
Orthogonal Persistence Revisited

Alan Dearle, Graham N.C. Kirby and Ron Morrison

School of Computer Science, University of St Andrews,

North Haugh, St Andrews, Fife KY16 9SX, Scotland
{al, graham, ron}@cs.st-andrews.ac.uk

Abstract. The social and economic importance of large bodies of

programs and data that are potentially long-lived has attracted

much attention in the commercial and research communities. Here

we concentrate on a set of methodologies and technologies called

persistent programming. In particular we review programming

language support for the concept of orthogonal persistence, a

technique for the uniform treatment of objects irrespective of their

types or longevity. While research in persistent programming has

become unfashionable, we show how the concept is beginning to

appear as a major component of modern systems. We relate these

attempts to the original principles of orthogonal persistence and

give a few hints about how the concept may be utilised in the

future.

1 Introduction

The aim of persistent programming is to support the design, construction,

maintenance and operation of long-lived, concurrently accessed and

potentially large bodies of data and programs. When research into

persistent programming began, persistent application systems were

supported by disparate mechanisms, each based upon different

philosophical assumptions and implementation technologies [1]. The mix

of technologies typically included naming, type and binding schemes

combined with different database systems, storage architectures and query

languages.

The incoherence in these technologies increased the cost both

intellectually and mechanically of building persistent application systems.

The complexity distracted the application builder from the task in hand to

concentrate on mastering the multiplicity of programming systems, and

the mappings amongst them, rather than the application being developed.

The plethora of disparate mechanisms was also costly in machine terms, in

that the code for interfacing them, their redundant duplication of facilities

and their contention for resources caused execution overheads. Software

architects and engineers observed that it was often much harder and more

expensive to build and maintain persistent application systems than was

expected, and their evolution was invariably problematic.

Atkinson [2] postulated that, in many cases, the inconsistency was not

fundamental but accidental. The various subsystems were built at different

times when the engineering trade-offs were different. In consequence, they

provided virtually the same services, but inconsistently since they were

designed and developed independently. By contrast, Orthogonal

Persistence provided the total composition of services within one coherent

design, thereby eliminating these accidental disharmonies.

While research in persistent programming has become unfashionable, it

is hard to believe that the situation today has changed much. A recent

(2007) quote from Microsoft illustrates this well:

“Most programs written today manipulate data in one way or

another and often this data is stored in a relational database. Yet

there is a huge divide between modern programming languages

and databases in how they represent and manipulate information.

This impedance mismatch is visible in multiple ways. Most notable

is that programming languages access information in databases

through APIs that require queries to be specified as text strings.

These queries are significant portions of the program logic. Yet

they are opaque to the language, unable to benefit from compile-

time verification and design-time features like IntelliSense.” [3]

Orthogonally persistent object systems support a uniform treatment of

objects irrespective of their types by allowing values of all types to have

whatever longevity is required. The benefits of orthogonal persistence

have been described extensively in the literature [2,4-18]. They can be

summarised as:

 improving programming productivity from simpler semantics;

 avoiding ad hoc arrangements for data translation and long-term data

storage;

 providing protection mechanisms over the whole environment;

 supporting incremental evolution; and

 automatically preserving referential integrity over the entire

computational environment for the whole life-time of an application.

In this paper we review a selection of the many historical approaches to

programming with long-lived data1 and comment on attempts in the

programming language and ODBMS communities to provide various

flavours of persistence. We conclude by hinting at how the concept may

be utilised in the future.

2 Orthogonal Persistence

In most current application systems there are two domains: the

programming language domain and the database domain. The

programming language domain presents a Turing-complete programming

environment that permits computation over data defined using the

programming language type system. In the last twenty years the

predominant programming model has become the object-oriented model,

usually providing typed objects containing state, methods and (usually

typed) references to other objects. This model, and the tools which have

1 Space limitations preclude a full survey of the area; notable omissions include

Smalltalk, O2, Galileo, Trellis/Owl, Fibonacci, DBPL and Tycoon.

evolved to support it, has proven to be highly productive in terms of

creating and maintaining software.

By contrast, the conceptual database domain is largely unchanged:

tables of tuples containing foreign keys identifying tuples in other tables.

This remains the pre-eminent long-term storage architecture.

The cost of the conceptual and technological differences between these

two models became known as the impedance mismatch [19], and was one

of the primary motivations for the work on orthogonal persistence, which

aimed to remove the conceptually unnecessary distinction between short-

term and long-term data [1].

There is a spectrum of possible degrees of integration, as perceived by

programmers, between these formats. At one end of this spectrum data

formats are completely disparate, and there is no automated support for

transformation between them. A programmer has to understand the

semantics of multiple representations and the mappings between them, and

to write code for data transformations that implement these mappings. The

impedance mismatch is strongest at this end of the spectrum. On the other

hand, the low degree of integration yields loose coupling between the

language and storage domains, which in turn facilitates openness in terms

of the persistent data being accessible by routes other than the language.

At the full integration end of the spectrum lies orthogonal persistence,

where no distinction between data formats is visible to the programmer. At

intermediate points in the spectrum, the mapping between the object and

storage domains is partially automated. Typically, the programmer still

has to specify the mappings and understand the relationships between the

multiple representations, but is relieved of the task of writing explicit

translation code.

These differences are crystallised by Fowler, who describes two

different architectural patterns that may be applied to persistent systems

[20]. These are the Active Record and Data Mapper patterns. In the first,

an object in a programming system represents a row in a database relation.

In this pattern the database is wrapped in an object that provides methods

to save, update, delete and find objects. Here there is a one-to-one

mapping between classes or types in the programming language and

relations in the database.

The Data Mapper pattern is more general. It comprises (potentially

multiple) mappers that move data between the storage layers and

maintains the relationships between entities. For example, in an object-

relational system there is one mapper and two layers—the language

system and the relational database. In a distributed system with caching

there might be two mappers maintaining relationships between three

layers—the language, the cache and the database.

The degree of integration dictates the extent to which the application

programmer must be conscious of these patterns. With orthogonal

persistence they are handled entirely by the system. Atkinson and

Morrison identified three Principles of Orthogonal Persistence [21]:

 The Principle of Persistence Independence

The persistence of data is independent of how the program

manipulates the data. That is, the programmer does not have to,

indeed cannot, program to control the movement of data between

long term and short term store. This is performed automatically by

the system.

 The Principle of Data Type Orthogonality

All data objects should be allowed the full range of persistence

irrespective of their type. That is, there are no special cases where

objects of a specific type are not allowed to be persistent.

