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Abstract. This paper presents new software speed records for the computation of cryptographic
pairings. More specifically, we present a software which computes the optimal ate pairing on a
257-bit Barreto-Naehrig curve in only 4,470,408 cycles on one core of an Intel Core 2 Quad
Q6600 processor.

This speed is achieved by combining 1.) state-of-the-art high-level optimization techniques, 2.)
a new representation of elements in the underlying finite fields which makes use of the special
modulus arising from the Barreto-Naehrig curve construction, and 3.) implementing arithmetic
in this representation using the double-precision floating-point SIMD instructions of the amd64
architecture.
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1 Introduction

The use of pairings in constructive cryptographic applications has enabled practical realiza-
tions of numerous protocols. The implementation of such protocols requires the ability to
efficiently compute the pairing while a certain level of security needs to be guaranteed. Most
cryptographic pairings are derived from the Tate pairing on elliptic curves.

Since the introduction of Miller’s algorithm [24, 25] for computing pairings on elliptic
curves, a lot of research has been devoted to finding the most efficient Tate-pairing variants
for different security levels by constructing suitable pairing-friendly elliptic curves [15] and
by making specific choices for the groups and parameters involved in the computation [6].
Several variants of the Tate pairing have been proposed like the eta, ate and twisted ate
pairings [5, 21], the R-ate [22] and optimal ate pairings [30] (see also [4]), often increasing the
computational efficiency over that of their predecessors. Overall, these improvements have
led to a remarkable increase in the efficiency of pairing-based protocols. Still, new protocols
including the computation of a large number of pairings or pairing products [11, 19] demand
even faster pairings.

Pairing-based protocols involve elliptic-curve point groups as well as subgroups of the
multiplicative group of a finite field. To achieve most efficient implementations, it is desirable

⋆ This work has been supported in part by the European Commission through the ICT Programme under
Contract ICT–2007–216499 CACE, and through the ICT Programme under Contract ICT-2007-216646
ECRYPT II. Permanent ID of this document: 4d8d6cd8dc32f9524bb84bbe9c148076. Date: April 6, 2010



2 Michael Naehrig, Ruben Niederhagen, and Peter Schwabe

to choose parameters such that the discrete logarithm problems in all groups have roughly
the same difficulty.

At the 128-bit security level, a nearly optimal choice for a pairing-friendly curve is a
Barreto-Naehrig (BN) curve [7] over a prime field of size roughly 256 bits with embedding
degree k = 12 [16]. This paper describes a constant-time implementation of an optimal ate
pairing on a BN curve over a prime field Fp of size 257 bits. The prime p is given by the BN
polynomial parametrization p = 36u4 + 36u3 + 24u2 + 6u+ 1, where u = v3 and v = 1966080.
The curve equation is E : y2 = x3 + 17.

We are the first to propose a software pairing implementation exploiting the polyno-
mial parametrization of the prime p to speed up the underlying field arithmetic. For most
pairing-friendly curves, the primes defining the base field are constructed using polynomial
parametrizations. These parametrizations have been used to speed up the final exponentia-
tion [29], but have not been successfully exploited for field arithmetic in software. However,
Fan, Vercauteren, and Verbauwhede [13] used the polynomial shape of the prime p to achieve
computational speedups in hardware.

To maximize reusability of our results we will put all software described in this paper into
the public domain.

Comparison to previous work. There exist several descriptions and benchmarks of soft-
ware implementations of cryptographic pairings. Implementations targeting the 128-bit secu-
rity level usually use 256-bit BN curves.

The software presented in [20] takes 10,000,000 cycles to compute the R-ate pairing over
a 256-bit BN curve on one core of an Intel Core 2 processor; the same computation on one
core of an AMD Opteron processor also takes 10,000,000 cycles. Unpublished benchmarks
of a newer version of that software (included in the Miracl library [23]) are claimed to take
7,850,000 cycles on an Intel Core 2 Duo T5500 processor [28]. The software presented in [27]
takes 29,650,000 cycles to compute the ate pairing over a 256-bit BN curve on one core of
a Core 2 Duo processor. Software presented in [17] takes 23,319,673 cycles to compute the
ate pairing over a 256-bit BN curve on one core of an Intel Core 2 Duo processor; another
implementation described in the same paper takes 14,429,439 to compute the ate pairing on
two cores of an Intel Core 2 Duo processor.

