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SRI International 333 Ravenswood Ave Menlo Park, CA 94025
konolige,agrawal,sola@ai.sri.com

1 Introduction

Estimating motion from an image sensor is an appealing idea - a low-cost,
compact and self-contained device based on vision could be an important
component of many navigation systems. One can imagine household robots
that keep track of where they are, or automatic vehicles that navigate on-
and off-road terrain, using vision-based motion estimation to fuse their sensor
readings in a coherent way. These tasks are currently entrusted to various
types of sensors - GPS and inertial measurement units (IMUs) are the primary
ones - that can be costly in high-precision applications, or prone to error: GPS
does not work indoors or under tree canopy, low-cost IMUs quickly degrade
unless corrected. Visual motion estimation can be a method for estimating
motion in is own right, and also as a complement to these more traditional
methods.

We are interested in very precise motion estimation over courses that are
many kilometers in length, in natural terrain. Vehicle dynamics and outdoor
scenery can make the problem of matching images very challenging. Figure 1

Fig. 1. Harris corner features in two consecutive outdoor frames. Only three
matched points survive a motion consistency test.

0 This work was performed as part of DARPA’s Learning Applied to Ground Robots
project.
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shows two successive images from an outdoor scene, with Harris corners ex-
tracted. Note the lack of distinctive corner features that are normally present
in indoor and urban scenes – most corners in the first image are not found in
the second.

In this paper, we present a state-of-the-art system for realtime VO on
rough terrain using stereo images (it also works well in indoor and urban
scenes). The system derives from recent research by the authors and others
on high-precision VO. The most important techniques are:

• Stable feature detection. Precise VO depends on features that can be
tracked over longer sequences. Standard features (Harris [11], FAST [19],
SIFT [14]) can exhibit poor performance over some offroad sequences. We
present a new multiscale feature (named CenSurE [3]) that has improved
stability over both outdoor and indoor sequences, and is inexpensive to
compute.

• Incremental sparse bundle adjustment. Sparse bundle adjustment (SBA)
[9, 24] is a nonlinear batch optimization over camera poses and tracked
features. Recent experiments have shown that an incremental form of SBA
can reduce the error in VO by a large factor [9, 16, 23].

• IMU integration. Fusing information from an IMU can lower the growth of
angular errors in the VO estimate [22]. Even low-cost, low-precision IMUs
can significantly increase performance, especially in the tilt and roll axes,
where gravity gives a global normal vector.

Our main contribution is a realtime system that, by using these techniques,
attains precise localization in rough outdoor terrain. A typical result is less
than 0.1% maximum error over a 9 km trajectory, with match failure of just
0.2% of the visual frames, on a vehicle running up to 5 m/s.

2 Visual Odometry Overview

Visual odometry estimates a continuous camera trajectory by examining the
changes motion induces on the images. There are two main classes of tech-
niques.

Dense motion algorithms, also known as optical flow, track the image mo-
tion of brightness patterns over the full image [5]. The computed flow fields
are typically useful for obstacle avoidance or other low-level behaviors, and it
is difficult to relate flow fields to global geometry. One notable exception is
the recent work on stereo flow [6], which uses standard structure from motion
(SfM) techniques to relate all the pixels of two successive images. This research
is similar to that described in this paper, but uses dense pixel comparisons
rather than features to estimate motion.

Feature tracking methods track a small number of features from image to
image. The use of features reduces the complexity of dealing with image data
and makes realtime performance more realistic. Broadly speaking, there are
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two approaches to estimating motion. Causal systems associate 3D landmarks
with features, and track the camera frame with respect to these features,
typically in a Kalman filter framework [7, 8, 21]. The filter is composed of the
set of landmarks and the last pose of the camera. These methods have not
yet proven capable of precise trajectory tracking over long distances, because
of the computational cost of using large numbers of features in the filter,
and because the linearization demanded by the filter can lead to suboptimal
estimates for motion.

SfM systems are a type of feature-tracking method that use structure-
from-motion methods to estimate the relative position of two or more camera
frames, based on matching features [1, 2, 4, 16, 18]. It is well-known that the
relative pose (up to scale) of two internally-calibrated camera frames can be
estimated from 5 matching features [17], and that two calibrated stereo frames
require just 3 points [12]. More matched features lead to greater precision
in the estimate - typically hundreds of points can be used to give a high
accuracy. Figure 2 shows the basic idea of estimating 3D point positions and
camera frames simultaneously. The precision of the estimate can be increased
by keeping some small number of recent frames in a bundle adjustment [9, 16,
23].