 The Principle of Persistence Identification

The choice of how to identify and provide persistent objects is

orthogonal to the universe of discourse of the system2.

The application of the three principles yields orthogonal persistence.

Violation of any of these principles increases the complexity that

persistent systems seek to avoid. In the next section we examine these

principles in the context of past and current persistent systems.

3 Languages and Persistence

3.1 First Generation Persistence Mechanisms

In the last twenty to thirty years the mechanisms for mapping between the

two programming language and database data models have improved

considerably. Ironically, this is in part due to technologies that were

developed in the typed persistent world, for example strongly typed

generative and reflective programming.

In the eighties it was common for programmers to explicitly save and

restore programming language objects to the file system. Code was hand-

written and tended to be error-prone and time consuming. Furthermore,

when the data was changed, the code had to adapt, and more code written

to evolve any saved data from previous program incarnations. The need to

write such code explicitly was first eliminated by persistent systems such

as PS-algol (discussed in the next section) and object-oriented databases.

Java serialization goes some way to reducing the programming effort

required to implement object persistence using files, since it allows an

entire closure to be written or read in a single operation. Only instances of

classes that implement the interface java.io.serializable may be serialized.

For example:

2 Experience with persistent programming showed that in systems with

references, the only mechanism for implementation was persistence by

reachability, also known as transitive persistence.

FileInputStream f =

 new FileInputStream("myobject.data");

ObjectInputStream obj_in = new ObjectInputStream(f);

Object obj = obj_in.readObject ();

if (obj instanceof Person) {

 Person p = (Person) obj;

 // Do something with p ...

}

The above program reads an object from the file myobject.data and casts it

to the type Person. One problem with this style of programming is that the

entire closure of an object must be loaded or saved in a single operation.

This can make the operations slow for large object closures, and limits the

size of closure that can be stored to that of main memory—known as the

big inhale in early Smalltalk-80 systems. However, more importantly,

each time a closure is serialized a new copy of the data is made. This

breaks referential integrity since there is no way of matching the identity

of objects from different save/load operations. Another problem with the

mechanism is that since not all Java classes are serializable, some object

closures are not consistently saved and restored.

Serialization does not adhere to the first two principles of orthogonal

persistence. Data is explicitly written to backing store, violating the

principle of independence; only serializable objects may be made

persistent, so the principle of data type orthogonality is also violated.

In contrast, to extract data from a database, the programs manipulating

persistent data had to perform much string processing. Despite this

approach manifesting a high impedance mismatch, it is still common in

today‟s PHP programs. For example:

$result = mysql_query("SELECT * FROM Persons");

while($row = mysql_fetch_array($result)) {

 $firstname = $row['FirstName'];

 $secondname = $row['LastName'];

}

In this fragment [22], the database access is explicit—the SQL query is

embedded as a string in the program, and data is extracted from the

database in the form of strings.

The use of strings is also employed in JDBC [23], which provides

database independent connectivity between Java programs and databases.

The JDBC API permits SQL operations to be performed, by providing

three broad classes of operations: establishing connections to a database,

performing queries and processing the results of queries. An example is

shown below:

Connection con = DriverManager.getConnection(

 "jdbc:myDriver:fish", "myLogin", "myPassword");

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(

 "SELECT name,age FROM Persons");

while (rs.next()) {

 String name = rs.getString("name");

 int age = rs.getInt("age");

 ..

}

The similarities between the JDBC and PHP examples are striking. Both

embed a query in the form of a string in the host program, and both use

string matching to extract data from the result set that is delivered by the

query. Both mechanisms are a long way from the principles of orthogonal

persistence.

3.2 PS-algol

The first language to provide orthogonal persistence was PS-algol [1],

which provided persistence by reachability for all data types supported by

the language. PS-algol adds a small number of functions to S-algol [24],

from which it was derived. These are open.database, close.database,

commit and abort3. A number of functions are also provided to manage

associative stores (hash maps), called tables in PS-algol. These functions

are s.lookup, which retrieves a value associated with a key in a table, and

s.enter, which creates an association between a key and a value in a table.

By convention, a database always contains a pointer to a table at its root.

Databases serve as roots of persistence and can be created dynamically.

Two slightly modified examples from [1] are shown below to give a

flavour of the language. The first example opens a database called

"addr.db" and places a person object into a table associated with the key

"addr.table" found at its root. Note that the person (denoted by p) contains

a reference to an address object. When commit is called, the updated table,

the person and the address objects are written to persistent storage.

structure person(string name, phone; pntr addr)
structure address(int no ; string street, town)
let db = open.database("addr.db", "write")
if db is error.record

 do { write "Can't open database"; abort }
let table = s.lookup("addr.table", db)
let p = person("al", 3250,

 address(76, "North St", "St Andrews"))
s.enter("al", table, p)
commit

The second example opens the same database and retrieves the person

object before writing out their phone number.

3 Note: dots are legal within identifiers in PS-algol and do not denote

dereferencing. Dereferencing is represented by round brackets enclosing a

fieldname. There is no explicit new operator; the use of a structure name serves

as a constructor.

structure person (string name, phone; pntr addr)

let db = open.database("addr.db", "read")
if db is error.record

 do { write "Can't open database"; abort }
let table = s.lookup("addr.table", db)
let p = s.lookup("al", table)
if p = nil then write "Person not known"

else write "phone number: ", p(phone)

As described in [25], “the programmer never explicitly organises data

movement but it occurs automatically when data is used”, a feature shared

with many of the object-relational systems. The paper also states “the

language type rules are strictly enforced” but is not explicit about how this

is achieved, which is a pity, since it is important. PS-algol uses structural

type equivalence rather than the name equivalence so prevalent today.

Using structural type equivalence, two objects or terms are considered to

have compatible types if the types have identical structure. Thus, in the

previous examples, the compatible declarations of person in the two

examples serve to unify the two programs. If the object retrieved from the

database is not of (structural) type person, the deference of the object will

fail.

The type system of PS-algol is more subtle than might appear. Notice

that the second program does not require a declaration of the type address

since that type is never used in the program. It is not necessary since

pointers in PS-algol are typed as pntr, which is an infinite union over all

records. The infinite union facilitates partial and incremental specification

of the structure of the data at the expense of a dynamic check. The

persistent schema need only be specified within a program up to limit of

the pntr objects. When one is encountered in a running program, by

dereference, a dynamic check ensures the data is of the correct type. The

specification within that check need only be to the limit of the subsequent

pntr types.

