3 is a compound spider
diagram of order.



⊲

Fig. 1. A unitary diagram and a compound spider diagram.

First, we formally define the syntax, before proceeding to the semantics. The
contour labels in spider diagrams are selected from a set C. A zone is defined to
be a pair, (in, out), of finite, disjoint subsets of C. The set in contains the labels
of the contours that the zone is inside whereas out contains the labels of the
contours that the zone is outside. The set of all zones is denoted Z. A region is
a set of zones. To describe the spiders in a diagram, it is sufficient to say how
many spiders are placed in each region. Thus, the abstract definition of a spider
diagram will specify the labels used, the zones, the shaded zones and use a set
of spider identifiers to describe the spiders.

Definition 1 (Delaney et. al. [11]). A unitary spider diagram of order,
d, is a quadruple 〈C,Z, ShZ, SI〉 where:

1. C = C(d) ⊆ C is a finite set of contour labels,
2. Z = Z(d) ⊆ {(in, C − in) : in ⊆ C} is a set of zones,
3. ShZ ⊆ Z(d) is a set of shaded zones, and
4. SI = SI(d) ( N+ × PZ is a finite set of spider identifiers such that for all

(n, r), (m, s) ∈ SI(d) if r = s then n = m.

The set of spiders in d is defined to be S(d) = {(i, r) : (n, r) ∈ SI(d) ∧ 1 ≤
i ≤ n}. The symbol ⊥ is also a unitary spider diagram of order. If d1 and d2

are spider diagrams of order then (d1 ∨ d2), (d1 ∧ d2), (d1 � d2) and ¬d1 are
spider diagrams of order. Any diagram that is not a unitary diagram is a
compound diagram.

The abstract syntax of the diagram d1 in figure 1 is

C(d1) = {P,Q},
Z(d1) = {({}, {P,Q}), ({P}, {Q}), ({Q}, {P}), ({P,Q}, {})},

ShZ(d1) = {({P,Q}, {})},
SI(d1) = {(1, {({P,Q}, {})}), (1, {({Q}, {P}), ({P,Q}), {}})}.

By convention, we employ a lower-case d to denote a spider diagram. An
upper case D will denote an arbitrary diagram. It is also useful to identify which
zones could be present in a unitary diagram, given the label set, but are not
present; semantically, missing zones provide information.



Definition 2 (Howse et. al. [5]). Given a unitary diagram, d, a zone (in, out)
is missing from d if it is in the set {(in, C(d) − in) : in ⊆ C(d)} − Z(d) with
the set of such zones denoted MZ(d). If MZ(d) = ∅ then d is in Venn form.

Unitary diagrams make statements about sets (represented by contours) and
their cardinalities (by using spiders and shading). The spiders in d1, figure 1,
represent distinct elements in the sets represented by the regions in which they
are placed; spiders provide lower bounds on set cardinality. The spider r provides
disjunctive information: the element it represents is in one of the sets represented
by the zones in which it is placed. Shading places an upper bound on set car-
dinality: in a shaded region, all elements must be represented by spiders. Taken
together, the spiders s and r allow for the set represented by the shaded zone to
contain between 1 and 2 elements. The semantics of spider diagrams are model-
based: a model is an assignment of sets to contour labels that agrees with the
intended meaning of the diagram.

Definition 3 (Delaney et. al. [11]). An interpretation is a triple I = (U,<
, Ψ) where U is called the universal set and Ψ : C → PU is a function that assigns
a subset of U to each contour label and < is a strict total order on U . The
function Ψ can be extended to interpret zones and regions as follows:

1. each zone, (a, b) ∈ Z, represents the set
⋂
l∈a

Ψ(l) ∩
⋂
l∈b

(U − Ψ(l)) and

2. each region, r ∈ PZ, represents the set which is the union of the sets repre-
sented by r’s constituent zones.

If U = ∅ then I is the empty interpretation.

Definition 4 (Delaney et. al. [11]). Let I = (U,<, Ψ) be an interpretation
and let d (6=⊥) be a unitary spider diagram. Then I is a model for d, denoted
m |= d, if and only if the following conditions hold.