The software presented in this paper computes the optimal ate pairing in 4, 470, 408 cy-
cles on one core of an Intel Core 2 Quad Q6600 processor and is thus more than twice as
fast as the fastest previously published result and more than 40 percent faster than other
unpublished results we are aware of. We don’t know of any other software implementation of
a cryptographic pairing on the 128-bit security level that achieves speeds of 7,850,000 cycles
or faster on any amd64 processor.

Organization of the paper. In Section 2 we give a short review of the optimal ate pairing
for BN curves. Section 3 collects state-of-the-art high-level optimization techniques for the
computation of cryptographic pairings on BN curves from the literature as we use them in
our software. Section 4 describes our new approach to represent elements of the underlying
finite field Fp and algorithms to perform arithmetic using this representation in Fp and Fp2. In
Section 5 we explain how we use the double-precision floating-point SIMD instructions of the
amd64 instruction set (SSE, SSE2, SSE3) to efficiently implement these algorithms. Section
6 gives benchmarking results of our software on different microarchitectures.
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2 An optimal ate pairing over Barreto-Naehrig curves

For a Barreto-Naehrig (BN) curve, the most efficient pairings are the R-ate pairing [22] and
the optimal ate pairing [30]. In this section, we provide the basic background and notation,
and describe the algorithm for the optimal ate pairing that is used in our implementation.

Let E : y2 = x3 + b be a BN curve over the prime field Fp. This means that there is a
u ∈ Z such that both p and n, given by

p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1,

n = n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1

are prime. The number of Fp-rational points on E is #E(Fp) = n, and E has embedding
degree k = 12 with respect to n. We denote by O the point at infinity, i.e. the neutral element
of the group operation on E. For m ∈ Z, we write [m] for the multiplication-by-m map on E.

Let φp be the p-power Frobenius endomorphism on E and E[n] the n-torsion subgroup
of E. We define G1 = E[n] ∩ ker(φp − [1]) = E(Fp), G2 = E[n] ∩ ker(φp − [p]) ⊆ E(Fp12)[n],
G3 = µn, where µn ⊂ F

∗

p12 is the group of n-th roots of unity.

An optimal ate pairing on E is given in [30] as

aopt : G2 ×G1 → G3, (Q,P ) 7→ (f6u+2,Q(P ) · g6u+2,Q(P ))(p
12
−1)/n.

where g6u+2,Q(P ) = lQ3,−Q2(P ) · l−Q2+Q3,Q1(P ) · lQ1−Q2+Q3,[6u+2]Q(P ) with Q1 = φp(Q),
Q2 = φ2

p(Q), and Q3 = φ3
p(Q). The value lR,S(P ) ∈ Fp12 is the function of the line through

the points R and S on the curve, evaluated at P .
There is no need to compute Q3. Instead, g6u+2,Q(P ) can be replaced by

h6u+2,Q(P ) = l[6u+2]Q,Q1
(P ) · l[6u+2]Q+Q1,−Q2

(P ).

The reason for this is that for BN curves Q1 −Q2 +Q3 + [6u+ 2]Q = O, which can be easily
derived from Lemma 2.17 in [26]. By writing down the divisors of the functions g6u+2,Q and
h6u+2,Q, it can be seen that they only differ by vertical line functions. When evaluated at P ,
such line functions produce values in proper subfields of Fp12 that are mapped to 1 by the
final exponentiation.

Algorithm 1 shows how aopt(Q,P ) can be computed. Lines 2 to 7 are called the Miller
loop. It contains doubling steps in Line 3 and addition steps in Line 5. The value h6u+2,Q(P )
is multiplied to the result of the Miller loop in Lines 11 to 13 by two addition steps. Lines 14
to 16 together carry out the final exponentiation to the power (p12 − 1)/n, where Lines 14
and 15 comprise its easy part. It can be done by applying the Frobenius automorphism on
Fp12, a single inversion and a multiplication in Fp12. Line 16 represents the hard part of the
final exponentiation.

As usual [7, 21, 12], we use a sextic twist E′ : y2 = x3 + b/ξ defined over Fp2 to represent
the points in G2 by points on the twist using the twist isomorphism ψ : E′ → E, (x′, y′) 7→
(ω2x′, ω3y′). The element ξ ∈ Fp2 (neither a cube nor a square in Fp2) is chosen such that the
twist has the right order, i.e. it holds n | #E′(Fp2). The field Fp12 is generated over Fp2 by ω
via the irreducible polynomial X6 − ξ, i.e. ω6 = ξ.

The map ψ induces a group isomorphism between G′

2 = E′(Fp2)[n] and G2. So, all points
R ∈ G2 should be seen as being represented by a corresponding point R′ ∈ G′

2, i.e. R =
ψ(R′). All curve arithmetic is done on the twist and intermediate results can be kept in
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Algorithm 1 Optimal ate pairing on BN curves
Input: P ∈ G1, Q ∈ G2, mopt = |6u + 2| = (1, ms−1, . . . , m0)2.
Output: aopt(Q, P ).
1: R← Q, f ← 1
2: for (i← s− 1; i ≥ 0; i−−) do

3: f ← f2 · lR,R(P ), R← [2]R
4: if (mi = 1) then

5: f ← f · lR,Q(P ), R← R + Q
6: end if

7: end for

8: if u < 0 then

9: f ← 1/f , R← −R
10: end if

11: Q1 = φp(Q), Q2 = φp2(Q)
12: f ← f · lR,Q1

(P ), R← R + Q1

13: f ← f · lR,−Q2
(P ), R← R−Q2

14: f ← fp6
−1

15: f ← fp2+1

16: f ← f (p4
−p2+1)/n

17: return f

their representation on E′. This means that all curve arithmetic requires Fp2-arithmetic only.
Arithmetic in Fp12 is also based on arithmetic in Fp2. Overall, there are no Fp computations
other than those involved in Fp2 computations during the optimal-ate-pairing algorithm.
Thus an improvement of Fp2-arithmetic–even without improving Fp-arithmetic–leads to an
improvement of all parts of the computation.

3 High-level techniques: field extensions, Miller loop and final

exponentiation

In this section, we describe the high-level structure of our implementation. We use state-of-
the-art optimization techniques from the literature for this implementation level. Our focus
is on the construction of the higher degree field extensions such as Fp6 and Fp12, the Miller
loop to compute f6u+2,Q(P ), the additional function value h6u+2,Q(P ) and the structure of
the final exponentiation.

The construction of field extensions and the efficiency of the optimal ate pairing depend on
the chosen curve parameters. Since our new base-field representation needs the parameter u to
be a third power u = v3, we are strongly restricted in the choice of curves. Field multiplications
and squarings in Fp12 are very expensive, so another important condition on u is, that 6u+ 2
should have a Hamming weight as low as possible, to save as many addition steps during the
Miller loop as possible.

Our specific choice here is u = v3 with v = 1966080.

3.1 Field extensions

The above restrictions dictated us to choose a parameter u such that p ≡ 1 (mod 4) which
means that the field extension Fp2 can not be constructed using

√
−1. Instead we use Fp2 =

Fp(i), where i2 = −7. The value ξ to construct the twist and higher-degree extensions is
ξ = i+ 6.



New software speed records for cryptographic pairings 5

On top of the quadratic extension we build the 12-th degree extension as a tower, first
Fp6 = Fp2(τ) with τ3 = ξ and then Fp12 = Fp6(ω) with ω2 = τ . This is the same construction
as in [12]. The implementation of field arithmetic in Fp6 and Fp12 follows [12].

3.2 Miller loop

The value 6u+ 2 determines the number of doubling and addition steps in the Miller loop of
the optimal ate pairing. The number of doubling steps is 65. The Hamming weight of 6u+ 2
is 9, so there are 8 addition steps. Throughout the pairing computation we use the group G′

2

to represent points in G2. We use Jacobian coordinates for the curve arithmetic in G′

2. In
particular, for the doubling and addition steps, we use the formulas given by Arène et al. in
[3]. The points in G1, at which line functions are evaluated, are kept in affine coordinates.

The multiplication of the intermediate variable f with line functions in the Miller loop
is done via a special multiplication function exploiting the fact that line functions are sparse
elements of Fp12 , where only half of the coefficients over Fp2 are different from zero.

After the Miller loop, the points Q1 and Q2 are computed by applying the p-power and
the p2-power Frobenius endomorphisms. We do two final addition steps with Q1 and −Q2,
respectively, to multiply the result of the Miller loop by the function value h6u+2,Q(P ).

3.3 Final exponentiation

The final exponentiation in our implementation is done as indicated in Lines 14 to 16 of
Algorithm 1. It is divided into the easy part (Lines 14, 15) and the hard part (Line 16). The
easy part has low computational costs compared to the hard part. Raising the element to the
power p6 − 1 is simply a conjugation in the extension Fp12/Fp6 and a single division in Fp12 .
The exponentiation by p2 + 1 is done by applying the p2-power Frobenius automorphism and
one multiplication.

For the hard part, we use the method proposed by Scott et al. in [29]. The main advantage
here is that the exponentiation is essentially split into three exponentiations by the sparse
exponent u. For our choice the Hamming weight of u is 8. The final result is then obtained
by applying the Frobenius automorphism and by using the polynomial representation of the
fixed exponent (p4 − p2 + 1)/n.

Note that after the easy part of the final exponentiation, the resulting element in Fp12 lies
in the cyclotomic subgroup of F

∗

p12 , i.e. the subgroup of order Φ12(p). Granger and Scott [18]
recently showed how to exploit this fact to obtain very efficient squaring formulas for such
elements. We use these formulas during the hard part of the final exponentiation.

4 Mid-level techniques: arithmetic in Fp2 and Fp

This section explains the new approach for representing integers modulo p where p is given by
the BN polynomial 36u4 + 36u3 + 24u2 + 6u+ 1. Inspired by Bernstein’s Curve25519 [10], we
suggest to split such an integer into 12 coefficients each of which will be stored in a double-
precision floating-point variable in the software implementation. We now give the details of
our approach.
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4.1 Representing base field elements

Elements in the base field Fp are integers modulo the prime p = 36u4 + 36u3 + 24u2 + 6u+ 1
for some u ∈ Z. We make the assumption that there exists an integer v ∈ Z with u = v3.
Furthermore, let δ = 6

√
6. Then we have (δvx)3 =

√
6ux3.

We represent integers by polynomials in the ring

R = Z[x] ∩ Z[δvx],

where Z denotes the ring of algebraic integers in C. Note that the ring homomorphism R 7→
Z, F 7→ f = F (1) is surjective and thus we may represent an integer f by any polynomial F
in the preimage of f under the above map. The product of two integers can be computed by
multiplying the corresponding polynomials in R and evaluating the product at 1.

Since δ is an algebraic integer, we see that the polynomial

P = 36u4x12 + 36u3x9 + 24u2x6 + 6ux3 + 1

= (δvx)12 + δ3(δvx)9 + 4(δvx)6 + δ3(δvx)3 + 1

is an element of R representing the prime p.
Let α = δvx. Any integer f can be represented by a polynomial F ∈ R with F (1) = f of

the following form:

F = f0 + f1δ
5α+ f2δ

4α2 + f3δ
3α3 + f4δ

2α4 + f5δα
5

+f6α
6 + f7δ

5α7 + f8δ
4α8 + f9δ

3α9 + f10δ
2α10 + f11δα

11

= f0 + f1 · 6(vx) + f2 · 6(vx)2 + f3 · 6(vx)3 + f4 · 6(vx)4

+f5 · 6(vx)5 + f6 · 6(vx)6 + f7 · 36(vx)7 + f8 · 36(vx)8

+f9 · 36(vx)9 + f10 · 36(vx)10 + f11 · 36(vx)11,

where fi ∈ Z for all i. The integer f corresponds to the vector of coefficients (f0, f1, . . . , f11)
of F .

4.2 Multiplication modulo p

Multiplication modulo p in the new representation is done in two stages, first a polynomial
multiplication of the two polynomials representing the integers and second a reduction step.

Let f, g ∈ Z with corresponding polynomials F,G ∈ R and coefficient vectors (f0, f1, · · · f11)
and (g0, g1, · · · g11). The product of the two polynomials H = FG then has a coefficient vector
(h0, h1, . . . , h22) and has the form H = h0 + h1δ

5α+ · · · + h21δ
2α21 + h22δα

22.
We aim at representing the result of the multiplication by a polynomial of degree 11 which

has 12 coefficients. For the degree-reduction, we use the polynomial P representing the BN
prime p. Reducing polynomials modulo P corresponds to reducing the corresponding integers
modulo p. We have P = α12 + δ3α9 + 4α6 + δ3α3 + 1, thus we can use the equation

α12 = −δ3α9 − 4α6 − δ3α3 − 1

to reduce the degree of H. The degree reduction is given in Algorithm 2.
By polynomial multiplication and degree reduction the coefficients grow in their absolute

value. Whenever they get too large we need to do a coefficient reduction. For that we use
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Algorithm 2 Degree reduction after polynomial multiplication

Input: Coefficient vector (h0, h1, . . . , h22) ∈ Z
23 of H ∈ R with H(1) = h.

Output: Reduced coefficient vector (h′

0, h
′

1, . . . , h
′

11) of H ′ with H ′(1) = h.
1: h′

0 ← h0 − h12 + 6h15 − 2h18 − 6h21

2: h′

1 ← h1 − h13 + h16 − 2h19 − h22

3: h′

2 ← h2 − h14 + h17 − 2h20

4: h′

3 ← h3 − h12 + 5h15 − h18 − 8h21

5: h′

4 ← h4 − 6h13 + 5h16 − 6h19 − 8h22

6: h′

5 ← h5 − 6h14 + 5h17 − 6h20

7: h′

6 ← h6 − 4h12 + 18h15 − 3h18 − 30h21

8: h′

7 ← h7 − 4h13 + 3h16 − 3h19 − 5h22

9: h′

8 ← h8 − 4h14 + 3h17 − 3h20

10: h′

9 ← h9 − h12 + 2h15 + h18 − 9h21

11: h′

10 ← h10 − 6h13 + 2h16 + 6h19 − 9h22

12: h′

11 ← h11 − 6h14 + 2h17 + 6h20

13: return (h′

0, h
′

1, . . . , h
′

11).

Algorithm 3. We address the relevant bounds on the coefficients and how to guarantee them
in Section 5.1. After the reduction, we have

h0, h6 ∈ [−|3v|, |3v|), h1, h3, h4, h7, h9, h10 ∈ [−|v/2|, |v/2|),

the coefficients h2, h5, h8, h11 may have an absolute value only slightly larger than |v/2|. The
function rnd in Algorithm 3 denotes rounding to the nearest integer.

Algorithm 3 Coefficient reduction

Input: Coefficient vector (h0, h1, . . . , h11) ∈ Z
12 of H ∈ R with H(1) = h.

Output: Reduced coefficient vector (h′

0, h
′

1, . . . , h
′

11) of H ′ with H ′(1) = h.
1: r ← rnd(h1/v), h1 ← h1 − rv, h2 ← h2 + r
2: r ← rnd(h4/v), h4 ← h4 − rv, h5 ← h5 + r
3: r ← rnd(h7/v), h7 ← h7 − rv, h8 ← h8 + r
4: r ← rnd(h10/v), h10 ← h10 − rv, h11 ← h11 + r
5: r ← rnd(h2/v), h2 ← h2 − rv, h3 ← h3 + r
6: r ← rnd(h5/v), h5 ← h5 − rv, h6 ← h6 + r
7: r ← rnd(h8/v), h8 ← h8 − rv, h9 ← h9 + r
8: r ← rnd(h11/v), h11 ← h11 − rv
9: h9 ← h9 − r

10: h6 ← h6 − 4r
11: h3 ← h3 − r
12: h0 ← h0 − r
13: r ← rnd(h0/(6v)), h0 ← h0 − r · 6v, h1 ← h1 + r
14: r ← rnd(h3/v), h3 ← h3 − rv, h4 ← h4 + r
15: r ← rnd(h6/(6v)), h6 ← h6 − r · 6v, h7 ← h7 + r
16: r ← rnd(h9/v), h9 ← h9 − rv, h10 ← h10 + r
17: r ← rnd(h1/v), h1 ← h1 − rv, h2 ← h2 + r
18: r ← rnd(h4/v), h4 ← h4 − rv, h5 ← h5 + r
19: r ← rnd(h7/v), h7 ← h7 − rv, h8 ← h8 + r
20: r ← rnd(h10/v), h10 ← h10 − rv, h11 ← h11 + r
21: return (h′

0, h
′

1, . . . , h
′

11).
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5 Low-level techniques: using SIMD floating-point arithmetic

Implementations of large-integer arithmetic on 64-bit processors usually decompose a large in-
teger into limbs of 64 bits. Arithmetic is then performed using fast 64-bit integer-multiply and
-add instructions [1, 23, 2]. For our implementation we will not make use of these instructions
but instead use double-precision floating-point arithmetic. Many modern microprocessors in-
cluding all microprocessors implementing the amd64 architecture have very fast floating-point
units. This is due to the fact that the performance of many applications such as image- and
video processing relies on fast floating-point rather than integer processing and that many
CPU benchmarks focus on the speed of floating-point operations.

It has been shown before that one can use these fast floating-point units for high-speed
cryptography and for arithmetic on large integers, for example by Bernstein in [10] and
[9]. Unlike the implementation in [10] which uses 80-bit floating-point values (with a 64-bit
mantissa), we decided to use 64-bit floating-point values (with a 53-bit mantissa). This allows
us to use the single-instruction multiple-data (SIMD) instructions of the SSE2 and SSE3
instruction set operating on double-precision (64-bit) floating-point values.

These instructions perform two double-precision floating-point operations at once on
two independent inputs layed out in 128-bit vector registers called XMM registers. The
amd64 architecture defines 16 architectural XMM registers. For example the instruction
addpd %xmm1, %xmm2 takes the low 64 bits from register %xmm1 and the low 64 bits of register
%xmm2, adds them as double-precision floating-point values and stores the result in the low 64
bits of register %xmm2; at the same time it takes the high 64 bits from register %xmm1 and the
high 64 bits of register %xmm2, adds them as double-precision floating-point values and stores
the result in the high 64 bits of register %xmm2.

The most important SSE2 instructions for our implementation are the addpd and the
mulpd instructions. The Intel Core 2 processors (both, 65 nm and 45 nm models) can issue
up to one mulpd and one addpd instruction per cycle and thus execute 4 floating-point oper-
ations in one cycle. However, it can not execute 2 mulpd or 2 addpd instructions in the same
cycle (for details see [14]). To arrange data in the XMM vector registers our implementation
requires additional non-arithmetic instructions such as shufpd, unpckhpd and unpcklpd. In
the implementation of the squaring in Fp2 we also need the addsd instruction which adds the
low double values of two XMM registers and leaves the high double value of the destination
register unchanged.

Note that all arithmetic instructions only have 2 operands, one of the inputs is overwritten
by the output. This sometimes requires additional mov instructions to copy data to other
registers or memory.

5.1 Avoiding overflows

Double-precision floating point registers hold real numbers of the form 2ef , with f ∈ {−253−
1, . . . , 253 − 1} and e ∈ {−1022, . . . , 1023}. The result of an operation of two such numbers
is guaranteed to be exact if it is in {−253 − 1, . . . , 253 − 1}, otherwise the result value may
overflow. To make sure that such overflows do not occur, we cannot simply run the code on
some inputs and check whether it produces the correct results; we have to make sure that an
overflow cannot occur for any two valid pairing arguments.

We first implemented all algorithms in the C++ programming language (not using SIMD
instructions) and use a self-written class CheckDouble instead of the double data type to



New software speed records for cryptographic pairings 9

represent 64-bit floating-point values. This class performs all arithmetic operations on a mem-
ber variable d of type double. Furthermore it stores the “worst-case” absolute value of the
mantissa m in a member variable of type uint64 t which is updated with each operation.
Before actually performing an operation it checks whether the worst-case result will over-
flow; if it does, the program is aborted. Updating m is straight-forward: Multiplying (d1,m1)
and (d2,m2) yields (d1d2,m1m2), adding (d1,m1) and (d2,m2) yields (d1 + d2,m1 +m2), and
subtracting (d1,m1) from (d2,m2) yields (d2−d1,m1+m2). The only divisions are by the con-
stants v and 6v, for those divisions it is safe to set the result to (d/v, |m/v|) or (d/6v, |m/6v|)
respectively. The remainder of a (rounding) division by v is always between −|v/2| and |v/2|,
so we can just set the maximal mantissa to |v/2| when computing the remainder of a division
by v. Analgously, the maximal mantissa of the remainder of a division by 6v is |3v|.

For all constants involved in the pairing computation we can initialize the maximal man-
tissa with the actual value. For the inputs to the pairing we assume that they are worst-case
output of the reduction described in Algorithm 3.

In order to obtain the targeted performance we replaced the CheckDouble class again
by the double data type and re-implemented the speed-critical functions in the qhasm pro-
gramming language [8] using SIMD instructions where possible. The resulting software has
passed a bilinearity and non-degeneracy test on 1,000,000 random inputs, each test involving
3 pairing computations.

5.2 Implementation of field-arithmetic operations

The 12 coefficients f0, . . . , f11 of a polynomial F representing an element f ∈ Fp (cmp. Section
4) are stored consecutively in a double array of size 12. The 24 coefficients g0, . . . , g11 and
h0, . . . , h11 representing an element (gi + h) ∈ Fp2 are stored interleaved in a double array
of size 24 as (h0, g0|h1, g1| . . . |h11, g11). In the following descriptions, all SIMD instructions
operate on every two adjacent double values of this representation. Observe that the imple-
mentations do not minimize the number of instructions but try to minimize the number of
cycles.

Fp2 × Fp2 multiplication. Multiplication of ai + b and ci + d, layed out in memory as
op1 = (b0, a0| . . . |b11, a11) and op2 = (d0, c0| . . . |d11, c11), is done by duplicating b0, . . . , b11 to
obtain

t1 = (b0, b0|b1, b1| . . . |b11, b11).
We then perform a digit-sliced multiplication of t1 and op2 to obtain

t2 = (bd0, bc0| . . . |bd22, bc22).

In a second step we duplicate a0, . . . , a11, obtain

t1 = (a0, a0|a1, a1| . . . |a11, a11),

multiply digit-sliced with op2 and obtain

t3 = (ad0, ac0| . . . |ad22, ac22).

We then multiply the high double values of t3 by i2 = −7 and obtain

t3 = (ad0,−7ac0| . . . |ad22,−7ac22).
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Swapping in t3 yields

t3 = (−7ac0, ad0| . . . | − 7ac22, ad22).

Finally we add t3 to t2 and apply polynomial reduction (Algorithm 2) and coefficient reduction
(Algorithm 3) to obtain interleaved coefficients of (ai+ b)(ci+ d) = ((ad+ bc)i+ (bd− 7ac)).
During this computation we keep values in XMM registers as much as possible.

The parallel digit-sliced multiplication uses the schoolbook algorithm resulting in 144
multiplications (mulpd), 121 additions (addpd), and 10 more multiplications by 6 (mulpd).
We experimented with Karatsuba multiplication but did not gain any performance – we are
planning to further examine possible speedups by using Karatsuba multiplication.

Computing the rounded quotient and the remainder in the coefficient reduction could be
done using multiplication by 1/v, using the roundpd instruction on the result, multiplying
by v and subtracting the result from the original value to obtain the remainder. As the
roundpd instruction is part of the SSE4.1 instruction set which is not available on 65 nm
Core 2 processors and all AMD processors we decided to implement rounding as addition and
subsequent subtraction of a constant as for example explained by Bernstein in [9].

Fp2 squaring. When squaring an element ai + b ∈ Fp2, layed out in memory as op1 =
(b0, a0| . . . |b11, a11), we swap the coefficients to obtain

t1 = (a0, b0| . . . |a11, b11).

We then copy t1 and apply the addsd instruction with op1 to obtain

t2 = (a0 + b0, b0| . . . |a11 + b11, b11).

