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Abstract. The social and economic importance of large bodies of 

programs and data that are potentially long-lived has attracted 

much attention in the commercial and research communities. Here 

we concentrate on a set of methodologies and technologies called 

persistent programming. In particular we review programming 

language support for the concept of orthogonal persistence, a 

technique for the uniform treatment of objects irrespective of their 

types or longevity. While research in persistent programming has 

become unfashionable, we show how the concept is beginning to 

appear as a major component of modern systems. We relate these 

attempts to the original principles of orthogonal persistence and 

give a few hints about how the concept may be utilised in the 

future. 

1 Introduction 

The aim of persistent programming is to support the design, construction, 

maintenance and operation of long-lived, concurrently accessed and 

potentially large bodies of data and programs. When research into 

persistent programming began, persistent application systems were 

supported by disparate mechanisms, each based upon different 

philosophical assumptions and implementation technologies [1]. The mix 

of technologies typically included naming, type and binding schemes 

combined with different database systems, storage architectures and query 

languages. 

The incoherence in these technologies increased the cost both 

intellectually and mechanically of building persistent application systems. 

The complexity distracted the application builder from the task in hand to 

concentrate on mastering the multiplicity of programming systems, and 

the mappings amongst them, rather than the application being developed. 

The plethora of disparate mechanisms was also costly in machine terms, in 

that the code for interfacing them, their redundant duplication of facilities 

and their contention for resources caused execution overheads. Software 

architects and engineers observed that it was often much harder and more 

expensive to build and maintain persistent application systems than was 

expected, and their evolution was invariably problematic. 

Atkinson [2] postulated that, in many cases, the inconsistency was not 

fundamental but accidental. The various subsystems were built at different 

times when the engineering trade-offs were different. In consequence, they 

provided virtually the same services, but inconsistently since they were 



 

designed and developed independently. By contrast, Orthogonal 

Persistence provided the total composition of services within one coherent 

design, thereby eliminating these accidental disharmonies. 

While research in persistent programming has become unfashionable, it 

is hard to believe that the situation today has changed much. A recent 

(2007) quote from Microsoft illustrates this well: 

“Most programs written today manipulate data in one way or 

another and often this data is stored in a relational database. Yet 

there is a huge divide between modern programming languages 

and databases in how they represent and manipulate information. 

This impedance mismatch is visible in multiple ways. Most notable 

is that programming languages access information in databases 

through APIs that require queries to be specified as text strings. 

These queries are significant portions of the program logic. Yet 

they are opaque to the language, unable to benefit from compile-

time verification and design-time features like IntelliSense.” [3] 

Orthogonally persistent object systems support a uniform treatment of 

objects irrespective of their types by allowing values of all types to have 

whatever longevity is required. The benefits of orthogonal persistence 

have been described extensively in the literature [2,4-18]. They can be 

summarised as: 

 improving programming productivity from simpler semantics; 

 avoiding ad hoc arrangements for data translation and long-term data 

storage; 

 providing protection mechanisms over the whole environment; 

 supporting incremental evolution; and 

 automatically preserving referential integrity over the entire 

computational environment for the whole life-time of an application. 

In this paper we review a selection of the many historical approaches to 

programming with long-lived data1 and comment on attempts in the 

programming language and ODBMS communities to provide various 

flavours of persistence. We conclude by hinting at how the concept may 

be utilised in the future. 

2 Orthogonal Persistence 

In most current application systems there are two domains: the 

programming language domain and the database domain. The 

programming language domain presents a Turing-complete programming 

environment that permits computation over data defined using the 

programming language type system. In the last twenty years the 

predominant programming model has become the object-oriented model, 

usually providing typed objects containing state, methods and (usually 

typed) references to other objects. This model, and the tools which have 

                                                 
1 Space limitations preclude a full survey of the area; notable omissions include 

Smalltalk, O2, Galileo, Trellis/Owl, Fibonacci, DBPL and Tycoon. 



 

evolved to support it, has proven to be highly productive in terms of 

creating and maintaining software. 

By contrast, the conceptual database domain is largely unchanged: 

tables of tuples containing foreign keys identifying tuples in other tables. 

This remains the pre-eminent long-term storage architecture. 

The cost of the conceptual and technological differences between these 

two models became known as the impedance mismatch [19], and was one 

of the primary motivations for the work on orthogonal persistence, which 

aimed to remove the conceptually unnecessary distinction between short-

term and long-term data [1]. 

There is a spectrum of possible degrees of integration, as perceived by 

programmers, between these formats. At one end of this spectrum data 

formats are completely disparate, and there is no automated support for 

transformation between them. A programmer has to understand the 

semantics of multiple representations and the mappings between them, and 

to write code for data transformations that implement these mappings. The 

impedance mismatch is strongest at this end of the spectrum. On the other 

hand, the low degree of integration yields loose coupling between the 

language and storage domains, which in turn facilitates openness in terms 

of the persistent data being accessible by routes other than the language. 

