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Abstract. Association rule mining is well-known to depend heavily on
a support threshold parameter, and on one or more thresholds for in-
tensity of implication; among these measures, confidence is most often
used and, sometimes, related alternatives such as lift, leverage, improve-
ment, or all-confidence are employed, either separately or jointly with
confidence. We remain within the support-and-confidence framework in
an attempt at studying complementary notions, which have the goal of
measuring relative forms of objective novelty or surprisingness of each
individual rule with respect to other rules that hold in the same dataset.
We measure novelty through the extent to which the confidence value is
robust, taken relative to the confidences of related (for instance, logically
stronger) rules, as opposed to the absolute consideration of the single rule
at hand. We consider two variants of this idea and analyze their logical
and algorithmic properties. Since this approach has the drawback of re-
quiring further parameters, we also propose a framework in which the
user sets a single parameter, of quite clear intuitive semantics, from which
the corresponding thresholds for confidence and novelty are computed.

1 Introduction and Related Work

Association rule mining is a process by which a transactional or relational dataset
is explored in an attempt at identifying implications among its elementary com-
ponents (items or attribute values). The syntax of implications is very sugges-
tive of cause-effect relationships; therefore, such syntax is welcome by human
decision-makers and domain experts, who can analyze actions to be taken on
the basis of the causality intuitively suggested by the implications found.

The idea of expressing knowledge extracted from data in a form of implica-
tions has been proposed in a myriad of contributions, many of these in a manner
independent of each other. An early development, largely unknown, that already
offered the current notion of association rules as a mere part of a much more
expressive logic-based system is described in [20]. The research area of Machine
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Learning has contributed also many algorithms to “learn rules from examples”,
which, often, amounts to identifying implications or variants thereof. Purely logi-
cal implications have been explored in many contributions (see [16], [35], and the
references there for one of the settings, and [23], [25] for closely related perspec-
tives); a proposal that gave the topic of research and applications of association
rules inmense momentum, was the description in [2] of the usefulness of param-
eterizing the association mining process according to a support constraint and
a confidence constraint (or “precision” in [30]). In fact, the support constraint
opened the door to the design of practically feasible algorithms, starting with [3];
in fact, different datasets often require different algorithmics: see the outcomes
of the FIMI competition [14] and the alternatives described in the survey [12].
On the other hand, there is a clear need of quantifying “degrees of implication”
because purely logical implications turn out not to match exactly the needs of
practical association mining projects. However, several criticisms could be put
forward about confidence as a measure of “degree of implication”, and a large
number of alternatives have been proposed, evaluated, and studied; the litera-
ture about these notions is, in fact quite large [17], [19], [21], [37]. A good survey
with many references is [18].

Yet, we prefer to develop our proposal in the context of support and con-
fidence bounds, for several reasons. First, conditional probability is a concept
known to many educated users from a number of scientific and engineering dis-
ciplines, so that communication with the data mining expert is simplified if our
measure is confidence. Second, as a very elementary concept, it is the best play-
ground to study other proposals, such as our contribution here, which could be
then lifted to other similar parameters. Third, we believe that, in fact, our rela-
tive measures will make up for many of the objections raised against confidence.
Additionally, it must be taken into account that the quantity of data is usually
insufficient to test the extremely large number of hypotheses given by the set of
all possible rules, even if schemes more efficient than the Bonferroni guarantees
are employed; and it has been observed and argued that the combination of
support and confidence is already very good at discarding rules that are present
only as statistical artifacts and do not really correspond to correlations in the
phenomenon at the origin of the dataset [32].

Now, let us put forward the following considerations. The outcome of a data
mining project is expected to offer some degree of novelty. A wide spectrum of
subjective considerations regarding the user’s previous knowledge can be con-
sidered, and, of course, novelty with respect to knowledge existing previously
to the data mining process is hard to formalize. But one fact is clear: novelty
cannot be evaluated in an absolute form; it refers to knowledge that is somehow
unexpected, and therefore some expectation, lower than actually found, must
exist, due to some alternative prediction mechanism. Additionally, an intuitive
“rule of thumb” is that the amount of novel facts must be low in order that
novelty is actually useful.

We propose to measure the novelty of each rule with respect to the rest of the
outcome of the same data mining process. To do this, we resort to recent advances



in the construction of irredundant bases and in mathematical characterizations
of the most natural notion of redundancy. As we shall see, a redundant rule
is so because we can know beforehand, from the information in a basis, that
its confidence will be above the threshold. Pushing this intuition further, an
irredundant rule in the basis is so because its confidence is higher than what
the rest of the basis would suggest: this opens the door to asking, “how much
higher?”. If the basis suggests, say, a confidence of 0.8 (or 80%) for a rule, and the
rule has actually a confidence of 0.81, the rule is indeed irredundant and brings
in additional information, but its novelty, with respect to the rest of the basis, is
not high; whereas, in case its confidence is actually 0.95, quite higher than the
0.8 expected, the fact can be considered novel, in that it states something really
different from the rest of the information mined. We provide a new notion that
formalizes this intuition, and show that it indeed refines very much the data
mining process, but has a limitation due to being too close to a fully logical
approach. Then we relax slightly the definition into a more useful variant, and
we study both concepts.

The main notions to be defined below are similar to the “pruning” proposal
from [29], in that the intuition is the same; two major differences are, first, that
we will work on an already heavily reduced basis, so that a large portion of the
pruning becomes unnecessary, and that for what remains, the pruning in [29]
is based on the χ2 statistic, whereas we will look instead into the confidence
thresholds that would make the rule logically redundant. Our notions are also
similar to the notion of improvement, proposed in [7] (and also briefly discussed
in [29], although we are not aware of that proposal having received further at-
tention); this quantity also attempts at discarding uninteresting rules due to the
same intuitions as ours; but it is a measure of an absolute, additive confidence
increase, with no reference to representative rules or standard redundancy, and
it only allows for varying the antecedent into a smaller one, keeping the same
consequent. Our quotient-based definitions are more powerful, enjoy better algo-
rithmic properties than those currently known for the analogous difference-based
alternative, and are also, in our opinion, more natural.