1. The missing zones condition All of the missing zones represent the empty
set, that is,

⋃
z∈MZ(d)

Ψ(z) = ∅.

2. The function extension condition There exists an extension of Ψ to
spiders, Ψ : C ∪ S(d)→ PU for which the following hold.
(a) The spiders’ locations condition All spiders represent elements (strictly,

singleton sets) in the sets represented by the regions in which they are
placed: ∀(i, r) ∈ S(d) (Ψ(i, r) ⊆ Ψ(r) ∧ |Ψ(i, r)| = 1).

(b) The distinct spiders condition Distinct spiders denote distinct ele-
ments: ∀s1, s2 ∈ S(d)(Ψ(s1) = Ψ(s2)⇒ s1 = s2).

(c) The shading condition Shaded regions represent a subset of elements
denoted by spiders: Ψ(ShZ(d)) ⊆

⋃
s∈S(d)

Ψ(s).

If d =⊥ then no interpretation is a model for d.



The interpretation m = (U,<, Ψ) where U = {1, 2, 3, 4}, < is the natural
order over U , Ψ(P ) = {2} and Ψ(Q) = {2, 3} is a model for the diagram d1

in figure 1, but not for d2 or d3. For compound diagrams, the definition of
a model extends inductively. In the case of ¬D1, D1 ∨ D2 and D1 ∧ D2 the
extension is obvious. A diagram of the form D1 � D2 provides a constraint on
the interpretation of <. For instance, d2 � d3 in figure 1 asserts, in part, that no
elements in P ∩Q can be ordered after the elements represented by s and r in d2.
We need to ensure that the ordering information provided by an interpretation
respects the intended meaning of the diagram.

Definition 5 (adapted from Ebbinghaus & Flum [13]). Let I1 = (U1, <1

, Ψ1) and I2 = (U2, <2, Ψ2) be interpretations where U1 and U2 are disjoint. The
ordered sum of I1 and I2, denoted I1 + I2, is defined to be the interpretation
I3 = (U3, <3, Ψ3) such that

1. U3 = U1 ∪ U2

2. <3=<1 ∪ <2 ∪{(u1, u2) : u1 ∈ U1 ∧ u2 ∈ U2}, and
3. for each c ∈ C, Ψ3(c) = Ψ1(c) ∪ Ψ2(c).

Definition 6. Let I = (U,<, Ψ) be an interpretation and let D be a compound
diagram. Then I is a model for D provided:

1. if D = D1 ∨D2 then I models D whenever I models D1 or I models D2,
2. if D = D1 ∧D2 then I models D whenever I models D1 and I models D2,
3. if D = ¬D1 then I models D whenever I does not model D1, and
4. if D = D1 �D2 then I models D whenever there exist interpretations I1 and

I2 such that I = I1 + I2 and I1 models D1 and I2 models D2.

For the purpose of establishing relative expressiveness, we need the notion of
satisfiability and to know when two diagrams are semantically equivalent.

Definition 7 (Delaney et. al. [11]). Spider diagrams of order, D1 and D2,
are semantically equivalent provided they have exactly the same models. If
D1 has a model then we say that D1 is satisfiable.

3 Expressiveness

We will now establish the relative expressiveness of various fragments of spi-
der diagrams of order. In subsection 3.1 we define our notation for discussing
fragments of SDoO and in subsection 3.2 we summarize previously known ex-
pressiveness results. Then in subsections 3.3 and 3.4 we provide definitions and
results that are helpful for our analysis. The remainder of this section provides
new expressiveness results.



[CDNOSpSh] −C −D −N −O −Sp −Sh
−C = – = = = −C
−D = – = = = −D
−N – = −N
−O < < < < – < < −O
−Sp < – −Sp
−Sh – −Sh

Table 1. Summary of known relative expressiveness results.