At the full integration end of the spectrum lies orthogonal persistence, 

where no distinction between data formats is visible to the programmer. At 

intermediate points in the spectrum, the mapping between the object and 

storage domains is partially automated. Typically, the programmer still 

has to specify the mappings and understand the relationships between the 

multiple representations, but is relieved of the task of writing explicit 

translation code. 

These differences are crystallised by Fowler, who describes two 

different architectural patterns that may be applied to persistent systems 

[20]. These are the Active Record and Data Mapper patterns. In the first, 

an object in a programming system represents a row in a database relation. 

In this pattern the database is wrapped in an object that provides methods 

to save, update, delete and find objects. Here there is a one-to-one 

mapping between classes or types in the programming language and 

relations in the database. 

The Data Mapper pattern is more general. It comprises (potentially 

multiple) mappers that move data between the storage layers and 

maintains the relationships between entities. For example, in an object-

relational system there is one mapper and two layers—the language 

system and the relational database. In a distributed system with caching 

there might be two mappers maintaining relationships between three 

layers—the language, the cache and the database. 

The degree of integration dictates the extent to which the application 

programmer must be conscious of these patterns. With orthogonal 

persistence they are handled entirely by the system. Atkinson and 

Morrison identified three Principles of Orthogonal Persistence [21]: 

 The Principle of Persistence Independence 

The persistence of data is independent of how the program 

manipulates the data. That is, the programmer does not have to, 

indeed cannot, program to control the movement of data between 



 

long term and short term store. This is performed automatically by 

the system. 

 The Principle of Data Type Orthogonality 

All data objects should be allowed the full range of persistence 

irrespective of their type. That is, there are no special cases where 

objects of a specific type are not allowed to be persistent. 

 The Principle of Persistence Identification 

The choice of how to identify and provide persistent objects is 

orthogonal to the universe of discourse of the system2. 

The application of the three principles yields orthogonal persistence. 

Violation of any of these principles increases the complexity that 

persistent systems seek to avoid. In the next section we examine these 

principles in the context of past and current persistent systems. 

3 Languages and Persistence 

3.1 First Generation Persistence Mechanisms 

In the last twenty to thirty years the mechanisms for mapping between the 

two programming language and database data models have improved 

considerably. Ironically, this is in part due to technologies that were 

developed in the typed persistent world, for example strongly typed 

generative and reflective programming. 

In the eighties it was common for programmers to explicitly save and 

restore programming language objects to the file system. Code was hand-

written and tended to be error-prone and time consuming. Furthermore, 

when the data was changed, the code had to adapt, and more code written 

to evolve any saved data from previous program incarnations. The need to 

write such code explicitly was first eliminated by persistent systems such 

as PS-algol (discussed in the next section) and object-oriented databases. 

Java serialization goes some way to reducing the programming effort 

required to implement object persistence using files, since it allows an 

entire closure to be written or read in a single operation. Only instances of 

classes that implement the interface java.io.serializable may be serialized. 

For example: 

                                                 
2 Experience with persistent programming showed that in systems with 

references, the only mechanism for implementation was persistence by 

reachability, also known as transitive persistence. 



 

FileInputStream f = 

 new FileInputStream("myobject.data"); 

ObjectInputStream obj_in = new ObjectInputStream(f); 

Object obj = obj_in.readObject (); 

if (obj instanceof Person) { 

 Person p = (Person) obj; 

  // Do something with p ... 

} 

The above program reads an object from the file myobject.data and casts it 

to the type Person. One problem with this style of programming is that the 

entire closure of an object must be loaded or saved in a single operation. 

This can make the operations slow for large object closures, and limits the 

size of closure that can be stored to that of main memory—known as the 

big inhale in early Smalltalk-80 systems. However, more importantly, 

each time a closure is serialized a new copy of the data is made. This 

breaks referential integrity since there is no way of matching the identity 

of objects from different save/load operations. Another problem with the 

mechanism is that since not all Java classes are serializable, some object 

closures are not consistently saved and restored. 

Serialization does not adhere to the first two principles of orthogonal 

persistence. Data is explicitly written to backing store, violating the 

principle of independence; only serializable objects may be made 

persistent, so the principle of data type orthogonality is also violated. 

In contrast, to extract data from a database, the programs manipulating 

persistent data had to perform much string processing. Despite this 

approach manifesting a high impedance mismatch, it is still common in 

today‟s PHP programs. For example: 

$result = mysql_query("SELECT * FROM Persons"); 

while($row = mysql_fetch_array($result)) { 

 $firstname = $row['FirstName']; 

 $secondname = $row['LastName']; 

} 

In this fragment [22], the database access is explicit—the SQL query is 

embedded as a string in the program, and data is extracted from the 

database in the form of strings. 

The use of strings is also employed in JDBC [23], which provides 

database independent connectivity between Java programs and databases. 

The JDBC API permits SQL operations to be performed, by providing 

three broad classes of operations: establishing connections to a database, 

performing queries and processing the results of queries. An example is 

shown below: 



 

Connection con = DriverManager.getConnection( 

 "jdbc:myDriver:fish", "myLogin", "myPassword"); 

Statement stmt = con.createStatement(); 

ResultSet rs = stmt.executeQuery( 

 "SELECT name,age FROM Persons"); 

while (rs.next()) { 

 String name = rs.getString("name"); 

 int age = rs.getInt("age"); 

 .. 