A second version of PS-algol incorporated procedures as data objects

thereby allowing code and data to be stored in the persistent store.

PS-algol does not support any form of concurrency other than at

database level. This often caused problems since it was possible to

continue to access objects after commit. The addition of explicit syntactic

boundaries to control transactions would have addressed this deficiency.

3.3 Napier88

Napier88 attempted to explore the limits of orthogonal persistence by

incorporating the entire language support environment within a strongly

typed persistent store [12,21,26-30]. The research produced the first

integrated, self-contained, type-safe persistent environment.

The Napier88 system provides orthogonal persistence, a pre-populated

strongly typed stable store, higher-order procedures, parametric

polymorphism, abstract (existential) data types, collections of name-value

bindings, graphical data types, concurrent execution, two infinite union

types for partial specification, and support for reflective programming.

Notable additions over PS-algol include the following:

 the infinite union type any, which facilitates partial and

incremental specification of the structure of the data

 the infinite union type environment, which, in addition to the

above, provides dynamically extensible collections of name/L-

value bindings—and thereby the dynamic construction of

independent name spaces over common data

 parametric polymorphism in a style similar to that later

popularised by Java generics, but with computation over truly

persistent polymorphic values

 existentially quantified abstract data types for data abstraction

 a programming environment, including graphical windowing

library, object browser, program editor and compiler,

implemented entirely as persistent objects within the store

 support for hyper-code, in which program source code may

contain embedded direct references to extant objects

 support for structural reflection, where a running program may

generate new program fragments and integrate these into its own

execution

The integrated persistent environment of Napier88 that supported higher-

order procedures yielded a new programming paradigm, which is only

possible by this means, whereby source programs could include direct

links to values that already exist in the persistent environment. The

programming technique was termed hyper-programming and the

underlying representation hyper-code.

Hyper-code [31] is a representation of an executing system modelled as

an active graph linking source code, existing values and meta-data. It

unifies the concepts of source code, executable code and data, by

providing a single representation (as a combination of text and hyperlinks)

of software throughout its lifecycle. Sharing is represented by multiple

links to the same value. Hyper-code also allows state and shared data, and

thereby closure, to be preserved during evolution.

The combination of structural reflection, the ability of a program to

generate new program fragments and to integrate these into its own

execution, and hyper-code provides the basis for type-safe evolution.

Within the persistent environment, generator programs may stop part of an

executing system (while the rest of the system continues to execute),

inspect its state by introspection, change the part as necessary by

programming or editing the hyper-code representation, recompiling the

new fragment and rebinding it into the executing system.

Unsurprisingly, given their heritage, both PS-algol and Napier88

support all three of the principles of orthogonal persistence.

3.4 Arjuna

The focus of the Arjuna system [32,33] is to support fault-tolerant

distributed applications, based upon persistent objects supporting nested

atomic actions. Atomic actions control sequences of local and remote

operations against abstract datatypes implemented using C++ classes. The

file system is used for long-term storage of objects. To support

recoverability, a snapshot of object state is taken before an object is

modified for the first time within the scope of an atomic action. This

mechanism is also used to support persistence, with the new state of an

object being used to replace its old state at commit time. A state manager

provides operations to save and restore the state of object instances.

Since all persistent classes must extend the base class StateManager,

which provides the mechanisms for persistence and atomic actions, Arjuna

does not adhere to the principle of datatype orthogonality. It does not meet

the requirements of persistence independence, since the programmer must

implement save_state and restore_state operations for all persistent

classes. Finally, for the same reason, it does not support persistence

identification by reachability.

3.5 Persistent Java

Several orthogonally persistent versions of Java have been implemented.

In PJama [34] the programmer uses an API to associate objects with

strings in a persistent map in order to make them persistent. All objects

transitively reachable from the map are automatically made persistent. The

language syntax itself is unchanged; typically persistence can be

introduced to a previously existing application with the addition of a

relatively small amount of code making API calls. The compiler and

standard libraries are also unchanged. The virtual machine is modified, to

move objects to and from a proprietary object store automatically as

required. A version of hyper-code has been prototyped using PJama [35].

The emphasis in ANU-OPJ [36] is on promoting inter-operability, by

avoiding any modifications to the virtual machine. Instead, read and write

barriers are introduced by dynamic byte-code modification. This is

achieved by using a customised class loader, making the approach

compatible with standard compilers and virtual machines. The

programmer‟s view of persistence is slightly different from PJama, in that

no persistence API is involved. Instead, all static fields are implicitly

persistent roots. The Shore storage manager [37] provides object storage.

Persistent Java was implemented on the Grasshopper operating system

[38]. Unlike the other persistent Java systems, no modifications were

made to the abstract machine or to the bytecode generated for a particular

application. Instead, orthogonal persistence was achieved by instantiating

the entire Java machine within a persistent address space. In this system,

like the later ANU-OPJ system, static fields were implicitly roots of

persistence.

The three persistent Java systems adhered to the three principles of

orthogonal persistence to varying degrees. PJama followed the PS-algol

persistence model but could not make some types persistent due to

restrictions in the abstract machine. Similarly, ANU-OPJ could not

uniformly perform byte code transformation on some system classes. The

Grasshopper version did adhere to the three principles, by virtue of

making the entire environment persistent.

3.6 OODBs

Object-oriented database systems emerged in the mid 1980s and married

persistence to object-oriented languages [39]. In the early systems, the

language used tended to be an extension of C++. The Exodus System with

its E programming language typified this approach [40].

The Object-Oriented Database Manifesto [41], published in 1989, set

out to lay down the ground rules of what was (and what was not) an

object-oriented database. It defined a number of mandatory, optional and

open issues in OODB design. Space prohibits a full exposition of all the

mandatory features (identity, encapsulation, computational completeness,

types or classes, class hierarchies, complex objects, overriding,

overloading and late binding, extensibility, persistence, secondary storage

management, concurrency, recovery and ad-hoc querying); we will

therefore comment on what we consider to be the most important here.

The first of these, identity, is perhaps the biggest differentiating feature

between an OODB and a relational DB. Relational systems impose

identity via primary keys stored as attributes, whereas objects have unique

identities formed when they are created and remaining throughout their

lifetimes irrespective of their states.

The issue of encapsulation is another feature that distinguishes the

relational from the OO world. In a relational system the universe of

discourse is made up of relations containing flat tuples, which may be

queried using a relational language. By contrast, in an OO system an

object has an interface, some state and a procedural component, which

implements the interface and may perform operations on the state.