Our notions have some surface similarity as well with the notion of all-
confidence [33] and the related concept of m-patterns [31]. However, these no-
tions are rather restrictive, and provide only strong “niches” where all the sets
of attributes within an output pattern depend heavily pairwise among them.
We wish to depart in a lesser degree from the standard association rule setting.
On the other hand, a strong point of these notions is that they bring in an an-
timonotonicity property to prune the search space. Instead, we just employ a
support bound for its antimonotonicity property, and discuss our contribution
in terms of postprocessing the output of a standard frequent closed set miner.

Each of these additional measures, and ours are not exceptions, raises an
additional difficulty. For a vast majority of datasets, already the setting of a
support and confidence value by a human requires enormous expertise and intu-
ition, and/or insistingly repeated runs of the computation process with different
values. Few works discuss the setting of the support threshold for association



rules; worth mentioning are the works [6], [13], [22], and [24], all of which pro-
vide interesting advances for the case where the association rules are to be used
as a classifier (which is not our case here), using the additional information that
one of the attributes will be a as target class; this opens the door to using cover-
age analysis or criteria related to the ROC curve to orient the decision of which
support threshold to use. Many algorithms related to Machine Learning have
a similar criticism; say, the parameter corresponding to the box constraint of
the soft-margin support vector machines, as one mere example. Many successful
algorithms are so through the identification of some sort of autonomic or semi-
autonomic self-adjustment of the parameters, thus freeing the user from having
to choose a value for them.

However, fully removing all parameters would not be the best choice either. It
is clear that different characteristics of datasets (largish or smallish transactions,
large or small deviations from the average in the transaction sizes, large or small
universe of items, more uniform or less uniform distributions of the individual
items) are likely to call for somewhat tailored explorations. Therefore, the data
mining process needs some way of tuning the exploration to the dataset at hand.
We propose here an interpretation of confidence that allows us to suggest values
for the bounds on our new novelty parameters, automatically from the confidence
bound.

1.1 Redundancy among Association Rules

We start our analysis from one of the notions of redundancy defined formally first
in [1], but employed also, generally with no formal definition, in several papers
on association rules; thus, we will qualify sometimes this redundancy notion as
“standard”. We give up front two equivalent characterizations of the notion: the
second one was proposed, as nearly identical “covering”-like simplifications, in
several independent sources ([1], [26], [36]); the fact that they are equivalent to
standard redundancy, instead of being a simplified variant of it, is quite recent [5].

We denote itemsets by capital letters from the end of the alphabet, and
use juxtaposition to denote union, as in XY . For a given dataset D, consisting
of transactions, each of which is an itemset labeled with a unique transaction
identifier, we can count the support s(X) of an itemset X, which is the cardinality
of the set of transactions that contain X. The confidence of a rule X → Y is
c(X → Y ) = s(XY )/s(X).

Lemma 1. [5] Consider two association rules, X0 → Y0 and X1 → Y1. The
following are equivalent:

1. The confidence and support of X0 → Y0 are always larger than or equal to
those of X1 → Y1, in all datasets; that is, for every dataset D, c(X0 → Y0) ≥
c(X1 → Y1) and s(X0Y0) ≥ s(X1Y1).

2. X1 ⊆ X0 ⊆ X0Y0 ⊆ X1Y1.

The fact that 2 implies 1 is easy to see and was pointed out in the references
indicated. The fact that 1 implies 2 is nontrivial and much more recently shown.



Whenever rules X0 → Y0 and X1 → Y1 fulfill either of the two equivalent
conditions, we say that X0 → Y0 is redundant with respect to X1 → Y1. As an
example, for items A, B, C, and D, the rule AB → C is redundant with respect
to rule A → BC, and is also redundant with respect to AB → CD. The first
of the two equivalent forms of definition is akin to the definition of entailment
in purely logic-based studies, and we will use sometimes the phrase “logically
stronger” to refer to a rule that makes another one redundant with respect to
standard redundancy.

Note that the rules X → Y and X → XY are mutually redundant, in
fact fully equivalent because their confidence s(XY )/s(X) and support s(XY )
always coincide. Therefore we consider all association rules where the right-hand
side always includes the left-hand side, although for the purpose of showing
them to the user the repeated items of the left-hand side will be removed from
the right-hand side. This simple convention greatly simplifies the mathematical
development.

There are several alternative notions of redundancy in the literature; see [5]
for further comparisons among a few of them. For this particular notion we
have just given, the aim is clear: whatever the dataset under analysis, and the
support and confidence parameters, if we find that rule X1 → Y1 appears among
the mined rules by passing the support and confidence thresholds, any other rule
X0 → Y0 showing standard redundancy with respect to it is known to be also in
the set of mined rules without need to inspect them to check out. This is because
the support and confidence must be at least the same as those of rule X1 → Y1,
whence it passes the thresholds as well.

1.2 Representative Rules

The fact that the output of association rule miners tends to be far larger than
desired has been widely reported; it is also self-apparent to anyone that has tried
any of the association miners in data mining packages or implementations freely
available on the web, e.g. [9].

Our implementation builds on the representative rules for association rules,
proposed independently and in different but equivalent ways, in [1], in [26], and
in [36]. Recently, several new mathematical properties of this basis have been
proved, including a form of optimality [5].

Definition 1. Fix a dataset D and confidence and support thresholds. The cor-
responding basis of representative rules consists of all the rules that hold in D,
passing both thresholds, which are not redundant with respect to any other rule
that holds in D for the same thresholds.

Among several equivalent possibilities to define representative rules, we have
chosen a definition so that the following claim becomes intuitively clear: every
rule that passes the thresholds for D is either a representative rule, or is redun-
dant with respect to a representative rule. Indeed, any given rule that is not
among the representative rules must be redundant with respect to some other



rule, which again must be redundant with respect to a third, and so on, until
finiteness enforces termination that can be only reached by finding a rule in the
basis, making redundant all the others found along the way. The formalization
of this argument can be found in [26] (Lemma 1 must be taken into account to
complete the proof).