3.1 Fragments of Spider Diagrams of Order

We observe that spider diagrams of order can be thought of as being built
from Euler diagrams, with various syntactic additions. We view (unitary) Euler
diagrams as the basic building blocks and this motivates our method of defining
natural fragments of SDoO. To these basic building blocks we can add connec-
tives (∧, ∨, �), the negation operation (¬), spiders, and shading. Using any set
of these additions to Euler diagrams gives rise to a fragment of SDoO.

We denote the unitary Euler diagrams fragment by ED. Using notation sim-
ilar to that seen in description logics, ED[C] is taken to be the class of Euler
diagrams formed by joining them with the conjunction, ∧, operator. Equiva-
lently, this is the fragment of SDoO in which there are no spiders, no shading,
no negation, and the only logical connective is ∧. If we wanted to include spiders,
Sp and conjunction, C, but no other operators and no shading then this frag-
ment would be denoted by ED[C, Sp]. Given some list, IncSyn, that is a sublist
of [C,D,N,O, Sp, Sh], the fragment ED[IncSyn] is then defined in the obvi-
ous manner, where C=conjunction, D=disjunction, N=negation, O=order (�),
Sp=spiders, and Sh=shading. Thus, ‘full’ SDoO is ED[C,D,N,O, Sp, Sh]. Im-
portantly, we define it to be the case that fragments with no shading also do not
include unitary diagrams with missing zones, since such zones can be replaced
by shaded zones. We will frequently omit ED from the fragment description and
write, for example, [CSp] rather than ED[C, Sp].

3.2 Known expressiveness results

Known results for relative expressive power are summarized in table 1; all of
these results were presented in the introduction, follow immediately from them,
or appear elsewhere in the literature (primarily in [5]). The column headings give
a fragment of SDoO, with the second column considering SDoO: [CDNOSpSh].
The third through eight columns define the fragment of [CDNOShSp] with-
out the syntax indicated by the heading i.e. the −C column is the fragment
[DNOSpSh]. Similarly, each row removes a (second) piece of syntax from the
fragment, giving another fragment. Thus, column 3 in row 5 identifies that



Fig. 2. Creating an α-diagram.

[DNOSpSh] has greater expressiveness than [DNSpSh]. In this paper, we com-
plete most of the missing entries in table 1.

3.3 The α-diagram fragments

Spiders whose habitats comprise more than one zone make disjunctive state-
ments within a unitary diagram. However, it has been observed that this dis-
junctive information can also be made using a compound diagram. For example,
d4 in figure 2 is semantically equivalent to d5∨d6. One approach to investigating
expressiveness is to consider only diagrams whose spiders are placed in single
zones. Such diagrams are called α-diagrams [5].

Theorem 1 (Howse et al. [5]). Every unitary diagram is semantically equiv-
alent to a disjunction of unitary α-diagrams.

Theorem 2. Let D1 be drawn from a fragment, F , of SDoO that contains

1. disjunction (D), or
2. conjunction (C) and negation (N).

Then there exists an α-diagram, D2, also in F , such that D1 is semantically
equivalent to D2.

Proof (Sketch). The proof follows by induction on the depth of D1 in the induc-
tive construction of diagrams, with the base case provided by theorem 1.

3.4 Literals

As well as reducing expressiveness questions to those for α-diagrams, it is also
helpful to consider unitary diagrams that contain information in, at most, one
zone. For example, the unitary α-diagram, d7, in figure 3 contains exactly two
zones which provide semantic information, and is semantically equivalent to
d8 ∧ d9. The diagrams d8 and d9 are called literals, since they give information
about exactly one zone; we say that they are literal parts of d7. All diagrams in
this example are in Venn form; missing zones would provide semantic information
and we are seeking diagrams that provide information about a single zone. Our
definition of a literal extends that of an Euler diagram literal [9].



Fig. 3. Creating a diagram in literal form.

Definition 8. Let d be a unitary α-diagram in Venn form that contains at most
one zone which contains spiders or shading. Then d and ¬d are called literals.
The diagram d is a positive literal, whereas ¬d is a negative literal.

Definition 9. Let D be an SDoO. If each unitary part of D is a literal or ⊥
then D is in literal form.