Then we multiply the low double values in t1 by i2 = −7 and obtain

t1 = (−7a0, b0| . . . | − 7a11, b11).

Applying the addsd instruction on t1 and op1 yields

t1 = (b0 − 7a0, b0| . . . |b11 − 7a11, b11).

Now we use digit-sliced multiplication on t1 and t2 to obtain

r = (((b− 7a)(a + b))0, ab0| . . . |((b− 7a)(a + b))11, ab11).

Copying r and duplicating the high double values yieds

d = (ab0, ab0| . . . |ab11, ab11).

Multiplying the low double values in d by −i2 − 1 = 6 yields

d = (6ab0, ab0| . . . |6ab11, ab11), and

adding d to r and applying polynomial reduction and coefficient reduction yields the coeffi-
cients of the result (2ab)i + (b2 − 7a2).

Fp2 × Fp multiplication. Evaluating the line functions requires multiplications of an ele-
ment of Fp2 with an element of Fp. This is implemented using the same parallel schoolbook
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multiplication which is used in the Fp2 × Fp2 multiplication. This requires first duplicating
the coefficients of the Fp element in memory.

Fp2 short coefficient reduction. Additions, Subtractions and multiplications with small
constants in Fp2 can all be implemented using 12 SIMD instructions. They produce results
which may have coefficients that are too large to go as input into a multiplication but are still
so small that they do not require the full-fledged coefficient reduction from Algorithm 3. If
the output of an addition or subtraction is used as input to a multiplication we apply a short
coefficient reduction which first carries from f11 to f0, f3, f6 and f9. Then it carries from all
odd coefficients f1, f3, . . . , f9 and then from all even coefficients f0, f2, . . . , f10.

Fp inversion. The final exponentation involves one inversion in Fp12. This can be computed
with only one inversion in Fp and several multiplications as described in, e.g., [20, Sec. 2]. We
implement inversion in Fp as exponentiation with p − 2 using a simple square-and-multiply
algorithm. There exist certainly faster methods to compute inverses in Fp, but this way we
can easily ensure constant-time behaviour of the inversion and the single inversion in Fp2

accounts for less than 3 percent of the total computation time.

6 Benchmarking results

This section gives benchmarking results of the pairing computation on different microarchi-
tectures. All benchmarks were obtained by iteratively calling the function to benchmark and
a function reading the CPU cycle counter 1000 times and then computing the median of the
differences of every two consecutive cycle counts. The call to the function reading the cycle
counter and the loop control incurs some overhead so Table 2 also gives the cycles obtained
when no function is called between two consecutive cycle counts.

Name Affiliation CPU OS Compiler

latour Eindhoven University Intel Core 2 Quad Q6600 Linux 2.6.28 gcc 4.3.3
of Technology 2394 MHz

behemoth National Taiwan Intel Core 2 Quad Q9550 Linux 2.6.27 gcc 4.3.2
University 2830 MHz

dragon National Taiwan Intel Xeon E5504 Linux 2.6.27 gcc 3.4.6
University 2000 MHz

mace University of Illinois AMD Athlon 64 X2 3800+ Linux 2.6.31 gcc 4.4.1
at Chicago 2000 MHz

chukonu University of Illinois AMD Phenom II X4 955 Linux 2.6.31 gcc 4.4.1
at Chicago 3210.298 MHz

Table 1. Machines used for benchmarking
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latour behemoth dragon mace chukonu

no function 72 34 24 11 75

Fp2 × Fp2 multiplication 693 672 676 1732 737

Fp2 squaring 558 510 504 1220 606

Fp2 × Fp multiplication 432 391 388 977 434

Fp2 short coefficient reduction 144 110 84 195 152

Fp2 inversion 127071 126718 134524 339835 127067

Miller loop 2,267,811 2,320,908 2,365,812 5,666,343 2,506,893
(including two final addition steps)

optimal ate pairing 4,470,408 4,480,716 4,736,408 10,961,234 4,989,872

Table 2. Cycle counts of relevant operations on different machines. Parameters: p = 36u4+36u3+24u2+6u+1,
with u = v3 and v = 1966080, BN curve: y2 = x3 + 17 over Fp.
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