Thus, every rule that passes the thresholds for D is either a representative
rule, or is redundant with respect to a representative rule. Moreover, any basis,
that is, any set of rules that makes redundant all the rules mined from D at
the given thresholds, must include all the representative rules, since there is no
other way of making them redundant. Thus, the representative rules form the
unique smallest basis with respect to standard redundancy. (This is not true of
rules of confidence 100%; for these absolute implications, the representative basis
from [1], [26], [36] can be constructed as well and coincides with the “canonical
iteration-free basis” of [38], the nonredundant implications of [40], the proposal
in [35] and the “generic” (or “exact min-max”) basis of [34]; but all these equiv-
alent proposals fail to reach a minimum size, since there is a more economical
alternative [15]. Full discussion can be found in [5], where all these facts, and
also the equivalence of our formulation with the original ones, are studied in
detail.)

In a sense, representative rules are sort of a required starting point, since
they give demonstrably the best basis size one can hope for with no loss of
information, with respect to redundancy as defined. Representative rules turn
out to be intimately related to closed itemsets and minimal generators. These
two notions play an important role in rule mining ([11], [27], [34], [40], [41]). A
set is closed if there is no proper superset with the same support. A set is a
minimal generator (or also a free set) if there is no proper subset with the same
support. In the presence of a support threshold, frequent closed sets are closed
sets whose support clears the threshold. Frequent closed sets are very crucial
to the algorithmics of association rules and to the identification of irredundant
bases. Specifically, in [27] we find a proof of the following nonobvious fact: all
representative rules have a minimal generator as antecedent and a closed item-
set as consequent (however, not all such pairs give representative rules). Good
algorithms and implementations to find them already exist. Absolute optimality
of certain versions of these bases is shown in [5].

2 Confidence Width

This section describes the foundations of our proposal. Our intuition is as follows:
consider a rule X → Y of a given confidence, say c(X → Y ) = c0 ∈ [0, 1], in a
given dataset D. Assume that a fixed support threshold is enforced throughout
the discussion, and consider what happens as we vary the confidence threshold γ.

If we set it higher than c0, that is, c0 < γ, the rule at hand will not play
any role at all, being of confidence too low for the threshold. As we lower the
threshold and reach exactly γ = c0, the rule becomes part of the output of
any standard association mining process, but two different things may happen:



the question is whether, at the same confidence, some other “logically stronger”
rule appears. If not, X → Y will belong to the representative rules basis for
that threshold; but it may be that, at the same threshold, some other logically
stronger rule is found. For instance, it could be that both rules A → B and
A → BC have confidence c0: then A → B is redundant and will not belong to
the basis for that confidence.

Let’s then assume that the rule at hand does appear among the representative
rules at the confidence threshold given by its own confidence value; and let’s keep
decreasing the threshold. At some lower confidence, a logically stronger rule may
appear. If a logically stronger rule shows up early, at a confidence threshold γ
very close to c0, then the rule X → Y is not very novel: it is too similar to the
logically stronger one, and this shows in the fact that the interval of confidence
thresholds where it is a representative rule is short.

To the contrary, a stronger rule may take long to appear: in that case, only
rules of much lower confidence entail X → Y , so the fact that it does reach
confidence c0 is novel in this sense. The interval of confidence thresholds where
X → Y is a representative rule is large. For instance, if the confidence of A → AB
is 0.9, and all rules that make it redundant all have confidences below 0.75, the
rule is a much better candidate to novelty than it would be if some rule like
A → ABC would have a confidence of 0.88.

This motivates the following definition:

Definition 2. Fix a dataset D and a support threshold τ . Consider a rule that
has support at least τ in D, say rule X → Y . Consider all rules that are not
equivalent to X → Y , but such that X → Y is redundant with respect to them,
and pick one with maximum confidence in D among them, say X ′ → Y ′ (thus
c(X ′ → Y ′) ≤ c(X → Y )). The confidence width of X → Y in D is:

w(X → Y ) =
c(X → Y )
c(X ′ → Y ′)

In case X → Y is representative, only rules of confidence smaller than γ can
make it redundant. In order to check for the existence of X ′ → Y ′, one should
mine at lower confidence levels (but see comments after Theorem 1 below). The
confidence width can be defined equivalently as the ratio between the extremes
of the interval of confidence thresholds that allow the rule to be representative.
That is: the highest value where the rule can belong to the representative rule
basis is the confidence of the rule; and the denominator is the highest value where
there is a different representative rule that makes it redundant, thus forcing it
out of the representative basis.

Observe that when X → Y is redundant with respect to X ′ → Y ′, its
confidence must be at least the confidence of the latter, which implies that the
confidence width is always greater than or equal to 1. For a rule X ′′ → Y ′′, the
confidence width is exactly 1 if and only if there is a rule making redundant
X ′′ → Y ′′ and having the same confidence: this is the same as saying that



X ′′ → Y ′′ is never among the representative rules. Regarding upper bounds, in
principle there is none, as it may happen that a rule of as large confidence as
desired is only redundant with respect to rules of as low confidence as desired.

2.1 Properties and Algorithms

We proceed to study some properties of the confidence width; by combining them
with known properties of the standard redundancy and of the representative
rules, we will obtain reasonably efficient ways to compute the width of the rules
in the basis. We will need a preliminary fact:

Proposition 1. Consider a rule X → Y and a different rule X ′ → Y ′ that
makes it redundant; assume X ′ → Y ′ has maximum confidence as in the defi-
nition of width, say δ. Then X ′ → Y ′ can be chosen among the representative
rules for confidence δ.

This proposition can be proved easily by resorting to the known fact [26] that
every rule of confidence δ is redundant with respect to a representative rule of
the same confidence (possibly itself). As indicated in the previous section, rules
not in the representative basis have minimum width, namely 1. Thus, to know
the confidence width of all the rules it suffices to find it for representative rules.

We do not need to scan all frequent sets, since, as indicated above, it is
known that if X → Y is a representative rule, then XY is a closed set and X is
a minimal generator [27]. There are several published algorithms that compute
the frequent closed sets and the minimal generators (see the survey [12]); in
one form or another, all of them employ the key and well-known fact of the
antimonotonicity of the frequent itemsets. These closures and minimal generators
can be used to find the representative rules whose width is to be computed, by
using the algorithm in [27].

A naive algorithm follows immediately: construct the representative rules and
scan them repeatedly, applying Proposition 1 to find, for each rule X → Y , the
largest confidence c of any representative rule that makes X → Y redundant;
use Lemma 1 to test for standard redundancy. Once this largest confidence c

is known, the width of X → Y is clearly w(X → Y ) = c(X→Y )
c by definition.

However, notice that this algorithm requires time quadratic in the number of
representative rules, and that we mean all representative rules, that is, for all
values of the confidence threshold. This is likely to be a large set.

2.2 An Alternative Algorithm

In some cases, we are likely to wish a computational shortcut: consider the usual
case of a user having indicated thresholds for support and confidence, so that
our proposal would end in answering the user with a set of representative rules
that pass both thresholds, maybe ordered according to width, or possibly even
pruned once more at a width threshold. In principle, we only need representative
rules at the confidence threshold given. However, to compute the width, we need



all representative rules at all threshold levels. If the threshold is somewhat high,
say 0.8, it is overkill to find representative rules at all confidence levels, including,
say, 0.1, 0.01, 0.001.

We analyze further properties of the confidence width to search for a faster
computation. The key is to avoid much of the exploration in the naive algorithm
by precomputing a small amount of side information in a single scan of the
closures lattice. We explain now what side information would be sufficient; it
is the same as used as a heuristic in [28] to compute a large subset of the
representative rules faster1. The first step is to find out more about the rules
X ′ → Y ′ that could be useful to compute the width of X → Y .

Theorem 1. Let X → Y (with X ⊂ Y , proper inclusion) be a representative
rule for a fixed dataset D at some fixed values of support and confidence. Let
X ′ → Y ′ be a different rule that makes it redundant, with X ′ ⊆ Y ′, and assume
X ′ → Y ′ has maximum confidence as in the definition of width. Then either
X = X ′ and Y ′ is a closed set, immediate superset of Y in the lattice of closed
sets, and of maximum support among the closed supersets of Y ; or else, Y = Y ′,
and X ′ is a minimal generator properly included in X and having minimum
support among the proper subsets of X.

Proof. First apply Lemma 1, but assume that we are in neither of the two cases,
that is: X ′ ⊂ X ⊂ Y ⊂ Y ′ where all the inclusions are proper. Consider the
rules X ′ → Y and X → Y ′. Clearly, appealing again at Lemma 1, both make
X → Y redundant as well. However, since Y is closed, s(Y ′) < s(Y ), and this
implies that c(X ′ → Y ′) < c(X ′ → Y ); similarly, since X is a minimal generator,
s(X) < s(X ′), and again c(X ′ → Y ′) < c(X → Y ′). Therefore, the confidence
of c(X ′ → Y ′) is not maximum as required, and one of the two rules X ′ → Y
and X → Y ′ will be the one having maximum confidence among those making
X → Y redundant. ut

Now, the algorithmic alternative consists in modifying a closure lattice miner
to maintain the side information we need. Since the resulting algorithm depends
on which closed itemset miner is chosen as starting point, we cannot be fully
explicit and keep generality at the same time: we just indicate the changes to be
made into the closure miner. They are as follows: along the antimonotonicity-
based construction of the frequent closures lattice and the minimal generators,
we keep track of the largest existing support of the frequent closed supersets of
each frequent closed set Y , let us denote it mxs(Y ). Similarly, for each minimal
generator X, we keep track of the smallest existing support among the minimal
generators properly contained in X, let us denote it mns(X). Then the following
proposition explains how to compute the width:

Proposition 2. Consider a rule X → Y , and assume that both mxs(Y ) and
mns(X) are defined. Then the width of X → Y is the minimum of the two

1 The algorithm in [28], actually, may miss rules due to an incompleteness of the
heuristic employed, caused by the fact that Property 9, as stated in that paper, is
not true in all cases. This observation will be further elaborated in a later paper.



values: mns(X)
s(X) and s(Y )

mxs(Y ) . If only one of mxs(Y ) and mns(X) is defined, then
the corresponding quotient gives the width.

This follows directly from Theorem 1 since each of the two cases corresponds
to one of the two options for a rule of maximum confidence making X → Y
redundant. Note that we must compute mns(X) for all minimal generators re-
gardless of whether they are also closed, which is something that can happen
(for instance, the empty set is often closed, and is always a minimal generator of
the smallest closed set, possibly itself). Note also that some closures Y may not
have frequent closed proper supersets, in the sense that all larger closures could
fall below the support threshold; likewise, some minimal generators X, namely,
the empty set, will lack minimal generators as proper subsets. For such cases, we
leave mxs(Y ) and mns(X) undefined. Rules where both are undefined do not
have a confidence width value according to the definition, because no rule at all
is able to make them redundant. Their width can be likened to “infinity”. They
have not arisen in our empirical analysis, probably due to the support threshold,
and further theoretical development regarding this marginal case is undergoing.

Thus, algorithmically, we would use width by precomputing, at the time
of finding closures from the dataset, or along the reading from a file if these
are constructed by a separate closed set miner, the values mxs(Y ) for each
frequent closed set Y and mns(X) for each minimal generator X; then, for each
representative rule X → Y , we resort to Proposition 2 to compute w(X → Y )
and use it either to filter (against a width threshold) or to sort the representative
rules to be given as output.

Proposition 2 tells us also something else: we can discuss the confidence
width according to two variants, one of them corresponding to a rule becoming
redundant due to a larger consequent, and the other corresponding to a rule
becoming redundant due to a smaller antecedent. It will be important shortly
to take into account that the items discarded from the antecedent in this last
case must still be present in the consequent, since we are assuming, as discussed
immediately after Lemma 1, that right hand sides include left hand sides.

2.3 Squint-based Threshold Setting

We propose here a way of connecting the confidence bound to the confidence
width bound. The guiding intuition is as follows. First, we rephrase the confi-
dence in a way that, informally, we call “squint”: the extent to which we “see”
small details. For squint q, sets that differ in a size ratio of q or higher will be
considered distinguishable: their difference is actually seen. Note that this cannot
be taken as a formal definition, since it may happen that one cannot distinguish
X from Y nor Y from Z, yet X can be distinguished from Z. We take it just as
an intuition.

Correlating the intuition of squint with the confidence threshold is easy. The
implication X → Y (that is, X → XY ) is 100% true exactly if the set of
transactions having X coincides with the (in principle potentially smaller) set
of transactions having XY . Now, apply the guiding intuition for the squint



parameter: if these sets can be distinguished, we discard the implication. For
instance: at squint zero, sharpness is maximum, any existing difference is seen,
and only absolute implications are accepted as association rules. However, at
squint q > 0, to distinguish the set of transactions having X from those having
XY we need that their difference has a size, relative to the larger of both sets,
of at least q. That is: to distinguish enough counterexamples for the implication,
(s(X)− s(XY ))/s(X) must be larger than q, and, conversely, the implication is
accepted if (s(X) − s(XY ))/s(X) ≤ q, which is equivalent by straightforward
algebraic manipulation to s(XY )/s(X) = c(X → Y ) ≥ (1− q). (Note that this
part also works for the case q = 0.) The confidence threshold corresponding to
squint q is, then, 1− q.

Now, through a similar intuition, each of the two quantities, of which the
smallest one provides the confidence witdh as per Proposition 2, can be con-
nected to this “squint” parameter. To obtain a large enough width bound that
allows us to “see” rule X → Y , given squint q, the supports s(X) and mns(X)
must be clearly different, and also the supports s(XY ) and mxs(XY ). Thus,
we model the corresponding intuitions as (mns(X) − s(X))/s(X) > q and
(s(XY ) −mxs(XY ))/mxs(XY ) > q. Straightforward algebraic manipulations
lead, in both cases, to the condition w(X → XY ) > 1+q. That is, the confidence
threshold, through the intuition associated to the squint parameter, provides us
with a natural suggestion regarding how to set the threshold on the quantity
under study: if the confidence threshold is γ = 1− q, the natural first choice for
confidence width threshold is 1 + q = 2− γ.

3 Blocked Rules

The main disadvantage often argued against confidence is as follows: for a thresh-
old of, say, 2/3 (or around 66%), consider a representative rule A → B of con-
fidence slightly beyond the threshold. It is going to be provided as interesting
in the output, suggesting that transactions having A tend to have also B. How-
ever, in case the actual frequency of B is rather high, say, 80%, the correlation
is in fact negative, since B appears less often among the transactions having
A than in the whole dataset. The natural reaction, consisting of a normaliza-
tion by dividing the confidence by the support of B, gives in fact (an analogue
to) the deviation from independence s(AB)/s(A)s(B), also known as interest,
strength, or lift, a natural measure that, however, lacks the ability to orient the
rules, because, in it, the roles of A and B are absolutely symmetric, so that no
preference is given for A → B versus B → A. The same objection appears for
the randomization-based proposal in [19]. Confidence width comes close to help
but falls a bit short of offering a new solution to this problem. In this section,
we relax slightly the notion of confidence width into a notion of “rule blocking”
that progresses towards an alternative, nice solution to this difficulty.

For a specific motivating example, let us observe the outcome of mining
for association rules at 5% support and 100% confidence the Adult dataset,
available at the UCI Repository [4]. The representative basis for these thresholds



consists of 71 rules. In four of them, the consequent consists of the items “Male”
and “Married-civ-spouse”. In the other 67, the consequent is, in all cases, just
“Male”. For instance, we find “Craft-repair, Husband → Male” or “Husband,
Some-college, United-States, White → Male”.

Further examination reveals that all the left-hand sides consist of the item
“Husband”, together with one to four additional items. Domain knowledge sug-
gests that all these 67 rules should be superseded by a single full-confidence rule
“Husband → Male”. However, tuple 7110 includes actually the item “Husband”,
and the item “Female” instead of “Male”. Hence, such a rule does not appear
due to the 100% confidence threshold and, instead, many rules that enlarge a bit
the left-hand side (enough to avoid tuple 7110 so as to reach confidence 100%)
show up. But the real information is the unsurprising (but reassuring) rule given
by the domain knowledge and, to some extent, the fact that its confidence is
below 100% due to the odd tuple; the user gains nothing by seeing 67 slightly
different variations of the same fact. Confidence width does not help: the rule
given by domain knowledge does not really make redundant, in the strict log-
ical sense, the 67 rules mined, due to the extra items present in them. On the
other hand, the presence of such a large family of rules, each of them improving
the confidence only slightly over an existing rule, is a potentially very effective
approach to outlier detection.

Yet another example, on the same dataset, that does not involve implications
of full confidence but still allows for a similar argumentation, is the following
rule, which relates family status with native country: “Unmarried → United-
States”, of rather high confidence (88%); it might be taken as a suggestion that
people coming from abroad into the given U.S. community under analysis tend to
come after marriage, but it may as well be an artifact due to the very large ratio
of the sample that actually consists of U.S. natives, irrespective of their family
status: over 89%. Note, however, that whereas this large support makes the
high confidence of the rule “Unmarried → United-States” much less surprising,
both high values carry related but different information: the distribution of the
U.S. natives along the two different populations, the global one and the one
of unmarried people, in principle could be different. The task is, then, to put
the squint intuition into use in order to distinguish whether we should maintain
both rules “Unmarried → United-States” and, so to say, “∅ → United-States”
(the latter being essentially the same as to observe the high support of that
item), because the slightly different information they carry is of interest, or
we should consider the former subsumed by the latter. Note that either could
have higher confidence than the other, depending on the dataset. To cater for
such situations, we propose to work out a variation of confidence width, and a
corresponding threshold obtained from the confidence threshold via the “squint”
intuition, as follows.

3.1 Blocking a Rule with Another

Consider a rule X → Y , and assume X ∩ Y = ∅. We wish to discard it in case
we find a rule Z → Y , with Z ⊂ X, having almost the same confidence, and



the task is to quantify this “almost”. We propose to apply the squint intuition
to compare the number of tuples having XY with the quantity that would be
predicted from the confidence of the rule Z → Y ; if both sets of tuples are close
enough in size, we keep Z → Y and forget about X → Y . We will say, then,
that Z “blocks” X → Y .

Let c(Z → Y ) = c. If Y is distributed along the support of X at the same
ratio as along the larger support of Z, we would expect s(XY ) ≈ cs(X). We
employ the “squint” intuition described in the previous section, and evaluate
X → Y as follows:

Definition 3. Given rule X → Y , with X ∩ Y = ∅, a proper subset Z ⊂ X
blocks X → Y at squint q if

(s(XY )− c(Z → Y )s(X))/(c(Z → Y )s(X)) ≤ q.