Definition 10. Let d1 (6=⊥) be a unitary α-diagram. A literal part of d1 is
a positive literal, d2, that is formed from d1 by adding all missing zones to the
zone set and shaded zone set and, subsequently, deleting the spiders and shading
from all except at most one zone.

Theorem 3. Let d (6=⊥) be a unitary α-diagram. Then d is semantically equiv-
alent to the conjunction of its literal parts.

Proof (Sketch). Since d is a unitary α-diagram it contains no disjunctive informa-
tion, and so the semantics of the whole diagram is equivalent to the conjunction
of the constraints in each zone.

Theorem 4. Let D1 be drawn from a fragment, F , of SDoO that contains either

1. disjunction (D) and conjunction (C), or
2. disjunction and negation (N), or
3. conjunction and negation (N).

Then there exists D2, also in F , in literal form such that D1 is semantically
equivalent to D2.

Proof (Sketch). Noting that conversion of D1 to an α-diagram requires either
disjunction or both conjunction and negation, we can use theorem 2 to reduce D1

to an α-diagram. The proof then follows by induction on the depth of D1 in the
inductive construction of diagrams, with the base case provided by theorem 3.

3.5 Removing spiders

Some of our fragments do not contain spiders so we need to know whether their
absence impacts expressiveness. Intuitively, one might expect their removal to
decrease expressiveness, but this is not always so. Figure 4 demonstrates that



Fig. 4. Removing spiders from literal d8 in figure 3.

it is possible to remove spiders from a positive literal without altering expres-
siveness provided we have access to negation, order, and shading: d8 (figure 3)
is semantically equivalent to ¬d10 ∧ ¬(¬d11 � ¬d12), in figure 4.

Definition 11. Let d1 be a positive literal with a zone z containing spiders.
Then the spider-free diagram associated with d1 is a copy of d1 except that z
contains no spiders and z is shaded.

We adopt the notation dn to mean d� d� ...� d (n times).

Theorem 5. Let d1 be a positive literal, with the zone z containing exactly n
spiders. Let d2 be the spider-free diagram associated with d1. If z is not shaded
then d1 is semantically equivalent to (¬d2)n. If z is shaded then d1 is semantically
equivalent to (¬d2)n ∧ ¬(¬d2)n+1.

Proof (Sketch). The models of ¬d2 are those interpretations containing at least
one element in Ψ(z). The models of ¬d2�¬d2 are, therefore, those interpretations
which contain at least two elements in Ψ(z). The result follows.

Theorem 6. Let D1 be be a diagram drawn from any fragment, F , of spider
diagrams of order, provided that F contains negation (N), order (O), and shad-
ing (Sh), and at least one of conjunction (C) and disjunction (D). Then D1 is
semantically equivalent to some diagram, D2, also in F , such that D2 contains
no spiders.

Proof. Since we have negation, having one or both of conjunction and disjunction
does not alter expressiveness. Thus, without loss of generality, our proof assumes
we have access to both C and D. Theorem 2 allows us to replace D1 by an
α-diagram, whilst remaining within F . Theorem 4 allows us to reduce the α-
diagram to literal form, again whilst remaining within F (this replacement uses
C). The result then essentially follows by theorem 5 (which uses N and C).

Theorem 6 allows us to complete some of row concerning removal of spiders
in table 1; see table 2 (new results shown in bold typeface).

Theorem 7. Euler diagrams of order are equivalent in expressiveness to SDoO.

Proof (Sketch). This theorem is a restatement of theorem 6 with respect to the
specific fragment ED[C,D,N,O, Sh].



[CDNOSpSh] −C −D −N −O −Sp −Sh
−Sp = = = < – −Sp

Table 2. Expressiveness results when removing spiders.

There are two entries to be completed in table 2. Concerning the first, spiders
are removed from ED[C,D,O, Sp, Sh] to give ED[C,D,O, Sh]. The following
theorem allows us to deduce that this reduces expressiveness.

Theorem 8. Let D ∈ ED[C,D,O, Sh]. If D is satisfiable then I = (∅, <, Ψ)
models D.