A last issue with OODB systems is whether code should be stored in

the database; this issue seems to divide the OODB community. Many feel

that putting code in the database has a detrimental effect on performance;

the reasons for this are unclear. If code is not stored in the database, well-

known semantic anomalies can arise. Richardson [42] describes how a

program can populate a database with objects of some type T. Another

program can insert into this data-structure an object of type T’, a subtype

of T. If the original program then accesses the new object and calls

methods that have been over-ridden in T’, it should of course use the code

of the subtype when operations are performed (late binding). However, the

code for T’ may not be in the static environment (in the file system) of the

original program. Indeed, the code may not even exist on the machine on

which the program is written. In this case, when the original program

invokes an operation on the new object a dynamic failure will result.

There are essentially two solutions to this problem: relying on being able

to load code from the file system—which is manifestly unsafe—or placing

code in the database.

The provision of declarative querying was the primary difference

between persistent languages and OODB systems; the latter generally

provided querying whilst the former did not. Whilst pointer chasing can be

more efficient than some operations, notably outer joins, in database

systems, the inability to perform declarative queries over non-resident data

is often cited as the primary reason for the lack of uptake of OODB and

persistent systems. The relatively recent ability to tightly integrate query

languages over objects with a host object-oriented language [3,43] has

addressed much of this criticism.

Another perceived issue with OODB systems is the degree of coupling

exhibited. Data in relational systems is loosely coupled; tuples are

associated solely via primary and foreign key values. This permits

database schemata to be refactored by database administrators

independently of the code base. In an object-relational system there is also

loose coupling between the code and the data. The object-relational

mappings are partial; they specify a degree of compliance required of the

database by the code. Thus database schema changes may not affect the

code in any way. By contrast, this is not true in OODB systems, which are

highly coupled in two respects: the referential integrity of pointers and

type constraints specified in the programming language. Since OODB

systems typically rely on being able to follow the transitive closure of

objects, changes to the code and the database must be made in a consistent

manner.

Most OODB systems are strongly typed and consequently the types of

referends and referees must be type compliant; resulting in the schema and

the code being highly coupled. A last problem perceived with OODB

systems is that it is often difficult to determine the extent of pointers in the

system due to lack of sufficient encapsulation. Consequently changes to

the schema could affect code in arbitrary locations. However, this problem

also applies to relational systems in which there is a mismatch in the

integrity constraints provided by the database and those expected of the

programs that compute over it. Furthermore, in a pure object-oriented

system the integrity of the data may be enforced by encapsulation, which

is not true in relational systems. Clearly modern software engineering

tools could be brought to bear on these problems.

3.7 db4o

db4o [44] is a modern OODB system which may be used with both .NET

and Java, via the provision of separate libraries for the two languages.

db4o requires no mappings between transient and persistent data to be

described by the programmer. Thus the objects stored in the database are

real POJOs with no extra interfaces, extended classes or annotations. The

db4o model is reminiscent of PS-algol. To access the database the

programmer writes code such as that shown below.

ObjectContainer db=Db4o.openFile(Util.DB4OFILENAME);

try {

 Person al = new Person("al", 49);

 db.set(al);

}

finally {

 db.close();

}

The root of the database is a collection (an ObjectSet) of objects. It is

possible to access such a persistent collection using query by example

(QBE), by performing a get operation with either a prototypical object or

an instance of class Class as a parameter. In addition, db4o supports both

native queries and Simple Object Database Access (SODA). Native

queries are constructed using predicates in C# or Java whereas SODA

queries are relatively low level, using strings to select fields from objects.

Once a root object has been accessed its closure may be traversed using

traditional pointer following operations.

However, by default db4o does not load entire closures from persistent

storage. db4o introduces a concept known as activation depth, which

determines how much of an object closure is loaded when a parent object

is loaded. By default, only the first five levels of objects are loaded from

the database. It also includes mechanisms to control activation based on

class, via global settings and transparently. Additionally, objects

referenced from a loaded object can be loaded by explicitly activating

objects as they are loaded.

To update objects stored in the database the programmer has to retrieve

an object and call set with a top-level object as a parameter (as in the

above example). However, like object loading, the entire closure of the

object is not written to persistent storage on commit. Instead, the amount

of closure written to storage is controlled by a concept known as update

depth (the default is 1). Like activation depth it is possible to control

update depth in a variety of ways. These design decisions have clearly

been made for a mixture of implementation and efficiency reasons.

Whenever a container is opened, db4o implicitly starts a new

transaction and an explicit commit occurs before the container is closed. A

rollback operation permits transactions to abort. However, this operation

is the root of a semantic anomaly. Loaded instances of database objects

may be still be accessible yet out-of-sync with the store. To address this

problem db4o provides a refresh operation, which may be applied to

objects. It is unclear how the programmer is supposed to know which

objects require refreshing; again this deviates from the principles of

orthogonal persistence.

The db4o system adheres to the principle of data independence. No

mappings or annotations are required to indicate which types may be made

persistent. Similarly, code may manipulate data independent of its

longevity. The concepts of update and activation depth do impact this

principle since, for example, a method to determine the length of a list

might get the wrong answer if activation depth was not used correctly.

This is seen as desirable by the developers who state that “db4o provides a

mechanism to give the client fine-grained control over how much he wants

to pull out of the database when asking for an object” [45]. This property

seems not to preserve identity. The principle of data type orthogonality is

adhered to, since any user-defined data object can be made persistent

without any additional code, annotations or XML specifications.

3.8 Java Data Objects

Java Data Objects was released in 2002 [46], providing a storage interface

for Java objects without the necessity to interact with data access

languages such as SQL. Using JDO, Java objects may be stored in a

relational database, an object database, XML file, or any other technology

using the same interface. Since it enables Java programmers to

transparently access underlying data storage without using database-

specific code, it moves considerably towards the goals of persistent

systems. An example of the use of JDO is shown below. Although not

shown in this example, the entire transitive closure of objects is stored in

the database on commit.