} 

The similarities between the JDBC and PHP examples are striking. Both 

embed a query in the form of a string in the host program, and both use 

string matching to extract data from the result set that is delivered by the 

query. Both mechanisms are a long way from the principles of orthogonal 

persistence. 

3.2 PS-algol 

The first language to provide orthogonal persistence was PS-algol [1], 

which provided persistence by reachability for all data types supported by 

the language. PS-algol adds a small number of functions to S-algol [24], 

from which it was derived. These are open.database, close.database, 

commit and abort3. A number of functions are also provided to manage 

associative stores (hash maps), called tables in PS-algol. These functions 

are s.lookup, which retrieves a value associated with a key in a table, and 

s.enter, which creates an association between a key and a value in a table. 

By convention, a database always contains a pointer to a table at its root. 

Databases serve as roots of persistence and can be created dynamically. 

Two slightly modified examples from [1] are shown below to give a 

flavour of the language. The first example opens a database called 

"addr.db" and places a person object into a table associated with the key 

"addr.table" found at its root. Note that the person (denoted by p) contains 

a reference to an address object. When commit is called, the updated table, 

the person and the address objects are written to persistent storage. 

structure person(string name, phone; pntr addr) 
structure address(int no ; string street, town) 
let db = open.database("addr.db", "write") 
if db is error.record 

 do { write "Can't open database"; abort } 
let table = s.lookup("addr.table", db) 
let p = person("al", 3250, 

             address(76, "North St", "St Andrews")) 
s.enter("al", table, p) 
commit  

The second example opens the same database and retrieves the person 

object before writing out their phone number. 

                                                 
3 Note: dots are legal within identifiers in PS-algol and do not denote 

dereferencing. Dereferencing is represented by round brackets enclosing a 

fieldname. There is no explicit new operator; the use of a structure name serves 

as a constructor. 



 

structure person (string name, phone; pntr addr) 

let db = open.database("addr.db", "read") 
if db is error.record 

 do { write "Can't open database"; abort } 
let table = s.lookup("addr.table", db) 
let p = s.lookup("al", table) 
if p = nil then write "Person not known" 

else write "phone number: ", p(phone) 

As described in [25], “the programmer never explicitly organises data 

movement but it occurs automatically when data is used”, a feature shared 

with many of the object-relational systems. The paper also states “the 

language type rules are strictly enforced” but is not explicit about how this 

is achieved, which is a pity, since it is important. PS-algol uses structural 

type equivalence rather than the name equivalence so prevalent today. 

Using structural type equivalence, two objects or terms are considered to 

have compatible types if the types have identical structure. Thus, in the 

previous examples, the compatible declarations of person in the two 

examples serve to unify the two programs. If the object retrieved from the 

database is not of (structural) type person, the deference of the object will 

fail. 

The type system of PS-algol is more subtle than might appear. Notice 

that the second program does not require a declaration of the type address 

since that type is never used in the program. It is not necessary since 

pointers in PS-algol are typed as pntr, which is an infinite union over all 

records. The infinite union facilitates partial and incremental specification 

of the structure of the data at the expense of a dynamic check. The 

persistent schema need only be specified within a program up to limit of 

the pntr objects. When one is encountered in a running program, by 

dereference, a dynamic check ensures the data is of the correct type. The 

specification within that check need only be to the limit of the subsequent 

pntr types. 

A second version of PS-algol incorporated procedures as data objects 

thereby allowing code and data to be stored in the persistent store. 

PS-algol does not support any form of concurrency other than at 

database level. This often caused problems since it was possible to 

continue to access objects after commit. The addition of explicit syntactic 

boundaries to control transactions would have addressed this deficiency. 

3.3 Napier88 

Napier88 attempted to explore the limits of orthogonal persistence by 

incorporating the entire language support environment within a strongly 

typed persistent store [12,21,26-30]. The research produced the first 

integrated, self-contained, type-safe persistent environment. 

The Napier88 system provides orthogonal persistence, a pre-populated 

strongly typed stable store, higher-order procedures, parametric 

polymorphism, abstract (existential) data types, collections of name-value 

bindings, graphical data types, concurrent execution, two infinite union 

types for partial specification, and support for reflective programming. 

Notable additions over PS-algol include the following: 



 

 the infinite union type any, which facilitates partial and 

incremental specification of the structure of the data 

 the infinite union type environment, which, in addition to the 

above, provides dynamically extensible collections of name/L-

value bindings—and thereby the dynamic construction of 

independent name spaces over common data 

 parametric polymorphism in a style similar to that later 

popularised by Java generics, but with computation over truly 

persistent polymorphic values 

 existentially quantified abstract data types for data abstraction 

 a programming environment, including graphical windowing 

library, object browser, program editor and compiler, 

implemented entirely as persistent objects within the store 

 support for hyper-code, in which program source code may 

contain embedded direct references to extant objects 

 support for structural reflection, where a running program may 

generate new program fragments and integrate these into its own 

execution 

The integrated persistent environment of Napier88 that supported higher-

order procedures yielded a new programming paradigm, which is only 

possible by this means, whereby source programs could include direct 

links to values that already exist in the persistent environment. The 

programming technique was termed hyper-programming and the 

underlying representation hyper-code. 