Proof (Sketch). The proof proceeds by induction on the depth of D in the in-
ductive construction. Assume D has a model. Trivially, if D is a unitary diagram
then D contains no spiders and I models D. If D = D1 ∧D2 or D = D1 ∨D2

then the result follows trivially. Consider D = D1 � D2. D is satisfiable if and
only if both D1 and D2 are satisfiable. Should this be the case, I models D1

and I models D2, by assumption. Now, I = I + I, so I models D. Hence D is
modelled by the empty interpretation.

Corollary 1. ED[C,D,O, Sp, Sh] is more expressive than ED[C,D,O, Sh].

Theorem 9. Any diagram drawn from ED[C,D,N,O] is modelled by every in-
terpretation or is not modelled by any interpretation.

Proof (Sketch). The property of being equivalent to true or equivalent to false
holds for the unitary diagrams in this language, and the property is preserved
when formulas are conjoined, disjoined, negated or connected with product, (O).

Thus, the ED[C,D,N,O] fragment is not terribly interesting: it can only
make statements that are either valid or contradictory. We immediately have
the following corollary and are now able complete the ‘remove spiders’ row.

Corollary 2. ED[C,D,N,O, Sp] is more expressive than ED[C,D,N,O].

3.6 Removing shading

We now proceed to show that, under some circumstances, shading is syntactic
sugar. For example, the diagram d13 ∧ d14 presented in figure 3 is semantically
equivalent to d8 in figure 5. Intuitively, d8 tells us that the shaded zone represents
a set containing exactly 1 element, which is equivalent to saying there are at least
1 element (d13) and not at least 2 elements (¬d14).

Theorem 10. Let d be a positive literal with a shaded zone, z. Let d1 be a copy
of d, except that z contains no shading. Let d2 be a copy of d except that z con-
tains no shading and exactly one more spider than in d. Then d is semantically
equivalent to d1 ∧ ¬d2.



Fig. 5. Removing shading from literal d8 in figure 3.

[CDNOSpSh] −C −D −N −O −Sp −Sh
−Sh = = = = – −Sh

Table 3. Expressiveness results when removing shading.

Proof (Sketch). Let I = (U,<, Ψ) be an interpretation that models d. It follows
that |Ψ(z)| = n, where n is the number of spiders in z, since z is shaded and d
is an α-diagram. Clearly, I is a model for d1, since z contains n spiders in d1. In
d2, z contains n+1 spiders, so any model for d2 has |Ψ(z)| ≥ n+1. Thus, I does
not model d2, so I models ¬d2. Hence, I models d1 ∧ ¬d2. Conversely, suppose
that I models d1∧¬d2. Then |Ψ(z)| ≥ n (from d1) and |Ψ(z)| < n+ 1 (from d2).
Since d is a literal, I models d. Hence d is semantically equivalent to d1 ∧ ¬d2.

Theorem 11. Let D1 be a diagram drawn from any fragment, F , of spider
diagrams of order, provided that F contains negation (N), spiders, and either
conjunction (C) or disjunction (D) (or both). Then D1 is semantically equivalent
to some diagram, D2, also in F , such that D2 contains no shading.

Proof (Sketch). The proof is similar to that of theorem 6.

This theorem allows us to complete some of row concerning removal of shad-
ing in table 1; see table 3 (all entries are new results). There are two entries
left to be completed in the removal of shading row in table 3. Concerning the
first, shading is removed from ED[C,D,O, Sp, Sh] to give ED[C,D,O, Sp]. We
observe that an entirely shaded unitary diagram is satisfiable, but does not have
models of arbitrarily large cardinality. Without shading and negation, we cannot
provide upper bounds on set cardinality, captured by the following theorem.

Theorem 12. Any diagram drawn from ED[C,D,O, Sp] that is satisfiable has
models of arbitrarily large cardinality.

Proof (Sketch). This property holds of unitary diagrams which contain only
spiders, and it is preserved when formulas are combined using conjunction, dis-
junction and product.

Corollary 3. ED[C,D,O, Sp, Sh] is more expressive than ED[C,D,O, Sp].

For the final entry in this row, we have a further corollary to theorem 9:

Corollary 4. ED[C,D,N,O, Sh] is more expressive than ED[C,D,N,O].



3.7 Removing Logical Operators

We now give a further four results concerning relative expressiveness, where we
consider the removal of a logical operator from a fragment. The proofs of these
results all use model theoretic arguments. First, we observe that any diagram,
D, drawn from ED[C,O, Sp, Sh] that is satisfied by the empty interpretation
does not contain spiders. Thus, D can make assertions such as a particular zone
represents the empty set, or that elements in the set represented by one zone
cannot be ordered before elements in another such set. Therefore, given a non-
empty model for D, we can remove elements from the universal set (updating the
interpretations of < and the contour labels appropriately) and obtain another
model for D. To make this insight precise, we first define a sub-interpretation of
an interpretation.

Definition 12 (adapted from Manzano [14]). A sub-interpretation of an
interpretation I = (U,<, Ψ) is an interpretation, Ir = (Ur, <r, Ψr) where

1. Ur ⊆ U
2. <r=< ∩(Ur × Ur), and
3. Ψr(c) = Ψ(c) ∩ Ur, for each c ∈ C.

Lemma 1. Let I = (U,<, Ψ) be an interpretation. with sub-interpretations Is =
(Us, <s, Ψs). If I = I1 + I2 for some interpretations I1 = (U1, <1, Ψ1) and I2 =
(U2, <2, Ψ2) then

Is = I1,s + I2,s

where I1,s and I2,s are sub-interpretations of I1 and I2 with universal sets U1∩Us

and U2 ∩ Us respectively.

Theorem 13. Let D be a diagram in ED[C,O, Sp, Sh] such that (∅, <, Ψ) mod-
els D. Let I = (U,<, Ψ) be a model for D. Then any sub-interpretation of I also
models D.

Proof. Again, the result proceeds by induction where the interesting case is
D = D1 � D2. Given that the empty interpretation models D, it also models
both D1 and D2. I = I1 + I2 where I1 and I2 are models for D1 and D2

respectively. Given a sub-interpretation, Is, of I, by lemma 1 Is = I1,s +I2,s and
by assumption I1,s and I2,s model D1 and D2 respectively. Hence Is models D1.

Corollary 5. ED[C,D,O, Sp, Sh] is more expressive than ED[C,O, Sp, Sh].

To justify corollary 5, constructD = d15∨d16 (figure 6) in ED[C,D,O, Sp, Sh]
where d15 is unitary, containing no spiders and fully shaded, and d16 is unitary,
containing exactly two spiders and fully shaded. D is satisfied by the empty
interpretation (this satisfies d15) and is satisfied by any model with exactly two
elements in the universal set (this satisfies d16). Take any model for D with
two elements and create a sub-interpretation with one element. This is not a
model for D, so ED[C,D,O, Sp, Sh] can axiomatise more classes of interpreta-
tions than ED[C,O, Sp, Sh]. For corollary 6, observe that D = ¬(¬d15 ∧ ¬d16)
(d1 and d2 as above) has same models as d15 ∨ d16, so the proof is similar.



Fig. 6. An example to justify corollary 5

Corollary 6. ED[C,N,O, Sp, Sh] is more expressive than ED[C,O, Sp, Sh].

Corollary 7. ED[C,D,N,O, Sh] is more expressive than ED[C,D,O, Sh].

Finally, consider diagrams in ED[C,D,O, Sp].

Theorem 14. Let D ∈ ED[C,D,O, Sp]. If D is modelled by (∅, <, Ψ) then
every interpretation models D.

Proof (Sketch). Any unitary diagram in this fragment satisfied by the empty
interpretation does not contain any spiders. Since there is no shading (and,
therefore, no missing zones), such a diagram is satisfied by every interpretation.
It can be shown, by induction, that any compound diagram, D, satisfied by the
empty interpretation is also satisfied by every interpretation:

Corollary 8. ED[C,D,N,O, Sp] is more expressive than ED[C,D,O, Sp]

To justify corollary 8, observe that the unitary diagram that contains no contours
and exactly one spider is modelled by every interpretation except the empty
interpretation. Therefore its negation is modelled by the empty interpretation,
but has no other models.