PersistenceManagerFactory pmf = JDOHelper.

 getPersistenceManagerFactory(..);

PersistenceManager pm = pmf.getPersistenceManager();

Person p = new Person("Bob Smith", 49);

Transaction tx;

try {

 tx = pm.currentTransaction();

 tx.begin();

 pm.makePersistent(p);

 tx.commit();

} catch (Exception e) { … }

Although this looks very much like the PS-algol examples, much

additional specification is required when using JDO. The relationship

between the Java objects and persistent data is specified using an XML

metadata file. A simple example is shown below, specifying the persistent

class com.xyz.Person. Field modifiers may specify a number of attributes,

including which fields are primary keys, whether fields are persistent or

transient, how fields are to be loaded, and how null values should be

handled.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jdo SYSTEM "jdo.dtd">

<jdo>

 <package name="com.xyz">

 <class name="Person">

 <field name="firstname"

 persistence-modifier="persistent"/>

 …

 </class>

 </package>

</jdo>

The query language provided by JDO, JDO Query Language (JDOQL),

abstracts over the underlying storage technology. A query interface selects

objects from the database irrespective of whether the underlying storage is

based on objects or relations. Queries are passed to the persistence

manager and operate on either class extents or explicit collections.

Filtering is provided by providing Boolean expressions which are applied

to instances.

Query query = pm.newQuery(Person.class, people,

 "name == \"Malcolm Atkinson\"");

Collection result = (Collection) query.execute();

Iterator iter = result.iterator();

while (iter.hasNext()) {

 Person p = (Person) iter.next();

}

JDO succeeds in abstracting over particular underlying storage

technologies. However, in some cases, notably relational databases, the

mapping between language objects and storage level objects must be

described. When an object-relational mapping is used with JDO, the O-R

mappings are described in ORM mapping files.

Persistence of data is independent of the programs manipulating it,

provided that appropriate persistence mappings have been described. The

principle of data type orthogonality is violated, since only those objects

that have a persistent mapping can be made persistent. Furthermore,

system classes and some collection classes may not be made persistent.

3.9 Java Persistence API

The Java Persistence API [47] is intended to operate inside or outside a

J2EE container, creating a persistence model for (plain old) Java objects.

It eliminates much of the complexity required by JDO. For example, the

XML mapping tables are no longer required, and the objects that can be

made persistent are ordinary Java objects rather than having to implement

specified interfaces. In contrast to JDO, which is agnostic to storage

technology, the Java Persistence API is explicitly for use in an object-

relational context.

@Entity

public class Person

 public Person() {}

 @column(name="name")

 public String getName() {}

 @column(name="age")

 public int getAge() {}

}

The @Enitity annotation can be decorated with parameters specifying the

name of the table from which data is drawn; by default this is the name of

the class. Similarly, the column name may be specified using the

@column annotation and identity attribute using @id. This is clearly not a

POJO system, despite being often described as one, since it requires

annotations to be made in the Java classes describing the object-relational

mappings. Object-relational mappings can be arbitrarily complex, and it is

possible to specify that data be drawn from multiple tables using join-

based queries.

Queries are defined using (an extension to) Enterprise JavaBeans query

language (EJB QL) rather than SQL. The difference is subtle but

important: rather than querying over tables in the database, queries are

performed on the beans and the relationships between them. These

relationships are specified using the attributes embedded within the Java

objects.

Using the Java Persistence API the persistence of data is independent of

the programs that manipulate data. Additionally, the programmer does not

have any explicit control over the movement of data between the store and

main memory, thus adhering to the principle of persistence independence.

The principle of data type orthogonality is only partially adhered to, since

only instances of classes that are decorated with an @Entity annotation

may be stored in the persistent store. This explicitly precludes most system

classes from being persistently stored. The principle of persistence

identification is largely adhered, to since the mechanism for identifying

persistent objects is not related to the type system.

Despite not being fully compliant with the principles of orthogonal

persistence, an application programmer can program against persistent

data without the knowledge that the data is persistent. This is very much in

the spirit of the aims of orthogonal persistence.

3.10 LINQ

Microsoft, recognizing the problems of embedding queries into programs

as strings, has created Language-Integrated Query (LINQ) [3]. Unlike the

Java systems described previously, the approach taken by LINQ is to add

general-purpose query facilities that may be applied to all information

sources. Thus being able to query over relational data is merely a special

case of querying. For example, using LINQ it is possible to write a C#

program to query over a collection of persons as follows:

static void doquery(Person[] people) {

 IEnumerable<Address> result = from p in people

 where p.age == 49

 select p.address;

 foreach (Address item in result)

 Console.WriteLine(item.getTown());

}

The query selects all the people from the array whose age is 49 and forms

an enumeration containing their addresses. Note that the query is

integrated with the programming language, making it amenable to static

type checking, optimization and—perhaps more importantly—design tools

such as refactoring tools.

Relational data stored in a database can also be manipulated using a

Visual Studio component called LINQ to SQL, which transparently

translates LINQ queries into SQL for execution by the database engine.

The results are returned in the language level objects defined in the user

program. LINQ tracks the relationships between the language objects and

the database transparently.

Like the Java object-relational mapping solutions, objects may be

labelled with annotations to identify how properties correspond to

database columns. Tool support is provided to assist in the translation

between extant databases and language level object definitions.

4 Taking Stock

A selection of approaches to programming with persistent data have been

outlined. They differ in a number of key attributes, including:

 data-centric or program-centric
 degree of adherence to the principles of orthogonal persistence
 degree of impedance mismatch
 storage technology employed
 whether object identity is automatically preserved
 whether code is stored with data
 support for declarative queries over non-resident data
 support for transactions

Space precludes a full analysis of the various approaches with respect to

all of these aspects, but we suggest that the most fundamental is the

overall system philosophy. In a data-centric approach it is assumed that

pre-existing persistent data is a given, and the issue is how to program

over that data. In a program-centric approach, code comes first, and the

issue is to provide persistence of program data between executions.

In a data-centric approach the existing data is likely to be large and

long-lived, and openness of the data—avoiding lock-in to proprietary

technology—is likely to be important. Relational databases have

overwhelming advantages in this sector: mature technology resulting from

long-term investment in scalability and optimization; widely available

expertise; and standard interfaces promoting inter-operability. Approaches

in this category include low-level database APIs such as JDBC, and the

various object-relational mapping technologies. The constraints imposed

by the requirement to inter-operate with existing data—and to cope with

changes to both data and meta-data made via other routes to the data—

mean that none of these approaches achieve data type orthogonality, and

that all involve a significant impedance mismatch. The ORM systems

require the programmer to understand and specify the mapping between

multiple representations, while low-level APIs also require conversion

code to be written.