Hyper-code [31] is a representation of an executing system modelled as 

an active graph linking source code, existing values and meta-data. It 

unifies the concepts of source code, executable code and data, by 

providing a single representation (as a combination of text and hyperlinks) 

of software throughout its lifecycle. Sharing is represented by multiple 

links to the same value. Hyper-code also allows state and shared data, and 

thereby closure, to be preserved during evolution. 

The combination of structural reflection, the ability of a program to 

generate new program fragments and to integrate these into its own 

execution, and hyper-code provides the basis for type-safe evolution. 

Within the persistent environment, generator programs may stop part of an 

executing system (while the rest of the system continues to execute), 

inspect its state by introspection, change the part as necessary by 

programming or editing the hyper-code representation, recompiling the 

new fragment and rebinding it into the executing system. 

Unsurprisingly, given their heritage, both PS-algol and Napier88 

support all three of the principles of orthogonal persistence. 

3.4 Arjuna 

The focus of the Arjuna system [32,33] is to support fault-tolerant 

distributed applications, based upon persistent objects supporting nested 

atomic actions. Atomic actions control sequences of local and remote 

operations against abstract datatypes implemented using C++ classes. The 

file system is used for long-term storage of objects. To support 



 

recoverability, a snapshot of object state is taken before an object is 

modified for the first time within the scope of an atomic action. This 

mechanism is also used to support persistence, with the new state of an 

object being used to replace its old state at commit time. A state manager 

provides operations to save and restore the state of object instances. 

Since all persistent classes must extend the base class StateManager, 

which provides the mechanisms for persistence and atomic actions, Arjuna 

does not adhere to the principle of datatype orthogonality. It does not meet 

the requirements of persistence independence, since the programmer must 

implement save_state and restore_state operations for all persistent 

classes. Finally, for the same reason, it does not support persistence 

identification by reachability. 

3.5 Persistent Java 

Several orthogonally persistent versions of Java have been implemented. 

In PJama [34] the programmer uses an API to associate objects with 

strings in a persistent map in order to make them persistent. All objects 

transitively reachable from the map are automatically made persistent. The 

language syntax itself is unchanged; typically persistence can be 

introduced to a previously existing application with the addition of a 

relatively small amount of code making API calls. The compiler and 

standard libraries are also unchanged. The virtual machine is modified, to 

move objects to and from a proprietary object store automatically as 

required. A version of hyper-code has been prototyped using PJama [35]. 

The emphasis in ANU-OPJ [36] is on promoting inter-operability, by 

avoiding any modifications to the virtual machine. Instead, read and write 

barriers are introduced by dynamic byte-code modification. This is 

achieved by using a customised class loader, making the approach 

compatible with standard compilers and virtual machines. The 

programmer‟s view of persistence is slightly different from PJama, in that 

no persistence API is involved. Instead, all static fields are implicitly 

persistent roots. The Shore storage manager [37] provides object storage. 

Persistent Java was implemented on the Grasshopper operating system 

[38]. Unlike the other persistent Java systems, no modifications were 

made to the abstract machine or to the bytecode generated for a particular 

application. Instead, orthogonal persistence was achieved by instantiating 

the entire Java machine within a persistent address space. In this system, 

like the later ANU-OPJ system, static fields were implicitly roots of 

persistence. 

The three persistent Java systems adhered to the three principles of 

orthogonal persistence to varying degrees. PJama followed the PS-algol 

persistence model but could not make some types persistent due to 

restrictions in the abstract machine. Similarly, ANU-OPJ could not 

uniformly perform byte code transformation on some system classes. The 

Grasshopper version did adhere to the three principles, by virtue of 

making the entire environment persistent. 



 

3.6 OODBs 

Object-oriented database systems emerged in the mid 1980s and married 

persistence to object-oriented languages [39]. In the early systems, the 

language used tended to be an extension of C++. The Exodus System with 

its E programming language typified this approach [40]. 

The Object-Oriented Database Manifesto [41], published in 1989, set 

out to lay down the ground rules of what was (and what was not) an 

object-oriented database. It defined a number of mandatory, optional and 

open issues in OODB design. Space prohibits a full exposition of all the 

mandatory features (identity, encapsulation, computational completeness, 

types or classes, class hierarchies, complex objects, overriding, 

overloading and late binding, extensibility, persistence, secondary storage 

management, concurrency, recovery and ad-hoc querying); we will 

therefore comment on what we consider to be the most important here. 

The first of these, identity, is perhaps the biggest differentiating feature 

between an OODB and a relational DB. Relational systems impose 

identity via primary keys stored as attributes, whereas objects have unique 

identities formed when they are created and remaining throughout their 

lifetimes irrespective of their states. 