3.8 Summary

Table 4a summarises the relative expressive power of fragments of the spider
diagram of order logic, including the results in this paper (presented in bold
typeface) and previously known results. We can use table 4a to deduce the ex-
pressive power of some fragments, due to the previously known expressiveness
results. These results and deductions are presented in table 4b. Each entry identi-
fies the expressiveness of the fragment obtained by removing syntax as indicated
by the row and column heading. For example, the last row of the third column
gives the expressiveness of ED[D,N,O, Sp].

A different way to view the expressive power of a logic is to identify which reg-
ular languages it is capable of defining. It is known that MFOL[<] (equivalently,
SDoO) is capable of defining precisely the star-free regular languages [12] and
we have recently shown that MFOL[=] (equivalently SD) is capable of defining
precisely the commutative star-free regular languages [15] (a language is com-
mutative if it is closed under permutation). Thus, the table 4b can be rewritten
in terms of expressiveness as compared to regular languages, where > defines
Σ∗ and ⊥ defines ∅ (the empty language).



[CDNOSpSh] −C −D −N −O −Sp −Sh
−C = – = = = −C
−D = – < = = = −D
−N < – = < < −N
−O < < < < – < < −O
−Sp = = = < < – < −Sp
−Sh = = = < = – −Sh

(a) Summary of results shown in this section.

[CDNOSpSh] −C −D −N −O −Sp −Sh
−C MFOL[<] – MFOL[=] MFOL[<] MFOL[<] −C
−D MFOL[<] – MFOL[=] MFOL[<] MFOL[<] −D
−N – MFOL[=] MFOL[<] −N
−O MFOL[=] MFOL[=] MFOL[=] MFOL[=] – MFOL MFOL[=] −O
−Sp MFOL[<] MFOL[<] MFOL[<] MFOL[<] MFOL – >,⊥ −Sp
−Sh MFOL[<] MFOL[<] MFOL[<] MFOL[=] >,⊥ – −Sh

(b) Expressiveness in terms of classes of symbolic logic.
Table 4. A summary of the presented results.

4 Conclusion

The key results in this paper concern the relative expressiveness of fragments
of spider diagrams of order. Perhaps surprisingly, we have shown that spiders
and shading can each be removed from certain fragments whilst maintaining
expressiveness. The model theoretic analysis we have provided for some of the
fragments also provide insight into the kinds of statements that the diagrams in
these fragments can make. Whilst we completed 14 of the 36 entries in table 1,
5 gaps remain. We conjecture that the two missing entries in the −N row will
be <, but this is not clear. A difficultly with analysing these two cases stems
from the fact that there is no analogy to De Morgan’s Laws for negation and
�. Thus, in fragments containing N and O , there are no obvious normal forms
that explicitly reflect the semantics of the diagrams.

The proof strategies used throughout the paper are likely to adapt to other
systems, such as the Euler/Venn logic. Whilst this logic is less expressive than
spider diagrams, its strong syntactic similarity justifies our claim. Moreover, the
kinds of results we have provided concerning when the removal of syntax impacts
expressiveness may well provide a basis for similar conjectures in Euler/Venn and
other related notations. We expect to use these results when developing more
expressive notations based on SDoO: they will inform us about what syntax
it is necessary to include. Our immediate plans involve extending SDoO to a
monadic second order logic, since MSOL is capable of defining precisely the
regular languages.



As well as providing insight into what can be expressed with the presence
or absence of certain pieces of syntax, there are further benefits to this work
concerning, for instance, the development of reasoning systems. For example,
theorem 5 can be restated as a (syntactic) inference rule. Now consider a frag-
ment, F1, from which we can remove spiders using this inference rule. We can,
therefore, immediately obtain a sound and complete inference system for F1 pro-
vided F2 is sound and complete, where F2 is F1 without spiders; SDoO is an
example of such an F1. Currently, there is no sound and complete set of inference
rules for SDoO, so the results in this paper may aid in their development.
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