Designers of program-centric persistence technologies are less

constrained in their choice of storage format since they may legitimately

assume that the persistent data will be solely accessed via the language

infrastructure. The systems that adhere to the principles of orthogonal

persistence have all used proprietary closed storage formats. There is no

obvious technical reason why this is a necessary choice, although it may

well maximise scope for achieving good performance. This may have

been one factor behind the lack of commercial adoption of the various

successful research prototypes. To invest in significant use of any closed

storage system requires a very high level of trust in the long-term viability

of the technology and the processes that support it. Other obvious limiting

factors are the relatively limited scalability of those systems in terms of

size and query performance, inevitable given the resources available.

Object-relational systems have been highly successful, now dominating

the field in large applications. It is clear, however, that significant

impedance mismatch problems remain. Although the modern programmer

is less likely to have to program the transfer of objects to and from long-

term storage, they must still deal with a bewildering level of complexity in

specifying mappings between objects and relations. The recent emergence

of conceptually simpler approaches such as db4o is a sign that significant

demand remains for the benefits pursued in the original investigations of

orthogonal persistence.

It is perhaps also worth reflecting on the current usefulness of the

principles of orthogonal persistence, a quarter century after they were first

proposed. The principle of persistence independence suggests that data

manipulation should be coded in exactly the same way for transient and

persistent data, and that the programmer should not have to control data

movement between transient and persistent storage. So long as the

language is sufficiently rich that all desired data manipulation can be

expressed conveniently, there seems no obvious argument against this

principle. Of course, adherence to it incurs some implementation effort,

hence not all approaches do so.

The principle of data type orthogonality suggests that all objects should

be permitted the full range of persistence. Again, as a desirable feature this

seems uncontroversial. Again, it raises significant implementation

difficulties, leading to few systems achieving full adherence. Even those

that claim full orthogonality have tended to have difficulty with objects

that depend on external state, such as file descriptors, GUI elements,

network channels etc.

The principle of persistence identification has had a more chequered

history. The wording of its definition earlier is taken from [21]. In the

earlier [1], however, which first proposed principles of orthogonal

persistence, the principle is listed but not named. In hindsight, it now

seems unclear what, precisely, is mandated by this principle that is not

already covered by the principle of persistence independence. This appears

to have been recognised in more recent discussion, in which it has been

replaced by the more concrete principles of transitive persistence [34] and

persistence by reachability [48]. We may perhaps conclude that a more

useful general principle might be that it should be possible to identify

persistent objects in a convenient way. If doing so via the type system is

forbidden by the principle of data type orthogonality, and identifying each

object individually is ruled out as too arduous, then persistence by

reachability is the only obvious solution.

5 Future Directions

Orthogonally persistent systems will not replace object-relational systems

in the foreseeable future. We may, however, speculate on niche areas in

which the principles of orthogonal persistence might be usefully carried

forward. One possibility is the development of a program-centric approach

in which fully orthogonal persistence is implemented using a relational

database as the storage engine. This would address the „closed data

format‟ criticism potentially levelled at previous implementations, since

read-only access to the data could be permitted at the relational level.

Another potential avenue for development is to target emerging

application styles such as cloud applications. The development of such

applications could be significantly simplified by a system supporting

programming over resilient distributed objects in a transparent manner,

abstracting over replication and physical location in the same way that

orthogonal persistence abstracts over storage hierarchy [49].

Another avenue for investigation is how the unique features of

orthogonally persistent systems may be exploited to improve current

software development technology [18]. For example, the integration of

first-class code and data within a persistent store that enforces referential

integrity makes the hyper-code paradigm possible. This could be extended

with more sophisticated support for application system evolution,

analogous to refactoring tools provided by modern IDEs [50]. Hyper-code

allows source code to be reliably associated with all code objects. Thus,

whereas refactoring tools currently operate separately on a code base or on

a database, refactoring within a persistent environment could be applied

uniformly to data and the code that operates on it. Evolutionary code could

reflect over all of the data bound into the code-base being evolved, as well

as the structure of the code-base itself. Arbitrary evolution (or refactoring)

of a running application could be performed with complete confidence that

all code and data affected by a change could be located and evolved in

turn consistently. This would be possible even for data that in

conventional systems would be encapsulated within closures and thus

inaccessible to evolution code.

6 Conclusions

Orthogonal persistence was proposed to address the impedance mismatch

problem. This problem has been with us for 20-30 years and refuses to go

away. It has recently been described as the Vietnam of Computer Science

[51]. Far from being resolved, the impedance mismatch is perhaps getting

worse. We now have impedance mismatch across the multiple subsystems

concerned with data replication, cache-coherency and distribution. In

many of today‟s enterprise systems the programmer must, by necessity,

not only manage mappings from the language to the database but also

from the language to the Memcached [52] or DBCache [53] layers, and

from those layers to the database. Thus, when we consider the impedance

mismatch problem in our systems it is important to recognise that the

object-relational mapping is not the only mapping that must be considered.

Even if non-relational storage is used, for example Amazon S3 [54],

mapping between layers is required. The essential issues are who creates

the mappings and how efficiently they can be maintained.

In [19] Maier stated that one of the major problems of OO systems was

the lack of integration between bulk operations and the programming

language. In this domain good progress has been made in the last few

years. LINQ makes great strides in providing a single (sub-) language that

operates over objects regardless of their longevity.

The solutions to providing persistence in programming systems have

been many, and the road has been long and winding. However, there has

been a clear trend towards the ideals of orthogonal persistence. The state

of the art has finally moved away from strings containing embedded

queries with explicit coercions to values in the programming language

space.

In the 1980s orthogonal persistence focussed on the differences

between long- and short-term storage. As described above, this is just one

of many mappings that an application builder needs to be concerned with;

there are many subsystems that require mappings to be maintained,

including caching, networks, virtualized hosts, distributed storage, and

replication. Furthermore, we are moving towards a world in which

applications are self-organising and autonomic. Such autonomic systems

are likely to be concerned with data clustering, machine utilisation and the

ability to distribute computation and storage. Lastly the scale of

application systems is likely to vary enormously from small persistent

applications on devices such as iPhones through to extremely large ones to

address the scientific challenges of tomorrow. In such a world it seems

unlikely that the intellectual burden of managing a plethora of complex

mappings can be left in the human domain.

7 Acknowledgements

Our experience in the design and implementation of persistence systems

has benefitted from interaction with so many people that it would be

invidious to mention a recently remembered subset. Malcolm Atkinson

deserves mention as the inventor of the persistence concept and we would

like to thank the community that populated the Persistent Object Systems

(POS) and Database Programming Language (DBPL) Workshops where

much of this work was reported and digested.

8 References

1. Atkinson, M. P., Bailey, P. J., Chisholm, K. J., Cockshott, W. P., Morrison,

R.: An Approach to Persistent Programming. Computer Journal, 26,4:360-365

(1983)

2. Atkinson, M.P.: Programming Languages and Databases. In: 4th International

Conference on Very Large Databases, West Berlin, Germany. pp. 408-419.

IEEE Computer Society Press (1978)

3. Kulkarni, D., Bolognese, L., Warren, M., Hejlsberg, A., George, K.: LINQ to

SQL: .NET Language-Integrated Query for Relational Data.

http://msdn.microsoft.com/en-gb/library/bb425822.aspx (2007)

4. Atkinson, M. P., Chisholm, K. J., Cockshott, W. P.: PS-Algol: An Algol with

a Persistent Heap. ACM SIGPLAN Notices, 17,7:24-31 (1982)

5. Atkinson, M.P., & Morrison, R.: Persistent First Class Procedures are enough.

In: 4th Conference on Foundations of Software Technology and Theoretical

Computer Science, Bangalore, India. pp. 223-240. Springer-Verlag (1984)

6. Atkinson, M. P., & Morrison, R.: Procedures as Persistent Data Objects.

ACM Transactions on Programming Languages and Systems, 7,4:539-559

(1985)

7. Morrison, R., Brown, A. L., Bailey, P. J., Davie, A. J. T., Dearle, A.: A

Persistent Graphics Facility for the ICL Perq. Software - Practice and

Experience, 16,4:351-367 (1986)

http://msdn.microsoft.com/en-gb/library/bb425822.aspx

8. Morrison, R., Brown, A. L., Carrick, R., Connor, R. C. H., Dearle, A.,

Atkinson, M. P.: Polymorphism, Persistence and Software Reuse in a

Strongly Typed Object Oriented Environment. Software Engineering Journal,

2,6:199-204 (1987)

9. Atkinson, M. P., & Buneman, O. P.: Types and Persistence in Database

Programming Languages. ACM Computing Surveys, 19,2:105-190 (1987)

10. Atkinson, M. P., Buneman, O. P., Morrison, R.: Binding and Type Checking

in Database Programming Languages. Computer Journal, 31,2:99-109 (1988)

11. Dearle, A., & Brown, A. L.: Safe Browsing in a Strongly Typed Persistent

Environment. Computer Journal, 31,6:540-544 (1988)

12. Brown, A.L.: Persistent Object Stores. PhD Thesis, University of St Andrews.

http://www.cs.st-andrews.ac.uk/files/publications/download/Bro89.pdf (1989)

13. Connor, R.C.H., Brown, A.B., Cutts, Q.I., Dearle, A., Morrison, R.,

Rosenberg, J.: Type Equivalence Checking in Persistent Object Systems. In:

Implementing Persistent Object Bases, Principles and Practice: 4th

International Workshop on Persistent Object Systems (POS4), Martha‟s

Vineyard, USA. pp. 151-164. Morgan Kaufmann (1990)

14. Cooper, R.L.: On the Utilisation of Persistent Programming Environments.

PhD Thesis, University of Glasgow (1990)

15. Albano, A., Bergamini, R., Ghelli, G., Orsini, R.: An Object Data Model with

Roles. In: 19th International Conference on Very Large Data Bases, Dublin,

Ireland. pp. 39-51. Morgan Kaufmann (1993)

16. Connor, R.C.H., Morrison, R., Atkinson, M.P., Matthes, F., Schmidt, J.:

Programming in Persistent Higher-Order Languages. In: European Systems

Architecture Conference (Euro-ARCH'93), Munich, Germany. pp. 288-300.

Springer-Verlag (1993)

17. Morrison, R., Connor, R. C. H., Cutts, Q. I., Kirby, G. N. C., Stemple, D.:

Mechanisms for Controlling Evolution in Persistent Object Systems. Journal

of Microprocessors and Microprogramming, 17,3:173-181 (1993)

18. Morrison, R., Connor, R. C. H., Cutts, Q. I., Dunstan, V. S., Kirby, G. N. C.:

Exploiting Persistent Linkage in Software Engineering Environments.

Computer Journal, 38,1:1-16 (1995)

19. Maier, D.: Representing Database Programs as Objects. In: 1st International

Workshop on Database Programming Languages, Roscoff, France. pp. 377-

386. ACM Press / Addison-Wesley (1987)

20. Fowler, M.: Patterns of Enterprise Application Architecture. The Addison-

Wesley Signature Series. Addison Wesley (2002)

21. Atkinson, M. P., & Morrison, R.: Orthogonally Persistent Object Systems.

VLDB Journal, 4,3:319-401 (1995)

22. W3Schools: PHP MySQL Select.

http://www.w3schools.com/PHP/php_mysql_select.asp (2009)

23. Sun Microsystems: JDBC Overview. http://java.sun.com/products/jdbc/

(1998)

24. Morrison, R.: S-Algol: A Simple Algol for Teaching. BCS Computer

Bulletin, 2,31:17, 20 (1982)

25. Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P., Morrison, R.:

PS-Algol: A Language for Persistent Programming. In: 10th Australian

National Computer Conference, Melbourne, Australia. pp. 70-79 (1983)

26. Morrison, R., Connor, R. C. H., Kirby, G. N. C. et al.: The Napier88

Persistent Programming Language and Environment. In: M. P. Atkinson and

R. Welland (eds.): Fully Integrated Data Environments. Springerpp. 98-154

(1999)

27. Dearle, A.: On the Construction of Persistent Programming Environments.

PhD Thesis, University of St Andrews. http://www.cs.st-

andrews.ac.uk/files/publications/download/Dea88.pdf (1988)

http://www.cs.st-andrews.ac.uk/files/publications/download/Bro89.pdf
http://www.w3schools.com/PHP/php_mysql_select.asp
http://java.sun.com/products/jdbc/
http://www.cs.st-andrews.ac.uk/files/publications/download/Dea88.pdf
http://www.cs.st-andrews.ac.uk/files/publications/download/Dea88.pdf

28. Connor, R.C.H.: Types and Polymorphism in Persistent Programming

Systems. PhD Thesis, University of St Andrews. http://www.cs.st-

andrews.ac.uk/files/publications/download/Con90.pdf (1990)

29. Cutts, Q.I.: Delivering the Benefits of Persistence to System Construction and

Execution. PhD Thesis, University of St Andrews. http://www.cs.st-

andrews.ac.uk/files/publications/download/Cut92.pdf (1992)