The issue of encapsulation is another feature that distinguishes the 

relational from the OO world. In a relational system the universe of 

discourse is made up of relations containing flat tuples, which may be 

queried using a relational language. By contrast, in an OO system an 

object has an interface, some state and a procedural component, which 

implements the interface and may perform operations on the state. 

A last issue with OODB systems is whether code should be stored in 

the database; this issue seems to divide the OODB community. Many feel 

that putting code in the database has a detrimental effect on performance; 

the reasons for this are unclear. If code is not stored in the database, well-

known semantic anomalies can arise. Richardson [42] describes how a 

program can populate a database with objects of some type T. Another 

program can insert into this data-structure an object of type T’, a subtype 

of T. If the original program then accesses the new object and calls 

methods that have been over-ridden in T’, it should of course use the code 

of the subtype when operations are performed (late binding). However, the 

code for T’ may not be in the static environment (in the file system) of the 

original program. Indeed, the code may not even exist on the machine on 

which the program is written. In this case, when the original program 

invokes an operation on the new object a dynamic failure will result. 

There are essentially two solutions to this problem: relying on being able 

to load code from the file system—which is manifestly unsafe—or placing 

code in the database. 

The provision of declarative querying was the primary difference 

between persistent languages and OODB systems; the latter generally 

provided querying whilst the former did not. Whilst pointer chasing can be 

more efficient than some operations, notably outer joins, in database 

systems, the inability to perform declarative queries over non-resident data 

is often cited as the primary reason for the lack of uptake of OODB and 

persistent systems. The relatively recent ability to tightly integrate query 



 

languages over objects with a host object-oriented language [3,43] has 

addressed much of this criticism. 

Another perceived issue with OODB systems is the degree of coupling 

exhibited. Data in relational systems is loosely coupled; tuples are 

associated solely via primary and foreign key values. This permits 

database schemata to be refactored by database administrators 

independently of the code base. In an object-relational system there is also 

loose coupling between the code and the data. The object-relational 

mappings are partial; they specify a degree of compliance required of the 

database by the code. Thus database schema changes may not affect the 

code in any way. By contrast, this is not true in OODB systems, which are 

highly coupled in two respects: the referential integrity of pointers and 

type constraints specified in the programming language. Since OODB 

systems typically rely on being able to follow the transitive closure of 

objects, changes to the code and the database must be made in a consistent 

manner. 

Most OODB systems are strongly typed and consequently the types of 

referends and referees must be type compliant; resulting in the schema and 

the code being highly coupled. A last problem perceived with OODB 

systems is that it is often difficult to determine the extent of pointers in the 

system due to lack of sufficient encapsulation. Consequently changes to 

the schema could affect code in arbitrary locations. However, this problem 

also applies to relational systems in which there is a mismatch in the 

integrity constraints provided by the database and those expected of the 

programs that compute over it. Furthermore, in a pure object-oriented 

system the integrity of the data may be enforced by encapsulation, which 

is not true in relational systems. Clearly modern software engineering 

tools could be brought to bear on these problems. 

3.7 db4o 

db4o [44] is a modern OODB system which may be used with both .NET 

and Java, via the provision of separate libraries for the two languages. 

db4o requires no mappings between transient and persistent data to be 

described by the programmer. Thus the objects stored in the database are 

real POJOs with no extra interfaces, extended classes or annotations. The 

db4o model is reminiscent of PS-algol. To access the database the 

programmer writes code such as that shown below. 

ObjectContainer db=Db4o.openFile(Util.DB4OFILENAME); 

try { 

 Person al = new Person("al", 49); 

 db.set(al); 

} 

finally { 

 db.close(); 

} 

The root of the database is a collection (an ObjectSet) of objects. It is 

possible to access such a persistent collection using query by example 

(QBE), by performing a get operation with either a prototypical object or 

an instance of class Class as a parameter. In addition, db4o supports both 



 

native queries and Simple Object Database Access (SODA). Native 

queries are constructed using predicates in C# or Java whereas SODA 

queries are relatively low level, using strings to select fields from objects. 

Once a root object has been accessed its closure may be traversed using 

traditional pointer following operations. 

However, by default db4o does not load entire closures from persistent 

storage. db4o introduces a concept known as activation depth, which 

determines how much of an object closure is loaded when a parent object 

is loaded. By default, only the first five levels of objects are loaded from 

the database. It also includes mechanisms to control activation based on 

class, via global settings and transparently. Additionally, objects 

referenced from a loaded object can be loaded by explicitly activating 

objects as they are loaded. 

To update objects stored in the database the programmer has to retrieve 

an object and call set with a top-level object as a parameter (as in the 

above example). However, like object loading, the entire closure of the 

object is not written to persistent storage on commit. Instead, the amount 

of closure written to storage is controlled by a concept known as update 

depth (the default is 1). Like activation depth it is possible to control 

update depth in a variety of ways. These design decisions have clearly 

been made for a mixture of implementation and efficiency reasons. 

Whenever a container is opened, db4o implicitly starts a new 

transaction and an explicit commit occurs before the container is closed. A 

rollback operation permits transactions to abort. However, this operation 

is the root of a semantic anomaly. Loaded instances of database objects 

may be still be accessible yet out-of-sync with the store. To address this 

problem db4o provides a refresh operation, which may be applied to 

objects. It is unclear how the programmer is supposed to know which 

objects require refreshing; again this deviates from the principles of 

orthogonal persistence. 

The db4o system adheres to the principle of data independence. No 

mappings or annotations are required to indicate which types may be made 

persistent. Similarly, code may manipulate data independent of its 

longevity. The concepts of update and activation depth do impact this 

principle since, for example, a method to determine the length of a list 

might get the wrong answer if activation depth was not used correctly. 

This is seen as desirable by the developers who state that “db4o provides a 

mechanism to give the client fine-grained control over how much he wants 

to pull out of the database when asking for an object” [45]. This property 

seems not to preserve identity. The principle of data type orthogonality is 

adhered to, since any user-defined data object can be made persistent 

without any additional code, annotations or XML specifications. 

3.8 Java Data Objects 

Java Data Objects was released in 2002 [46], providing a storage interface 

for Java objects without the necessity to interact with data access 

languages such as SQL. Using JDO, Java objects may be stored in a 

relational database, an object database, XML file, or any other technology 

using the same interface. Since it enables Java programmers to 



 

transparently access underlying data storage without using database-

specific code, it moves considerably towards the goals of persistent 

systems. An example of the use of JDO is shown below. Although not 

shown in this example, the entire transitive closure of objects is stored in 

the database on commit. 

PersistenceManagerFactory pmf = JDOHelper. 

 getPersistenceManagerFactory(..); 

PersistenceManager pm = pmf.getPersistenceManager(); 

Person p = new Person("Bob Smith", 49 ); 

Transaction tx; 

try { 

  tx = pm.currentTransaction(); 

  tx.begin(); 

  pm.makePersistent(p); 

  tx.commit(); 

} catch (Exception e) { … } 

Although this looks very much like the PS-algol examples, much 

additional specification is required when using JDO. The relationship 

between the Java objects and persistent data is specified using an XML 

metadata file. A simple example is shown below, specifying the persistent 

class com.xyz.Person. Field modifiers may specify a number of attributes, 

including which fields are primary keys, whether fields are persistent or 

transient, how fields are to be loaded, and how null values should be 

handled. 

<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE jdo SYSTEM "jdo.dtd"> 

<jdo> 

 <package name="com.xyz"> 

  <class name="Person"> 

   <field name="firstname" 

   persistence-modifier="persistent"/> 

   … 

  </class> 

 </package> 

</jdo> 

The query language provided by JDO, JDO Query Language (JDOQL), 

abstracts over the underlying storage technology. A query interface selects 

objects from the database irrespective of whether the underlying storage is 

based on objects or relations. Queries are passed to the persistence 

manager and operate on either class extents or explicit collections. 

Filtering is provided by providing Boolean expressions which are applied 

to instances. 



 

Query query = pm.newQuery(Person.class, people, 

 "name == \"Malcolm Atkinson\""); 

Collection result = (Collection) query.execute(); 

Iterator iter = result.iterator(); 

while ( iter.hasNext() ) { 

 Person p = (Person) iter.next(); 

 .... 

} 

JDO succeeds in abstracting over particular underlying storage 

technologies. However, in some cases, notably relational databases, the 

mapping between language objects and storage level objects must be 

described. When an object-relational mapping is used with JDO, the O-R 

mappings are described in ORM mapping files. 

Persistence of data is independent of the programs manipulating it, 

provided that appropriate persistence mappings have been described. The 

principle of data type orthogonality is violated, since only those objects 

that have a persistent mapping can be made persistent. Furthermore, 

system classes and some collection classes may not be made persistent. 

3.9 Java Persistence API 

The Java Persistence API [47] is intended to operate inside or outside a 

J2EE container, creating a persistence model for (plain old) Java objects. 

It eliminates much of the complexity required by JDO. For example, the 

XML mapping tables are no longer required, and the objects that can be 

made persistent are ordinary Java objects rather than having to implement 

specified interfaces. In contrast to JDO, which is agnostic to storage 

technology, the Java Persistence API is explicitly for use in an object-

relational context. 

@Entity 

public class Person 

 public Person() {} 

 @column( name="name" ) 

 public String getName() {} 

 @column( name="age" ) 

 public int getAge() {} 

} 

The @Enitity annotation can be decorated with parameters specifying the 

name of the table from which data is drawn; by default this is the name of 

the class. Similarly, the column name may be specified using the 

@column annotation and identity attribute using @id. This is clearly not a 

POJO system, despite being often described as one, since it requires 

annotations to be made in the Java classes describing the object-relational 

mappings. Object-relational mappings can be arbitrarily complex, and it is 

possible to specify that data be drawn from multiple tables using join-

based queries. 

Queries are defined using (an extension to) Enterprise JavaBeans query 

language (EJB QL) rather than SQL. The difference is subtle but 

important: rather than querying over tables in the database, queries are 

performed on the beans and the relationships between them. These 



 

relationships are specified using the attributes embedded within the Java 

objects. 