In case the difference in the numerator is negative, it would mean that s(XY )
is even lower than what Z → Y would suggest. If it is positive but the quotient
is bounded by q, the difference is “not seen” and X → Y still does not bring high
enough confidence with respect to Z → Y to be considered: it remains blocked.
But, if the quotient is larger, and this happens for all Z, then X → Y becomes
interesting since its confidence is higher enough than suggested by the rules of
the form Z → Y .

It can be readily checked that the particular problems of the Adult dataset
alluded to above are actually solved in this way. Namely, a bit of arithmetic
with the actual supports in the dataset shows that, indeed, the rules given as
example above, namely, “Craft-repair, Husband → Male”, “Husband, Some-
college, United-States, White → Male”, or “Unmarried → United-States” get
all blocked at minimally reasonable squint levels: only an extreme acuteness
value for squint will be able to distinguish the different information provided by
these rules from that of their blocking rules.

By way of comparison, note that we assume that redundancy due to larger
consequents is handled by confidence width, whereas smaller antecedents only
in some cases are handled appopriately by width, due to the stringent condition
of logical consequence. With blocking, we handle similarly the case of smaller
antecedents but in a way that is not as strict as logical consequence.

4 Empirical Validation

We describe first some experimentation made with the notion of confidence
width. We compute closures using the C implementation provided by Borgelt
[9]. On top of the obtained lattice of closures, we precompute the quantities
mxs and mns as per the previous section at the time of loading the closures into
our system, use hypergraph transversal techniques to find minimal generators
[35], and thus obtain all the representative rules for the support and confidence
bounds computed from the squint value. Table 1 indicates some parameters of
the datasets on which we have tested our approach.



Table 1. Dataset parameters

Dataset Source Transactions Different Items

Chess FIMI 3196 75
Retail FIMI 88162 16470
Adult UCI 32561 269
Cmc UCI 1473 36

First, we consider two of the standard FIMI benchmarks [14], of very different
characteristics: chess, which is a small but very dense dataset on which even
high support constraints lead to huge amounts of closed sets and of rules, and
the largish, much sparser dataset retail coming from a standard application
domain (market basket analysis). We have computed the representative rules
and their widths, and we have plotted the number of rules passing each of a
series of width thresholds. In all cases the computation has taken just a few
seconds in a mid-range laptop.

If comparatively larger width values are expected to correlate in some sense
with novelty, we wish the number of such rules above comparatively larger
thresholds to decrease substantially. This is indeed the behavior we have found.
With respect to the chess dataset, we have constructed rules of confidence 85%
out of the closures lattice formed by frequent closed sets at support 80%. Even
for such a large support, the number of closures is around 5083 and the repre-
sentative rules amount to a number of 15067. It is known from the theoretical
advances that all of them are fully irredundant, that is, omitting any of them
loses information; however, it makes no sense to expect a human analyst to look
at fifteen thousand rules.

We propose, instead, to look at the width values: for this dataset, they range
in the quite limited interval between 1 and 1.22; and we see that if we impose
a very mild bound of width above 1.005, only 2467 out of the 15067 rules reach
it. This means that all the others, even if they are indeed irredundant, this is
so due to a rather negligible confidence increase. Higher width bounds exhibit
an interesting phenomenon of discontinuity, represented by each plateau of the
graph in Figure 1 (left): the maximum confidence width of 1.22 is attained by two
rules; a third comes close, and all three have high confidences (between 97% and
99%). Then seventeen more rules show up together near width 1.18, and nothing
happens until the width bound gets below 1.13 where a bunch of 31 rules show
up together. Below 1.11 we are again at a stable figure of 134 rules, and seventy
more appear together at the already quite low confidence width bound of 1.075.
All the others, up to 15067, have extremely low width. But the same role cannot
be filled directly by confidence: the plot in Figure 1 (right) indicates that there
are no steep decreases, no plateau suggesting a good cutpoint shows up, no hint
that really any novelty is at play, and, above all, the following fact: the 51 rules
of width 1.13 or more all have confidence of 90% or higher, but there are around



Fig. 1. Chess: Number of rules per width and confidence

1950 other rules, of lower width, attaining the same confidence. Just width is
able to focus on the 51 more novel ones.

With respect to retail, the behavior of the notion of width is very different,
and also very interesting. Huge widths are reached: there are 18 rules whose
width is beyond 560 (up to 855.94), whereas the highest next width is just 29:
no rule has width between 29 and 560. Another plateau, at width 21, has 7
additional rules, and from there on the number of rules at each width threshold
grows steadily.

The FIMI datasets have all their items coded as opaque integers; therefore,
the actual rules found cannot be intuitively assessed, in that we do not know
their meaning. In order to understand better both the confidence width and the
blocked rules, we have performed some further analysis of the very well-known
Adult dataset from the UCI Repository [4]. We use only the train data (we note
that the test data has an extra dot in the class attribute). The numeric fields
“fnlwgt”, “capital-gain” and “capital-loss” were removed, as well as the field
“education-num” which is fully redundant with the field “education”. In fields
“age” and “hours-per-week” the field name was concatenated to the numeric
values, in order to distinguish which source to attribute to numeric items. No
further cleaning or recoding was done. Table 2 shows the number of rules after the
various filtering options. Each row in the table corresponds to a different value of
the squint: all thresholds, including support and confidence, are computed from
it and used consistently to get each of the figures. Confidence width is computed
according to our proposal. Blocking, which in principle should be more powerful,
is implemented here in a preliminary form: for each rule of large enough support
and confidence, we just test whether it is blocked, at the given squint, by another
rule that has also large enough support and confidence. See the Conclusions
section for alternatives we wish to explore. The connection of support and squint



Table 2. Number of rules in the Adult dataset

Squint Standard Repr R Block Conf Wd Both

0.10 7916 5706 1509 409 125
0.14 6518 4747 563 290 68
0.18 5270 3730 282 236 40
0.22 4289 2948 162 195 14
0.26 3641 2400 112 156 14
0.30 3024 2012 99 174 11
0.34 2740 1790 71 185 10
0.38 2547 1668 51 219 7
0.42 2255 1486 32 199 6
0.46 2056 1334 24 192 8
0.50 1865 1217 16 196 7

is also very preliminary and under research: in this case we have used the support
value 4 ∗ q ∗ r/M for squint q, where r is the average transaction size and M
is the total number of items; but explanations and variants will be reported in
future work.