Ours is an SfM system, and is most similar to the recent work of
Mouragnon et al. [16] and Sunderhauf et al. [23]. The main difference is the
precision we obtain by the introduction of a new, more stable feature, and
the integration of an IMU to maintain global pose consistency. We also define
error statistics for VO in a correct way, and present results of for a vehicle
navigating over several kilometers of rough terrain.

2.1 A Precise Visual Odometry System

Consider the problem of determining the trajectory of a vehicle in unknown
outdoor terrain. The vehicle has a stereo camera whose intrinsic parameters
and relative pose are known, as well as an IMU with 3-axis accelerometers
and gyroscopes. Our goal is to precisely determine the global orientation and
position of the vehicle frame at every stereo frame. The system operates in-
crementally; for each new frame, it does the following.

Fig. 2. Stereo frames and 3D points. SfM VO estimates the pose of the frames and
the positions of the 3D points at the same time, using image projections.
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1. Extract features from the left image.
2. Perform dense stereo to get corresponding positions in the right image.
3. Match to features in previous left image using ZNCC.
4. Form consensus estimate of motion using RANSAC on three points.
5. Bundle adjust most recent N frames.
6. Fuse result with IMU data.

2.2 Features and Tracking

Distinctive features are extracted from each new frame, then matched to the
previous frame by finding the minimum zero-mean normalized cross correla-
tion (ZNCC) score to all features within a search area. ZNCC does not account
for viewpoint changes, and more sophisticated methods (affine transform [20],
SIFT descriptors [14]) could be used, at the expense of increased computation.

Restricting the search area can increase the probability of a good match.
A model of the camera motion (e.g., vehicle dynamics and kinematics for
a mounted camera) can predict where to search for features. Let C be the
predicted 3D motion of the frame j + 1 relative to frame j, with covariance
Q. If qi is a 3D point in the coordinates of camera frame j, then its projection
qi,j+1 and its covariance on camera frame j + 1 are given by:

qij = KTCqi (1)

Qij = JQJ⊤. (2)

Here K is the camera calibration matrix, TC is the homogeneous transform
derived from C, and J is the Jacobian of qij with respect to C. In our experi-
ments, we use the predicted angular motion from an IMU, when available, to
center the search area using (1), and keep a constant search radius.

From these uncertain matches, we recover a consensus pose estimate using
a RANSAC method [10]. Several thousand relative pose hypotheses are gen-
erated by randomly selecting three matched non-colinear features, and then
scored using pixel reprojection errors (1). If the motion estimate is small and
the percentage of inliers is large enough, we discard the frame, since compos-
ing such small motions increases error. Figure 3 shows a set of points that are
tracked across several key frames.

2.3 Center Surround Extrema (CenSurE) Features

The biggest difficulty in VO is the data association problem: correctly identi-
fying which features in successive frames are the projection of a common scene
point. It is important that the features be stable under changes in lighting and
viewpoint, distinctive, and fast to compute. Typically corner features such as
Harris [11] or the more recent FAST [19] features are used. Multiscale fea-
tures such as SIFT [14] attempt to find the best scale for features, giving even
more viewpoint independence. In natural outdoor scenes, corner features can
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be difficult to find. Figure 1 shows Harris features in a grassy area of the Ft.
Carson dataset (see Section 3 for a description). Note that there are relatively
few points that are stable across the images, and the maximum consistent
consensus match is only 3 points.

The problem seems to be that corner features are small and vanish across
scale or variations of texture in outdoor scenes. Instead, we use center-

surround feature, either a dark area surround by a light one, or vice versa. This
feature is given by the normalized Laplacian of Gaussian (LOG) function:

σ2 ∇2G(σ), (3)

where G(σ) is the Gaussian of the image with a scale of σ. Scale-space extrema
of (3) are more stable than Harris or other gradient features [15].

We calculate the LOG approximately using simple center-surround Haar
wavelets [13] at different scales. Figure 3(b) shows a generic center-surround
wavelet of block size n that approximates LOG; the value H(x, y) is 1 at the
light squares, and -8 (to account for the different number of light and dark
pixels) at the dark ones. Convolution is done by multiplication and summing,
and then normalized by the area of the wavelet:

(3n)−2 ×
∑

x,y

H(x, y)I(x, y). (4)

which approximates the normalized LOG. These features are very simple to
compute using integral image techniques [25], requiring just 7 operations per
convolution, regardless of the wavelet size. We use a set of 6 scales, with block
size n = [1, 3, 5, 7, 9, 11]. The scales cover 3 1/2 octaves, although the scale
differences are not uniform. Once the center-surround responses are computed
at each position and scale, we find the extrema by comparing each point in
the 3D image-scale space with its 26 neighbors in scale and position. With
CenSurE features, a consensus match can be found for the outdoor images
(Figure 4).

n

Fig. 3. Left: CenSurE features tracked over several frames. Right: CenSurE kernel
of block size n.
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While the basic idea of CenSurE features is similar to that of SIFT, the
implementation is extremely efficient, comparable to Harris or FAST detection
[3]1. We compared the matching ability of the different features over the 47K
of the Little Bit dataset (see Section 3). We tested this in two ways: the
number of failed matches between successive frames, and the average length
of a feature track (Table 1 second row). For VO, it is especially important to
have low failure rates in matching successive images, and CenSurE failed on
just 78 images out of the 47K image set (.17%). The majority of these images
were when the cameras were facing the sky, and almost all of the image was
uniform. We also compared the performance of these features on a short out-
and-back trajectory of 150m (each direction) with good scene texture and
slow motion, so there were no frame matching failures. Table 2 compares the
loop closure error in meters (first row) and as percentage (second row) for
different features. Again CenSurE gives the best performance in terms of the
lowest loop closure error.

Harris FAST SIFT CenSurE

Fail 0.53% 2.3% 2.6% 0.17%
Length 3.0 3.1 3.4 3.8

Table 1. Matching statistics for the Little
Bit dataset

Harris FAST SIFT CenSurE

Err 4.65 12.75 14.77 2.92
% 1.55% 4.25% 4.92% 0.97%

Table 2. Loop closure error for different
features

2.4 Incremental Pose Estimation

The problem of estimating the most recent N frame poses and the tracked
points can be posed as a nonlinear minimization problem. Measurement equa-
tions relate the points qi and frame poses Cj to the projections qij , according
to (1). They also describe IMU measurements of gravity normal and yaw angle
changes:

gj = hg(Cj) (5)

∆ψj−1,j = h∆ψ(Cj−1, Cj) (6)

Fig. 4. Matched CenSurE points across two consecutive frames. 94 features are
matched, with 44 consensus inliers.

1 For 512x384 images: FAST 8ms, Harris 9ms, CenSurE 15ms, SIFT 138ms.
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The function hg(C) returns the deviation of the frame C in pitch and roll from
gravity normal. h∆ψ(Cj−1, Cj) is just the yaw angle difference between the

two frames. Given a set of measurements (q̂ij , ĝj , ∆̂ψj−1,j), the ML estimate
of the variables Cj , qi is given by minimizing the squared error sum

min
Cj>n,qi







∑

i,j

ǫ⊤v Q
−1
v ǫv +

∑

j−1,j

ǫ⊤∆ψQ
−1

∆ψǫ∆ψ +
∑

j

ǫ⊤g Q
−1
g ǫg







(7)

Here the error terms are the differences between the measured and computed
values for a given Cj , qi. Note that we have only specified minimization over
Cj for j > n, which holds the oldest n < N frames constant to anchor the
bundle adjustment. For the experiments of this paper, we used N = 9 and
n = 6.

The IMU terms in (7) were introduced to show the optimal way to in-
corporate these measurements. In our current experiments, we instead use a
simple post-filter that operates only on the latest frame (Section 2.5). Consid-
ering just the first term, (7) can be linearized and solved by Taylor expansion,
yielding the normal equation

J⊤

q (x)Q−1Jq(x)dx = −J⊤

q (x)Q−1q(x), (8)

where x are the initial values for the parameters Cj>n, qi, q(x) are all the
qij stacked onto a single vector, Q is the block-diagonal of Q−1

v , and J is
the jacobian of the measurements. After (8) is solved, a new x′ = x + dx
is computed, and the process is iterated until convergence. Various schemes
to guarantee convergence can be utilized, typically by adding a factor to the
diagonal, as in the Levenberg-Marquadt algorithm.

The system (8) is very large, since the number of features is typically
hundreds per frame. Sparse bundle adjustment efficiently solves it by taking
advantage of the sparse structure of the jacobian. In our experiments (Section
3), SBA can decrease the error in VO by a factor of 2 to 5 - this is the
first large-scale experiment to quantify error reductions in VO from SBA (see
[23, 16] for smaller experiments).

2.5 VO and IMU fusion using EKF

In this paper, we use VO to provide incremental pose estimation and the IMU
as both an inclinometer (absolute roll and pitch) and an angular rate sensor
(for incremental yaw). Translation estimates from VO are not corrected by
IMU but will benefit from the improved angular precision (see discussion on
drifts in Section 2). We fuse VO and IMU via loose coupling, in which each
positioning sub-system is taken as a pose estimator and treated as a black
box. Pose information from each device is fused in a second stage with simple,
small sized EKF procedures. Loose coupling is suboptimal in the sense that
the existing cross-correlations between internal states of different devices are



8 Kurt Konolige, Motilal Agrawal, and Joan Solà

discarded. However, we show that long term VO accuracy can be dramati-
cally improved by just using the simplest loosely coupled fusion with IMU
information.

EKF formulation

The EKF formulation is quite straightforward. To ensure continuity and dif-
ferentiability properties of the state vector, the vehicle’s orientation is encoded
with a quaternion, and the state of the vehicle is represented by the 7-vector
pose X = [x, y, z, a, b, c, d]⊤. Its Gaussian character is specified by the couple
{X̂, P} so that p(X) = N (X − X̂, P ), which is initialized to the null value
{X̂0 = [0, 0, 0, 1, 0, 0, 0]⊤, P0 = 07×7}. We call k the filter time index, which
corresponds to the last SBA frame N. We systematically enforce quaternion
normalization and Euler gimbal-lock corrections whenever necessary.

We start with EKF motion prediction from VO. At each iteration of the
filter, we take the VO incremental motion Gaussian estimate {C∆, Q∆}, from
frame N − 1 to N , and use it for prediction via standard EKF.

Second we correct the absolute gravity normal by using the IMU as an
inclinometer. Our IMU provides processed (not raw) information in the form
of a vehicle pose CIMU

k = [xk, yk, zk, φk, θk, ψk]
⊤ (position, and orientation in

Euler angles). Accelerometers inside the IMU sense the accelerations together
with the gravity vector. Because accelerations have zero mean in the long term,
these readings provide absolute information about the gravity direction. The
gravity vector readings in the vehicle frame only depend on roll φk and pitch

θk angles, so we define the measurement equation (5) to be:

gk = hg(C
IMU
k ) =

[

φk
θk

]

. (9)

Its uncertaintyG = diag(σ2
g , σ

2
g) is given a large σg of around 0.5rad to account

for unknown accelerations. The Gaussian couple {gk, G} is then fed into the
filter with a regular EKF update.

Finally we correct relative yaw increments by exploiting the angular rate
readings of the IMU. The measurement equation (6) for the yaw increment in
the IMU is trivial:

∆ψk−1,k = h∆ψ(CIMU
k−1 , CIMU

k ) = ψk − ψk−1 (10)

This yaw increment is added to the last filter estimate X̂k−1 (that has been
stored in the last iteration) to obtain a yaw measurement that is relative in
nature yet absolute in the form, hence adequate for a classical EKF update:

yk = hψ(X̂k−1) +∆ψk−1,k (11)

where the observation function hψ(X) provides the yaw angle of the pose
X . Its noise variance is Yk = σ2

∆ψ∆t, with σ∆ψ the angular random walk
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characteristic of the IMU (in rad/
√
s units), and ∆t the time lapse in seconds

from (k−1) to k. The Gaussian couple {yk, Yk} is then fed into the filter with
a regular EKF update.

3 Experiments

We are fortunate in having large outdoor datasets with frame-registered
ground truth from RTK GPS, which is accurate to several cm in XY and
10 cm in Z. For these datasets, the camera FOV is 35 deg, the baseline is
50 cm, and the frame rate is 10 Hz (512x384), so there is often large image
motion. We took datasets from Little Bit (9 km trajectory, 47K frames) in
Pennsylvania, and Ft Carson (4 km, 20K frames) in Colorado, to get variety
in imagery. The Ft Carson dataset is more difficult for matching, with larger
motions and less textured images. In the experiments, we use only CenSurE
features, which failed the fewest times (0.17% for Little Bit, 4.0% for Ft Car-
son).

3.1 VO Error Analysis and Calibration

We analyze VO-only drifts in order to provide useful odometry-like error
statistics. The odometry model consists of translation and angular errors
over displacement (m/

√
m and deg/

√
m), and angular error over rotation

(deg/
√

deg); but we do not compute the latter because of lack of data. From
the 9km run of the Little Bit data, we select 100 sections 200m long, and
integrate position and angular drifts. Averaging then reveals both random
walk drifts and deterministic drifts or biases (Fig. 5 and summary in Table
3). We observe a) a nearly ideal random walk behavior of the angular drifts;
and b) a linear growth of the mean position drifts. This linear growth comes
from systematic biases that can be identified with uncalibrated parameters of
the visual system. X drift (longitudinal direction) indicates a scale bias that
can be assigned to an imperfect calibration of the stereo baseline. Y and Z
drifts (transversal directions) indicate pan and tilt deviations of the stereo
head. The angles can be computed by taking the arc-tangent of the the drifts
over the total distance. In Table 4 we show the performance improvement of
SBA – note the significant improvement in error values.

3.2 Trajectories

The VO angular errors contribute nonlinearly to trajectory error. On the two
datasets, we compared RMS and max XYZ trajectory errors. In the case of
matching failure, we substituted IMU data for the angles, and set the distance
to the previous value. In Table 5, the effects of bundle adjustment and IMU
filtering are compared. Figure 6 has the resultant trajectories.
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Fig. 5. Integrated errors for Roll (left) and X (right) estimates. All 200m long
trajectories (grey), their mean (blue), STD (green, shown at ±1σ from mean) and
RMS (red). Couples {Pitch,Y} and {Yaw,Z} behave similarly.

state mean STD derived calibration

deg/m deg/
√

m
φ -0.002 0.065 white noise: no info
θ 0.002 0.196 white noise: no info
ψ -0.003 0.145 white noise: no info

mm/m mm/
√

m
x -5.76 69 -0.58% baseline factor
y -11.1 59 0.63◦ stereo pan
z 11.9 34 0.68◦ stereo tilt

Table 3. VO errors (CenSurE, SBA, no IMU)

state no SBA SBA

φ 0.191 0.065
θ 0.243 0.196
ψ 0.230 0.145
x 99 69
y 73 59
z 44 34

Table 4. STD values
for two VO methods (in
{deg,mm}/√m)

Table 5. Trajectory error statistics, in meters and percent of trajectory

RMS error in XYZ Max error in XYZ

Little Bit VO No SBA 97.41 (1.0%) 295.77 (3.2%)
VO SBA 45.74 (0.49%) 137.76 (1.5%)

VO No SBA + IMU 7.83 (0.08%) 13.89 (0.15%)
VO SBA + IMU 4.09 (0.04%) 7.06 (0.08%)

Ft Carson VO No SBA 263.70 (6.9%) 526.34 (13.8%)
VO SBA 101.43 (2.7%) 176.99 (4.6%)

VO No SBA + IMU 19.38 (0.50%) 28.72 (0.75%)
VO SBA + IMU 13.90 (0.36%) 20.48 (0.54%)

In both datasets, IMU filtering plays the largest role in bringing down
error rates. This isn’t surprising, since angular drift leads to large errors over
distance. Even with a noisy IMU, global gravity normal will keep Z errors low.
The extent of XY errors depends on how much the IMU yaw angle drifts over
the trajectory - in our case, a navigation-grade IMU has 1 deg/hr of drift.
Noisier IMU yaw data would lead to higher XY errors.

The secondary effect is from SBA. With or without IMU filtering, SBA
can lower error rates by half or more, especially in the Ft. Carson dataset,
where the matching is less certain.
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Fig. 6. Trajectories from Little Bit (left) and Ft Carson (right) datasets.

4 Conclusion

We have described a functioning stereo VO system for precise position esti-
mation in outdoor natural terrain. Using a novel scale-space feature, sparse
bundle adjustment, and filtering against IMU angle and gravity information,
we obtain an extremely precise positioning system for rough terrain travel. The
system is currently being integrated on a large autonomous outdoor vehicle,
to operate as an alternative to GPS/IMU positioning. The error statistics of
the VO/IMU described here are better than standard (non-RTK) GPS/IMU
systems over ranges up to 10 km.

Currently the system runs at about 10 Hz on a 2 GHz Pentium, with the
following timings: feature extraction (15 ms), dense stereo (25 ms), tracking
(8 ms), RANSAC estimation (18 ms), SBA (30 ms), and IMU filtering (0 ms).
We are porting to a dual-core system, and expect to run at 20 Hz.

One area of improvement would be to integrate a full model of the IMU,
including forward accelerations, into the minimization (7). For datasets like Ft
Carson, where there are significant problems with frame-to-frame matching,
the extra information could help to lower the global error.
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