Using the Java Persistence API the persistence of data is independent of 

the programs that manipulate data. Additionally, the programmer does not 

have any explicit control over the movement of data between the store and 

main memory, thus adhering to the principle of persistence independence. 

The principle of data type orthogonality is only partially adhered to, since 

only instances of classes that are decorated with an @Entity annotation 

may be stored in the persistent store. This explicitly precludes most system 

classes from being persistently stored. The principle of persistence 

identification is largely adhered, to since the mechanism for identifying 

persistent objects is not related to the type system. 

Despite not being fully compliant with the principles of orthogonal 

persistence, an application programmer can program against persistent 

data without the knowledge that the data is persistent. This is very much in 

the spirit of the aims of orthogonal persistence. 

3.10 LINQ 

Microsoft, recognizing the problems of embedding queries into programs 

as strings, has created Language-Integrated Query (LINQ) [3]. Unlike the 

Java systems described previously, the approach taken by LINQ is to add 

general-purpose query facilities that may be applied to all information 

sources. Thus being able to query over relational data is merely a special 

case of querying. For example, using LINQ it is possible to write a C# 

program to query over a collection of persons as follows: 

static void doquery( Person[] people ) { 

    IEnumerable<Address> result = from p in people 

                                  where p.age == 49 

                                  select p.address; 

    foreach (Address item in result) 

      Console.WriteLine(item.getTown()); 

} 

The query selects all the people from the array whose age is 49 and forms 

an enumeration containing their addresses. Note that the query is 

integrated with the programming language, making it amenable to static 

type checking, optimization and—perhaps more importantly—design tools 

such as refactoring tools. 

Relational data stored in a database can also be manipulated using a 

Visual Studio component called LINQ to SQL, which transparently 

translates LINQ queries into SQL for execution by the database engine. 

The results are returned in the language level objects defined in the user 

program. LINQ tracks the relationships between the language objects and 

the database transparently. 

Like the Java object-relational mapping solutions, objects may be 

labelled with annotations to identify how properties correspond to 

database columns. Tool support is provided to assist in the translation 

between extant databases and language level object definitions. 



 

4 Taking Stock 

A selection of approaches to programming with persistent data have been 

outlined. They differ in a number of key attributes, including: 

 data-centric or program-centric 
 degree of adherence to the principles of orthogonal persistence 
 degree of impedance mismatch 
 storage technology employed 
 whether object identity is automatically preserved 
 whether code is stored with data 
 support for declarative queries over non-resident data 
 support for transactions 

Space precludes a full analysis of the various approaches with respect to 

all of these aspects, but we suggest that the most fundamental is the 

overall system philosophy. In a data-centric approach it is assumed that 

pre-existing persistent data is a given, and the issue is how to program 

over that data. In a program-centric approach, code comes first, and the 

issue is to provide persistence of program data between executions. 

In a data-centric approach the existing data is likely to be large and 

long-lived, and openness of the data—avoiding lock-in to proprietary 

technology—is likely to be important. Relational databases have 

overwhelming advantages in this sector: mature technology resulting from 

long-term investment in scalability and optimization; widely available 

expertise; and standard interfaces promoting inter-operability. Approaches 

in this category include low-level database APIs such as JDBC, and the 

various object-relational mapping technologies. The constraints imposed 

by the requirement to inter-operate with existing data—and to cope with 

changes to both data and meta-data made via other routes to the data—

mean that none of these approaches achieve data type orthogonality, and 

that all involve a significant impedance mismatch. The ORM systems 

require the programmer to understand and specify the mapping between 

multiple representations, while low-level APIs also require conversion 

code to be written. 

Designers of program-centric persistence technologies are less 

constrained in their choice of storage format since they may legitimately 

assume that the persistent data will be solely accessed via the language 

infrastructure. The systems that adhere to the principles of orthogonal 

persistence have all used proprietary closed storage formats. There is no 

obvious technical reason why this is a necessary choice, although it may 

well maximise scope for achieving good performance. This may have 

been one factor behind the lack of commercial adoption of the various 

successful research prototypes. To invest in significant use of any closed 

storage system requires a very high level of trust in the long-term viability 

of the technology and the processes that support it. Other obvious limiting 

factors are the relatively limited scalability of those systems in terms of 

size and query performance, inevitable given the resources available. 

Object-relational systems have been highly successful, now dominating 

the field in large applications. It is clear, however, that significant 

impedance mismatch problems remain. Although the modern programmer 

is less likely to have to program the transfer of objects to and from long-



 

term storage, they must still deal with a bewildering level of complexity in 

specifying mappings between objects and relations. The recent emergence 

of conceptually simpler approaches such as db4o is a sign that significant 

demand remains for the benefits pursued in the original investigations of 

orthogonal persistence. 

It is perhaps also worth reflecting on the current usefulness of the 

principles of orthogonal persistence, a quarter century after they were first 

proposed. The principle of persistence independence suggests that data 

manipulation should be coded in exactly the same way for transient and 

persistent data, and that the programmer should not have to control data 

movement between transient and persistent storage. So long as the 

language is sufficiently rich that all desired data manipulation can be 

expressed conveniently, there seems no obvious argument against this 

principle. Of course, adherence to it incurs some implementation effort, 

hence not all approaches do so. 