The columns in Table 2 indicate the number of rules and the effect of filtering
the representative rules through thresholds computed according to our proposal
on the basis of the squint value. Their meaning is as follows:

– Column “Standard” are the rules found by the standard apriori miner im-
plementation [9]. We must mention that their number is less than the total
number of rules since the Apriori rule miner employed only outputs rules
with a single item in the consequent, as per the original proposals [3]; our
system, and the rest of the figures, do not have this restriction.

– Column “Repr R” is the number of representative rules, which is optimum
if we do not want to lose information.

– Column “Block” indicates the number of representative rules clearing the
blocked rule condition.

– Column “Conf Wd” indicates the number of representative rules clearing the
confidence width threshold.

– Column “Both” indicates the number of representative rules passing both
constraints.

For the sake of arguing the interest of our process, we provide in Table 3
the full set of rules passing the thresholds at squint 0.32, with their supports,
confidences, and confidence widths.

Whereas none is particularly surprising, the advantage is that now we know
that, at the corresponding support, everything else is related to these rules
through either redundancy, blocking, or lack of novelty; that each of these rela-
tionships can be quantified, and that in order to change the level up to which
these relationships are computed it suffices to change a single parameter.



Table 3. Rules from the Adult dataset filtered at squint 0.32

lhs rhs Support Confid C. Wd

∅ ⇒ United-States,White 78.69% 78.69% 1.35
Husband ⇒ Male,Married-civ-spouse,

United-States,White 33.91% 83.70% 1.56
Married-civ-spouse ⇒ Husband,Male,

United-States,White 33.91% 73.74% 1.56
Not-in-family ⇒ ≤ 50K,United-States,White 18.06% 70.81% 1.36
Divorced ⇒ ≤ 50K,United-States,White 9.87% 72.32% 1.39
Black ⇒ ≤ 50K,United-States 7.62% 79.42% 1.42
hours-per-week:50 ⇒ Male,United-States,White 6.37% 73.54% 1.4
Female,Some-college ⇒ ≤ 50K,United-States,White 6.06% 70.31% 1.37
Adm-clerical,Private ⇒ ≤ 50K,United-States,White 6.04% 69.43% 1.33
Self-emp-not-inc ⇒ Male,United-States,White 5.71% 73.20% 1.35
≤ 50K,Sales ⇒ Private,United-States,White 5.65% 68.95% 1.37

Table 4. Number of rules in the Cmc dataset

Squint Standard Repr. Rules Block filter Conf Wd filter Both filters

0.10 228 206 120 16 10
0.20 81 67 27 13 8
0.30 33 25 9 7 3
0.40 12 10 2 4 1
0.50 7 5 1 5 1

Finally, we have run our experiments also on an additional dataset: Con-
traceptive Method Choice, for which the results are displayed in Table 4. This
dataset, abbreviated here Cmc, is also from [4]; it is similar to Adult in that
it was originally conceived for a prediction task and in that it contains socioe-
conomic and demographic data where correlations among human factors can
be potentially detected; but is very different in terms of size and density. Data
come from an actual survey in Indonesia regarding demographic, religious, educa-
tional, and offspring data among women, run in 1987. Whereas in Adult even
the representative rules are long to explore manually, in this case the option
clearly exists, but it is a frustrating experience: two items (“Good-exposure-to-
media”, 92%, and “Wife-religion-islam”, 85%) are prevalent to such an extent
that almost all the rules have just one of these, or both, as consequent, and are
therefore uninformative; “High-husband-education” follows closely (61%). Our
approach points this out: the rule with empty antecedent “→ Good-exposure-to-
media Wife-religion-islam” is clearly singled out beyond squint 0.35, and appears
together with the rules “High-wife-education → Good-exposure-to-media High-
husband-education” and “High-standard-of-living → Good-exposure-to-media
High-husband-education” already at squint 0.25.



This exploration was fast (the closure space consisting of just 1863 closures,
thus all rule computations taking just seconds on a mid-range laptop) and im-
mediately suggests to proceed to a more acute exploration, of low squint, to
see whether more benign thresholds for support, blocking, and confidence width
(automatically compensated by a stricter confidence threshold) provide further
information. From such a second phase, also fast, we just note that, at squint
around 0.04, the representative rules are several hundred, but our automatically
computed thresholds leave just around four dozen rules, most of which are now-
unblocked variants with the three very frequent items as consequent (that can
be readily discarded at a glance) plus the additional rule “No-children-so-far →
No-contraceptive-method”, missed in the previous exploration due to low width
and support but having large confidence (almost 98%).

5 Conclusions and Further Work

We have proposed two objective approaches to the analysis of the novelty of
association rules. A main intuition can be gleaned from the current early devel-
opments: it is known that, on the one hand, the standard support-and-confidence
bound framework does a good preliminary job for avoiding statistical noise, but,
on the other hand, fails somewhat to focus on the really interesting facts; and
this is the main reason that has led to a flourishing of variants of notions of “im-
plication degree” to replace confidence, blaming into it the problem. However,
we consider now that a viable alternative is to leave the standard support-and-
confidence setting on, and complement it, in order to gain further focus, with
a measure that does not check the degree of the implications in an alternative
way (thus, performing something intuitively analogous to confidence) but which
checks a relative intensity of implication compared to the other rules mined in
the same process.

Our proposals for this role are confidence width and a related form of blocked
rules. Both compare rules among them in search of logical or intuitive redun-
dancy: logical redundancy for the case of width, and a more relaxed, intuitive
redundancy for blocking. Our experimental analysis is, admittedly, somewhat
limited; but our work so far already suggests several interesting points. It shows
that width has the ability to yield wide segments where a width threshold is very
robust, and fixing it at a close but different value may select exactly the same
rules. It tends to select rules of high confidence but is much more selective.