30. Kirby, G.N.C.: Reflection and Hyper-Programming in Persistent

Programming Systems. PhD Thesis, University of St Andrews.

http://www.cs.st-andrews.ac.uk/files/publications/download/Kir92b.pdf

(1992)

31. Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearle, A., Farkas, A.M.,

Morrison, R.: Persistent Hyper-Programs. In: Persistent Object Systems: 5th

International Workshop on Persistent Object Systems (POS5), San Miniato,

Italy. Workshops in Computing pp. 86-106. Springer-Verlag (1992)

32. Parrington, G. D., Shrivastava, S. K., Wheater, S. M., Little, M. C.: The

Design and Implementation of Arjuna. USENIX Computing Systems Journal,

8,3:255-308 (1995)

33. Shrivastava, S., Dixon, G. N., Parrington, G.: An Overview of the Arjuna

Distributed Programming System. IEEE Software, :66-73 (1991)

34. Atkinson, M. P., Daynes, L., Jordan, M. J., Printezis, T., Spence, S.: An

Orthogonally Persistent JavaTM. ACM SIGMOD Record, 25,4:1-10 (1996)

35. Zirintsis, E., Dunstan, V.S., Kirby, G.N.C., Morrison, R.: Hyper-

Programming in Java. In: 8th International Workshop on Persistent Object

Systems (POS8), Tiburon, California. pp. 370-382. Morgan Kaufmann (1999)

36. Marquez, A., Zigman, J. N., Blackburn, S. M.: Fast Portable Orthogonally

Persistent Java. Software - Practice and Experience, Special Issue on

Persistent Object Systems, 30,4:449-479 (2000)

37. Carey, M.J., DeWitt, D.J., Franklin, M.J., Hall, N.E., McAuliffe, M.,

Naughton, J.F., Schuh, D.T., Solomon, M.H.: Shoring Up Persistent

Applications. In: ACM SIGMOD International Conference on Management

of Data, Minneapolis, MN, USA. pp. 383-394 (1994)

38. Dearle, A., Hulse, D., Farkas, A.: Operating System Support for Java. In: 1st

International Workshop on Persistence for Java, Drymen, Scotland. (1996)

39. Dittrich, K., & Dayal, U. (eds.): Proceedings of the 1986 International

Workshop on Object-Oriented Database Systems, Pacific Grove, California,

USA. IEEE Computer Society Press, Los Alamitos, CA, USA (1986)

40. Carey, M.: The Exodus Extensible DBMS Project: An Overview. In: S. B.

Zdonik and D. Maier (eds.): Readings in Object-Oriented Database Systems.

Morgan Kaufman, San Mateo, California (1990)

41. Atkinson, M.P., Bancilhon, F., DeWitt, D.J., Dittrich, K., Maier, D., Zdonik,

S.B.: The Object-Oriented Database Manifesto. In: 1st International

Conference on Deductive and Object-Oriented Databases, Kyoto, Japan. pp.

223-240. Elsevier Science Publishers (1989)

42. Richardson, J. E., Carey, M. J., Schuh, D. T.: The Design of the E

Programming Language. ACM Transactions on Programming Languages and

Systems, 15,3:494-534 (1993)

43. Cook, W.R., & Rosenberger, C.: Native Queries for Persistent Objects: A

Design White Paper. .

http://www.cs.utexas.edu/users/wcook/papers/NativeQueries/NativeQueries8-

23-05.pdf (2006)

44. Versant Corporation: Db4o :: Native Java & .NET Open Source Object

Database. http://www.db4o.com/ (2009)

45. Versant Corporation: Db4o Tutorial.

http://www.db4o.com/about/productinformation/resources/db4o-6.3-tutorial-

java.pdf (2009)

46. Java Community Process: Java Data Objects (JDO) Specification.

http://www.jcp.org/en/jsr/detail?id=12 (2004)

http://www.cs.st-andrews.ac.uk/files/publications/download/Con90.pdf
http://www.cs.st-andrews.ac.uk/files/publications/download/Con90.pdf
http://www.cs.st-andrews.ac.uk/files/publications/download/Cut92.pdf
http://www.cs.st-andrews.ac.uk/files/publications/download/Cut92.pdf
http://www.cs.st-andrews.ac.uk/files/publications/download/Kir92b.pdf
http://www.cs.utexas.edu/users/wcook/papers/NativeQueries/NativeQueries8-23-05.pdf
http://www.cs.utexas.edu/users/wcook/papers/NativeQueries/NativeQueries8-23-05.pdf
http://www.db4o.com/
http://www.db4o.com/about/productinformation/resources/db4o-6.3-tutorial-java.pdf
http://www.db4o.com/about/productinformation/resources/db4o-6.3-tutorial-java.pdf
http://www.jcp.org/en/jsr/detail?id=12

47. Sun Microsystems: Java Persistence API.

http://java.sun.com/javaee/technologies/persistence.jsp (2008)

48. Jordan, M.J., & Atkinson, M.P.: Orthogonal Persistence for the Java

Platform: Specification and Rationale. Report TR-2000-94. Sun

Microsystems Inc (2000)

49. Dearle, A., Kirby, G.N.C., Norcross, S.J., McCarthy, A.J.: A Peer-to-Peer

Middleware Framework for Resilient Persistent Programming. Report

CS/06/1. http://www.cs.st-andrews.ac.uk/files/publications/

download/DKN+06a.pdf. University of St Andrews (2006)

50. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring:

Improving the Design of Existing Code. Object Technology Series. Addison

Wesley (1999)

51. Neward, T.: Interoperability Happens - the Vietnam of Computer Science.

http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Scienc

e.aspx (2006)

52. Danga Interactive: Memcached: A Distributed Memory Object Caching

System. http://www.danga.com/memcached/ (2009)

53. Altinel, M., Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H., Lindsay,

B.G., Woo, H., Brown, L.: DBCache: Database Caching for Web Application

Servers. In: Proceedings of the 2002 ACM SIGMOD International

Conference on Management of Data, Madison, Wisconsin. pp. 612-612.

ACM (2002)

54. Amazon: Amazon Simple Storage Service (Amazon S3).

http://aws.amazon.com/s3/ (2009)

http://java.sun.com/javaee/technologies/persistence.jsp
http://www.cs.st-andrews.ac.uk/files/publications/download/DKN+06a.pdf
http://www.cs.st-andrews.ac.uk/files/publications/download/DKN+06a.pdf
http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx
http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx
http://www.danga.com/memcached/
http://aws.amazon.com/s3/