The principle of data type orthogonality suggests that all objects should 

be permitted the full range of persistence. Again, as a desirable feature this 

seems uncontroversial. Again, it raises significant implementation 

difficulties, leading to few systems achieving full adherence. Even those 

that claim full orthogonality have tended to have difficulty with objects 

that depend on external state, such as file descriptors, GUI elements, 

network channels etc. 

The principle of persistence identification has had a more chequered 

history. The wording of its definition earlier is taken from [21]. In the 

earlier [1], however, which first proposed principles of orthogonal 

persistence, the principle is listed but not named. In hindsight, it now 

seems unclear what, precisely, is mandated by this principle that is not 

already covered by the principle of persistence independence. This appears 

to have been recognised in more recent discussion, in which it has been 

replaced by the more concrete principles of transitive persistence [34] and 

persistence by reachability [48]. We may perhaps conclude that a more 

useful general principle might be that it should be possible to identify 

persistent objects in a convenient way. If doing so via the type system is 

forbidden by the principle of data type orthogonality, and identifying each 

object individually is ruled out as too arduous, then persistence by 

reachability is the only obvious solution. 

5 Future Directions 

Orthogonally persistent systems will not replace object-relational systems 

in the foreseeable future. We may, however, speculate on niche areas in 

which the principles of orthogonal persistence might be usefully carried 

forward. One possibility is the development of a program-centric approach 

in which fully orthogonal persistence is implemented using a relational 

database as the storage engine. This would address the „closed data 

format‟ criticism potentially levelled at previous implementations, since 

read-only access to the data could be permitted at the relational level. 

Another potential avenue for development is to target emerging 

application styles such as cloud applications. The development of such 



 

applications could be significantly simplified by a system supporting 

programming over resilient distributed objects in a transparent manner, 

abstracting over replication and physical location in the same way that 

orthogonal persistence abstracts over storage hierarchy [49]. 

Another avenue for investigation is how the unique features of 

orthogonally persistent systems may be exploited to improve current 

software development technology [18]. For example, the integration of 

first-class code and data within a persistent store that enforces referential 

integrity makes the hyper-code paradigm possible. This could be extended 

with more sophisticated support for application system evolution, 

analogous to refactoring tools provided by modern IDEs [50]. Hyper-code 

allows source code to be reliably associated with all code objects. Thus, 

whereas refactoring tools currently operate separately on a code base or on 

a database, refactoring within a persistent environment could be applied 

uniformly to data and the code that operates on it. Evolutionary code could 

reflect over all of the data bound into the code-base being evolved, as well 

as the structure of the code-base itself. Arbitrary evolution (or refactoring) 

of a running application could be performed with complete confidence that 

all code and data affected by a change could be located and evolved in 

turn consistently. This would be possible even for data that in 

conventional systems would be encapsulated within closures and thus 

inaccessible to evolution code. 

6 Conclusions 

Orthogonal persistence was proposed to address the impedance mismatch 

problem. This problem has been with us for 20-30 years and refuses to go 

away. It has recently been described as the Vietnam of Computer Science 

[51]. Far from being resolved, the impedance mismatch is perhaps getting 

worse. We now have impedance mismatch across the multiple subsystems 

concerned with data replication, cache-coherency and distribution. In 

many of today‟s enterprise systems the programmer must, by necessity, 

not only manage mappings from the language to the database but also 

from the language to the Memcached [52] or DBCache [53] layers, and 

from those layers to the database. Thus, when we consider the impedance 

mismatch problem in our systems it is important to recognise that the 

object-relational mapping is not the only mapping that must be considered. 

Even if non-relational storage is used, for example Amazon S3 [54], 

mapping between layers is required. The essential issues are who creates 

the mappings and how efficiently they can be maintained. 

In [19] Maier stated that one of the major problems of OO systems was 

the lack of integration between bulk operations and the programming 

language. In this domain good progress has been made in the last few 

years. LINQ makes great strides in providing a single (sub-) language that 

operates over objects regardless of their longevity. 

The solutions to providing persistence in programming systems have 

been many, and the road has been long and winding. However, there has 

been a clear trend towards the ideals of orthogonal persistence. The state 

of the art has finally moved away from strings containing embedded 



 

queries with explicit coercions to values in the programming language 

space. 

In the 1980s orthogonal persistence focussed on the differences 

between long- and short-term storage. As described above, this is just one 

of many mappings that an application builder needs to be concerned with; 

there are many subsystems that require mappings to be maintained, 

including caching, networks, virtualized hosts, distributed storage, and 

replication. Furthermore, we are moving towards a world in which 

applications are self-organising and autonomic. Such autonomic systems 

are likely to be concerned with data clustering, machine utilisation and the 

ability to distribute computation and storage. Lastly the scale of 

application systems is likely to vary enormously from small persistent 

applications on devices such as iPhones through to extremely large ones to 

address the scientific challenges of tomorrow. In such a world it seems 

unlikely that the intellectual burden of managing a plethora of complex 

mappings can be left in the human domain. 
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