Also, our proposals open a door to a more human-centered development
where one can find ways of evaluating this formal notion of novelty with respect
to user-conceived naive notions of novelty. One potential development could be
to design an interactive knowledge elicitation tool that, on the basis of the theory
described here, could tune in, up to focusing on the user’s intuitions for novelty,
by showing a handful of unblocked rules of high width, asking the user to label
them as novel or not novel: we should develop further the theory to take into
account facts such as rules of high width (or support or confidence) being labeled



as not novel, so that the labeling would have consequences on the values of these
parameters for the rest of the rules.

We have proposed as well a rule mining framework in which, instead of asking
the user to choose, with hardly any guidance, thresholds for all the parameters
such as confidence, width, blocking thresholds, and possibly others, a single
parameter is chosen, with a degree of semantic intuitive guidance, and then
some of the necessary thresholds are autonomously computed by the system
from that chosen value. In further work we will analyze the amenability of the
support threshold to be treated in the same way; some of our experiments were
done according to our preliminary results on that question.

Several major issues need further attention, and are described briefly in the
next paragraphs.

5.1 Blocking Rules

Our current implementation only checks for blocking among the rules that have
passed the support and confidence thresholds, that is, does not block all “block-
able” rules; in most cases this is unproblematic thanks to the confidence width
threshold. The analog of Proposition 1 is very easy to prove and we have in-
corporated this consideration into our experiments. Our further preliminary re-
sults suggest the use of a “double-confidence mining” approach analogous to the
“double-support mining” approach described in [5], where it is shown how it can
be advantageous, in order to distinguish representative rules under a support
threshold, to mine closures above a milder threshold than the one set by the
user, and employ that information to analyze redundancy of the rules above the
user-set threshold. Further mathematical analysis of the formal properties of the
blocking process is also necessary to clarify what is the sensible thing to do in
case of “transitive blocking”, whereby the blocking rule is itself blocked by a
third rule: a case that may happen in practice and where we should study the
properties we wish for the output rules.

5.2 Robustness

Other parameters instead of those described here may be manageable on the
basis of the squint intuition, and possibly with potential advantages. Clearly a
large family of candidates is given by the myriad of existing measures of intensity
of implication (see [17], [18], [21], [37], among many others). But another family
of parameters that could be employed are those whereby the family of closed
sets is made more resilient, in the sense of tolerating a small degree of error and
considering sets that are “almost” closed (see [8], [10], [11], and the references
there). In that approach, the sort of analysis we perform on rules is made in the
earlier stage of closure computation. It may become important to understand
the potential advantages of this alternative.

In order to safely implement an exploration process as just described, ideally,
the main parameter in a system like ours should offer, in as much as possible,
robustness in some form of continuity: in most cases, slight modifications in the



value of this parameter should not cause extremely big changes of the output.
However, the very nature of the discrete sets we work with will impose occassion-
ally abrupt changes. Whereas the squint intuition is already quite good in this
respect, one potential way of improvement could be to use the “double-support
mining” approach indicated above. The degree of robustness that this approach
could contribute to the squint-based analysis is currently under study.

5.3 Alternative Ratios

The relative largeness of a set compared to another, as is considered along the
squint-guided intuition, has one additional ambiguity. Namely: as denominator,
in the ratio that relates each of our parameters to the squint intuition, we could
have chosen the size of the other set. Then, the confidence threshold would result
in 1/(1 + q) instead of 1− q, and the thresholds for the other parameters would
end up using a factor 1/(1 − q) substituting for the uses of (1 + q). We have
chosen the milder, less restrictive, form of the bound for all the cases; further
experimentation may suggest, for each threshold, either to stay with the milder
bound, to replace it by the more strict one, or to somehow find a way of choosing
among both options.

5.4 Revising the Closure Operator

The notion of representative rules is, in fact, only dependent on the dataset;
however, the most efficient way to compute it is using the closure operator as-
sociated to the dataset. An alternative approach was suggested in [34] and [40],
where similar approaches were proposed to treat separately the rules of confi-
dence 100% from the rules of confidence at least γ (a minor variant of the same
scheme, which reaches mathematically demonstrable absolute optimality of size
for that approach, is described in [5]); all these variants are very tightly coupled
to the closure operator, and are better than the representative rules when the
confidence threshold is high and there are many rules of confidence 100%. In our
preliminary tests we have not detected a major difference in the outcome from
using representative rules or from using closure-based redundancy, but further
analysis would be in order.

However, the closure operator itself is, essentially, the same mathematical
object as the rules of confidence 100%; and, due to the blocked rules and the
confidence width bound, we may as well be reluctant to employ anything related
to them, since many of these rules may be some sort of artifacts, as we have
already discussed in the case of the Adult dataset. Therefore, we are left with
a quandary: should we trust the closure operator when we distrust some of the
full-confidence implications that conform it? The effect of this doubt on the
representative rules is minor, since they are defined with no reference to closures
nor implications and the role of the closure operator in their computation is,
essentially, just algorithmic. For this reason, we have developed our approach in
terms of representative rules, but further work is necessary to clarify to what
extent bases constructed only from the closure space would offer better results.



5.5 Support Bounds versus Itemset Size

We have started to consider some natural heuristics for determining a support
threshold. These are based on individual items; however, we can consider briefly
here the option of setting different support thresholds for different itemset sizes.
This simple idea has, in principle, a serious drawback: if one, generally, already
lacks guidance to sensibly set a single support threshold, the problem is ex-
acerbated if we are to set several of them, for the different itemset sizes. Our
approach offers a way out: it is conceivable that the squint intuition can be used
to suggest supports for different itemset cardinalities.

5.6 Item Distribution

In the computation of support, we have not distinguished among the various
items. However, in practical cases, individual items may not be distributed uni-
formly; Zipfian-like laws or other distributions would be often natural. The effect
of this consideration on the computation of the support bound has been discussed
in [39]. The extensions of our approach to handle such cases are definitely worth
further exploration.

Additional topics become open through our novel proposal: the applicabil-
ity of the approach to outlier detection has been already hinted at; nowadays,
pattern mining on structures more complex than itemsets is necessary in a wide
spectrum of application areas, and exporting our approach may not be immedi-
ate; we definitely envision the possibility of applying this approach to preference
analysis; and other application areas will call for additional developments.
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