Skip to main content

Generating Adaptive Route Instructions Using Hierarchical Reinforcement Learning

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6222))

Abstract

We present a learning approach for efficiently inducing adaptive behaviour of route instructions. For such a purpose we propose a two-stage approach to learn a hierarchy of wayfinding strategies using hierarchical reinforcement learning. Whilst the first stage learns low-level behaviour, the second stage focuses on learning high-level behaviour. In our proposed approach, only the latter is to be applied at runtime in user-machine interactions. Our experiments are based on an indoor navigation scenario for a building that is complex to navigate. We compared our approach with flat reinforcement learning and a fully-learnt hierarchical approach. Our experimental results show that our proposed approach learns significantly faster than the baseline approaches. In addition, the learnt behaviour shows to adapt to the type of user and structure of the spatial environment. This approach is attractive to automatic route giving since it combines fast learning with adaptive behaviour.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lovelace, K.L., Hegarty, M., Montello, D.R.: Elements of good route directions in familiar and unfamiliar environments. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 65–82. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Sutton, R., Barto, A.: Reinforcement Learing: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  3. Denis, M.: The description of routes: A cognitive approach to the production of spatial discourse. Cahiers Psychologie Cognitive 16(4), 409–458 (1997)

    Google Scholar 

  4. Sorrows, M.E., Hirtle, S.C.: The nature of landmarks for real and electronic spaces. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 37–50. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Daniel, M.P., Denis, M.: The production of route directions: investigating conditions that favour conciseness in spatial discourse. Applied Cognitive Psychology 18(1), 57–75 (2004)

    Article  Google Scholar 

  6. Klippel, A., Hansen, S., Richter, K.F., Winter, S.: Urban granularities - a data structure for cognitively ergonomic route directions. GeoInformatica 13(2), 223–247 (2009)

    Article  Google Scholar 

  7. May, A.J., Ross, T., Bayer, S.H., Burnett, G.: Using landmarks to enhance navigation systems: Driver requirements and industrial constraints. In: Proceedings of the 8th World Congress on Intelligent Transport Systems, Sydney, Australia (2001)

    Google Scholar 

  8. Ross, T., May, A., Thompson, S.: The use of landmarks in pedestrian navigation instructions and the effects of context. In: Brewster, S., Dunlop, M. (eds.) Mobile HCI 2004. LNCS, vol. 3160, pp. 300–304. Springer, Heidelberg (2004)

    Google Scholar 

  9. Klippel, A., Tenbrink, T., Montello, D.R.: The role of structure and function in the conceptualization of directions. In: van der Zee, E., Vulchanova, M. (eds.) Motion Encoding in Language and Space. Oxford University Press, Oxford (to appear)

    Google Scholar 

  10. Tenbrink, T., Winter, S.: Variable granularity in route directions. Spatial Cognition and Computation: An Interdisciplinary Journal 9(1), 64–93 (2009)

    Article  Google Scholar 

  11. Duckham, M., Kulik, L.: “Simplest” paths: Automated route selection for navigation. In: Kuhn, W., Worboys, M., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 169–185. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Haque, S., Kulik, L., Klippel, A.: Algorithms for reliable navigation and wayfinding. In: Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R. (eds.) Spatial Cognition 2007. LNCS (LNAI), vol. 4387, pp. 308–326. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Richter, K.F., Duckham, M.: Simplest instructions: Finding easy-to-describe routes for navigation. In: Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2008. LNCS, vol. 5266, pp. 274–289. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Dale, R., Geldof, S., Prost, J.P.: Using natural language generation in automatic route description. Journal of Research and Practice in Information Technology 37(1), 89–105 (2005)

    Google Scholar 

  15. Richter, K.F.: Context-Specific Route Directions - Generation of Cognitively Motivated Wayfinding Instructions. DisKi 314 / SFB/TR 8 Monographs, vol. 3. IOS Press, Amsterdam (2008)

    Google Scholar 

  16. Klippel, A., Richter, K.F., Hansen, S.: Structural salience as a landmark. In: Workshop Mobile Maps 2005, Salzburg, Austria (2005)

    Google Scholar 

  17. Marciniak, T., Strube, M.: Classification-based generation using TAG. In: Belz, A., Evans, R., Piwek, P. (eds.) INLG 2004. LNCS (LNAI), vol. 3123, pp. 100–109. Springer, Heidelberg (2004)

    Google Scholar 

  18. Marciniak, T., Strube, M.: Modeling and annotating the semantics of route directions. In: Proceedings of the Sixth International Workshop on Computational Semantics (IWCS-6), Tilburg, The Netherlands, pp. 151–162 (2005)

    Google Scholar 

  19. Cleary, J., Trigg, L.: An instance-based learner using an entropic distance measure. In: Proceedings of the 12th International Conference on Machine Learning, Tahoe City, Ca, pp. 108–114 (1995)

    Google Scholar 

  20. Kaelbling, L.P., Littmann, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)

    Google Scholar 

  21. Cuayáhuitl, H.: Hierarchical Reinforcement Learning for Spoken Dialogue Systems. PhD thesis, School of Informatics, University of Edinburgh (January 2009)

    Google Scholar 

  22. Cuayáhuitl, H., Renals, S., Lemon, O., Shimodaira, H.: Evaluation of a hierarchical reinforcement learning spoken dialogue system. Computer Speech and Language 24(2), 395–429 (2010)

    Article  Google Scholar 

  23. Dietterich, T.: Hierarchical reinforcement learning with the MAXQ value function decomposition. Journal of Artificial Intelligence Research 13(1), 227–303 (2000)

    MATH  MathSciNet  Google Scholar 

  24. Dietterich, T.: An overview of MAXQ hierarchical reinforcement learning. In: Choueiry, B.Y., Walsh, T. (eds.) SARA 2000. LNCS (LNAI), vol. 1864, pp. 26–44. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  25. Raubal, M., Winter, S.: Enriching wayfinding instructions with local landmarks. In: Egenhofer, M., Mark, D. (eds.) GIScience 2002. LNCS, vol. 2478, pp. 243–259. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  26. Cuayáhuitl, H., Dethlefs, N., Richter, K.F., Tenbrink, T., Bateman, J.: A dialogue system for indoor wayfinding using text-based natural language. In: Proceedings of the 11th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing), Iasi, Romania (2010)

    Google Scholar 

  27. Dethlefs, N., Cuayáhuitl, H., Richter, K.F., Andonova, E., Bateman, J.: Evaluating task success in a dialogue system for indoor navigation. In: Proc. of the 14th Workshop on the Semantics and Pragmatics of Dialogue, SemDial (2010)

    Google Scholar 

  28. Frommberger, L., Wolter, D.: Spatial abstraction: Aspectualization, coarsening, and conceptual classification. In: Freksa, C., Newcombe, N.S., Gärdenfors, P., Wölfl, S. (eds.) Spatial Cognition VI. LNCS (LNAI), vol. 5248, pp. 311–327. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  29. Frommberger, L.: Situation dependent spatial abstraction in reinforcement learning. In: ICML/UAI/COLT Workshop on Abstraction in Reinforcement Learning, Montreal, Canada (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cuayáhuitl, H., Dethlefs, N., Frommberger, L., Richter, KF., Bateman, J. (2010). Generating Adaptive Route Instructions Using Hierarchical Reinforcement Learning. In: Hölscher, C., Shipley, T.F., Olivetti Belardinelli, M., Bateman, J.A., Newcombe, N.S. (eds) Spatial Cognition VII. Spatial Cognition 2010. Lecture Notes in Computer Science(), vol 6222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14749-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14749-4_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14748-7

  • Online ISBN: 978-3-642-14749-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics