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Abstract. Artificial agents engaged in real world applications require accurate
allocation strategies in order to better balance the use of their bounded resources.
In particular, during their epistemic activities, they should be able to filter out
all irrelevant information and just consider what is relevant for the current task
that they are trying to solve. The aim of this work is to propose a mechanism
of relevance-based belief update to be implemented in a BDI cognitive agent.
This is in order to improve the performance of agents in information-rich envi-
ronments. In the first part of the paper we present the formal and abstract model
of the mechanism. In the second part we present its implementation in the Jason
programming platform and we discuss its performance in simulation trials.

1 Introduction

Realistic cognitive agents are by definition resource-bounded [6], hence they should 
not waste time and energy in reasoning, fixing and reconsidering their knowledge on 
the basis of every piece of information they get. For this reason, they require accurate 
allocation strategies in order to better balance the use of their bounded computational 
resources. In this paper we present a computational model of a mechanism of relevance-
based belief update. This mechanism is responsible for filtering out all non-relevant in-
formation and for considering only what is relevant for the current task that an agent is 
trying to solve. We show how such a mechanism can be implemented in a BDI (Belief, 
Desire, Intention) agent [22]. BDI is a well-established framework which is aimed at 
describing an agent’s mental process of deciding, moment by moment on the basis of 
current beliefs, which action to perform in order to achieve his goals. The mechanism 
we propose will accomplish the following general function in an agent reasoning pro-
cess: (i) to signal the inconsistency between the agent’s beliefs and an incoming input 
which is relevant with respect to the agent’s current intentions and (ii) to trigger a pro-
cess of belief update in order to integrate such a relevant input in the agent’s belief base. 
More generally, we suppose that at each moment an agent is focused and allocates his 
attentive resources on a particular task that he is trying to fulfill and on a certain number 
of intentions which represent the pragmatic solution selected by the agent to accomplish 
the task [3]. In so doing, the agent ignores all incoming inputs which are not relevant 
with respect to the current task on which he is focused and only considers the informa-
tion that is relevant. If a relevant input turns out to be incompatible with respect to the 
pre-existent beliefs of the agent, the agent reconsiders them.

The approach proposed in this paper is also intended to bridge the existing gap be-
tween formal and computational models of belief change and cognitive models of belief



dynamics. Indeed, formal approaches to belief change implicitly assume that when an
agent perceives some fact such a perception is always a precursor of a process of be-
lief change. In contrast, we model here these precursors of a process of belief change
and, in agreement with cognitive theories of bounded rationality (e.g. [24]), we show
that implementing them in a resource-bounded agent can improve his performance in
information-rich environments requiring massive perceptive activities.

This proposal is also intended to provide a novel insight in the design and program-
ming of cognitive agents. Whereas in the context of Multi Agent Systems (MAS) main-
stream agent platforms provide advanced mechanisms to process messages and Agent
Communication Languages (ACLs), the perception of heterogeneous events and infor-
mation is often shaped on the basis of technical constructs, which are typically designed
in a domain-dependent fashion and implemented with constructs built at the language
level. Mainstream programming models are often not flexible enough to integrate differ-
ent perceptive abilities, nor to relate them with cognitive constructs such as the cognitive
ones typical of BDI agents. Instead, we propose in this paper a programming model in
which the relationship between perception and practical reasoning is clearly specified
in terms of the pivotal notion of pragmatic relevance.

The paper is organized as follows. Section 2 abstractly describes the proposed
approach and contextualizes it with respect to the related literature on the subject of rel-
evance. Section 3 defines the abstract model of a cognitive agent. This includes informa-
tional attitudes (e.g. beliefs which change over time and stable causal knowledge) and
motivational attitudes (e.g. intentions and desires). Section 4 applies the agent’s abstract
model to the formalization of a specific problem domain. In section 5 the cognitive ar-
chitectures of two general typologies of BDI agents are formally defined—respectively
implementing a traditional BDI interpreter and BDIrelwith relevance awareness abil-
ities. Section 6 describes a programming model for the BDIrelagent, discussing how
it has been implemented by using the Jason platform [2]. Finally, Section 7 compares
the performance of agents engaged in simulated experiments in the scenario previously
described and Section 8 concludes with final remarks and future directions of research.

2 The Concept of Relevance: An Overview

The notion of information relevance is not new in the literature, as it has been exten-
sively investigated in several domains like AI, philosophy and cognitive sciences.

Most theoretical works on relevance have been interested in modeling a particular
form of informational relevance based on various forms of conditional in/dependence.
According to [13,18], for instance, the concept of relevance coincides with the prob-
abilistic concept of conditional dependence and, in particular, irrelevance is identified
with conditional independence, and relevance is identified with the negation of irrele-
vance. Relevance logic [1] proposes alternatives to material implication where the an-
tecedent and consequent are relevantly related.

In the area of belief revision, some authors [7,19] have introduced a primitive notion
of relevance of an agent’s belief base with respect to an incoming input χ. These authors
argue that during belief revision a rational agent does not change his entire belief cor-
pus, but only the portion of it that is relevant to the new incoming information χ, that is,



only the portion that shares common propositional variables with the minimal language
of the input χ. Some computational systems, inspired by Information Theory [23], con-
ceive relevance as a quantitative notion of informativeness that can be related to a given
datum. Among others, such an approach gave rise to ranking mechanisms used for in-
stance by web research engines, which are almost always based on a quantitative and
possibly weighted analysis of the amount of links referable to a web document.

Differently from the above mentioned works, which are mostly interested in a notion
of informational relevance, we are interested here in investigating a notion of prag-
matic relevance1 and in its application to agent programming. The notion of relevance
discussed in this paper is closer to the one considered in several psychological theo-
ries of motivations and emotions [14,9], where relevance is related to the subjective
appraisal of a certain event with respect to an agent’s ongoing goals and intentions. In
particular, according to these theories, an agent’s perception of a fact which is relevant
with respect to his goals and intentions might be responsible for triggering a certain
emotion of the agent. For example, imagine an agent perceiving the fact “there is a lion
in front of me” which is relevant with respect to his goal of survival. Then, the agent
will feel an intense fear caused by the perception of this fact.

Such a notion of pragmatic relevance has been considered in some design models
of active perception (see, e.g., [26]) and of low-level mechanisms in which relevance
is related to action selection through classifier systems [25]. Some models exist ex-
plaining the relationship that exists between perceptive processes and agent reasoning.
Among others, Pereira & Tettamanzi recently proposed a formal model of goal gen-
eration where both relevance and trustworthiness of information sources are involved
in rational goal selection [8]. Few works deal with agent models which are capable of
appraising incoming input on the basis of cognitive relevance: [12] proposed a model
where percepts are filtered according to a programmable heuristic defined in a so called
impact function, while in [16] a model relating relevant information to an internal value
indicating unexpectedness and surprisingness of percepts is envisaged.

The aim of this work is to ground the concept of relevance on mental states such as
beliefs, goals and intentions. Once grounded on mental states, the notion of pragmatic
relevance can be easily integrated in the practical reasoning of an agent and, in par-
ticular, it can be operationalized in the widely adopted BDI (belief, desire, intention)
computational model of cognitive agents [21] and then integrated into a programming
model for intelligent agents and multi-agent systems.

Before introducing our computational model of pragmatic relevance and in order
to ground it on agents’ mental states, in the next section the adopted agent reasoning
model is briefly described.

3 The Abstract Agent Model

In this section a definition of an agent’s abstract model based on BDI is provided. At
the programming level this includes constructs obtained by perceptions, static causal

1 See, e.g., [10] for a discussion on the distinction between informational relevance and
pragmatic relevance.



knowledge, volatile beliefs, desires and intentions, desire-generating and planning rules,
and a repertoire of basic actions.

Let VAR= {X1, . . . , Xn} be a non-empty set of random variables. We suppose
that each random variable Xi ∈ VAR takes values from a non-empty set of vari-
able assignments ValXi . For each set ValXi we denote by InstXi the corresponding
set of all possible instantiations of random variable Xi. For example, suppose that
ValXi= {x1, . . . , xr} then InstXi= {Xi=x1, . . . , Xi=xr}. We denote by Inst the set
of all possible instantiations of all random variables, that is: Inst=

⋃
Xi∈VAR InstXi .

Perceived data. Γ ⊆ Inst is a set of perceived data which fixes the value of certain
variables that an agent perceives at a certain moment. For example, Γ= {Xi=x} means
“the agent perceives the event Xi=x”. We denote by

ΓVar= {Xi ∈ VAR | ∃ x ∈ ValXi such that Xi=x ∈ Γ}
the subset of VAR which includes the variables that an agent observes at a certain
moment. Here we suppose that for all Xi ∈ ΓVar , InstXi ∩ Γ is a singleton, that is,
we suppose that an agent cannot perceive two different instantiations of the same vari-
able. We use the notation Γ(Xi) to denote this singleton for every Xi ∈ ΓVar , that is,
Γ(Xi)=InstXi ∩ Γ.

Stable causal knowledge. K is a Bayesian network which represents the joint probabil-
ity distribution over the set of random variables VAR. A Bayesian network is a directed
acyclic graph (DAG) whose nodes are labeled by the random variables in VAR and the
edges represent the causal influence between the random variables in VAR [18]. Given
an arbitrary random variable X (i.e. an arbitrary node) in the Bayesian network K we
denote by anc(X) the set of ancestors of X . Formally, Z is an ancestor of X in the
Bayesian network K if there is a directed path from Z to X in K.

Moreover, given an arbitrary random variable X in the Bayesian network K, we
denote by par(X) the set of parents of X in the Bayesian network. Formally, Z is a
parent of X in the Bayesian network K if Z is an ancestor of X in K which is directly
connected to Z . Finally, we associate to each random variable X in K a conditional
probability distribution P (X | par(X)). The Bayesian network K encodes the agent’s
causal knowledge of the environment. Here we suppose that this part of the agent’s
knowledge is stable and can not be reconsidered.

Volatile beliefs. The abstract agent model also includes beliefs that can change over
time, i.e. the agent’s volatile beliefs [5]. Given a random variable Xi ∈ VAR, we denote
by

∑
Xi

the set of all possible probability distributions over the random variable Xi. We
denote by BEL the cartesian product of all

∑
Xi

, that is BEL=
∏

Xi∈VAR

∑
Xi

. BEL
includes all possible combinations of probability distributions over the random variables
in VAR. Elements in BEL are vectors B=〈B1, . . . ,Bn〉, B′=〈B′

1, . . . ,B
′
n〉, . . .. Every

vector B in BEL corresponds to a particular configuration of beliefs of the agent. In this
sense, BEL includes all potential configurations of beliefs of the agent.

Suppose that ValXi= {x1, . . . , xr}. Then, every element Bi in a configuration of
beliefs B is just a set {(Xi=x1)=a1, . . . , (Xi=xr)=ar} of probability assignments
a1, . . . , ar ∈ [0, 1] to each possible instantiations of the variable Xi.



Given a specific configuration of beliefs B=〈B1, . . . ,Bn〉, we write B(Xi=x)=a
if and only if (Xi=x)=a ∈ Bi. For example, B(Xi=x)=0.4 means that given the
configuration of beliefs B=〈B1, . . . ,Bn〉 the agent assigns probability 0.4 to the fact
that variable Xi takes value x. Moreover, we denote by B(Xi=x) the number a ∈ [0, 1]
such that B(Xi=x)=a.

Intentions and desires. We also model motivational attitudes by denoting with INT the
set of potential intentions of an agent. Here we suppose that every instantiation of a
variable in Inst is a potential intention of the agent, that is, INT = Inst. We denote by
I, I′, . . . ∈ 2INT specific sets of intentions of the agent. Given a specific set of intentions
of the agent I, we denote by IVar the subset of VAR which includes all intended vari-
ables, that is, all those variables which have (at least) one instantiation in I. Formally:

IVar= {Xi ∈ VAR | ∃ x ∈ ValXi such that Xi=x ∈ I}.

We call intention supports all variables that are parents in the Bayesian network K of
some intended variable. The set of intention supports is formally defined as follows:

SUPPVar= {Xi ∈ VAR | ∃ Xj ∈ IVar such that Xi ∈ par(Xj)}.

Note that the set of intention supports includes intention preconditions, that is, all con-
ditions on which the achievement of an intended result of the agent depends.

DES is the set of all potential desires of the agent. As for intentions, we suppose
that every instantiation of a variable in Inst is a potential desire of the agent, that is,
DES=Inst. We denote by D, D′, . . . ∈ 2DES specific sets of desires of the agent.

Desire-generating rules and planning rules. We specify a set DG of desire-generating
rules and a set PL of planning rules. A desire-generating rule in DG is a desire-generating
rule in the style of [11] of the form:

ψ1, . . . , ψs | λ1, . . . , λj =⇒ ϕ1, . . . , ϕt.

Such a rule is responsible for generating t desires ϕ1, . . . , ϕt when the agent has s
beliefs ψ1, . . . , ψs and j intentions λ1, . . . , λj .2 The set of desire-generating rules DG
corresponds to a function options : BEL × 2INT 	→ 2DES. This function returns a
specific set D of desires, given a specific configuration B of beliefs and a specific set I
of intentions.

A planning rule in the set of planning rules PL is a plan-generating rule of the form:

ψ1, . . . , ψs | λ1, . . . , λj =⇒ α1, . . . , αt.

Such a rule is responsible for generating t plans α1, . . . , αt ∈ ACT, where ACT is the
repertoire of actions and plans of our agent, when the agent has s beliefs ψ1, . . . , ψs

and j intentions λ1, . . . , λj . The set of planning rules PL corresponds to a function
plan : BEL × 2INT 	→ 2ACT.

This function returns a set π of plans, given a specific set B of beliefs and spe-
cific set I of intentions. To summarize, an agent’s abstract model is defined as a tuple
〈Γ, K, B, D, I, DG, PL, ACT〉, where each element in the tuple is defined as before.

2 Our desire-generating rules correspond to the goal generation rules of the BOID framework [4].



4 Formalization of the Experimental Scenario

A simple experimental scenario is here introduced for testing relevance aware agents in
a concrete problem domain. The scenario has been inspired by Tileworld, a simulation
game originally introduced in [20]. Despite its simplicity, the experiment has been con-
ceived as a testbed by introducing a highly parameterized environment that can be used
to investigate and compare several performances in agents’ reasoning processes. In this
case, the environment layout is represented by the 12 × 12 grid in Fig. 1(a). An agent
moves in the grid being driven by the goal of finding fruits of a certain color, accord-
ing to the ongoing season. Indeed, agents look for fruits of different colors in different
seasons of the year. We suppose that there are three different seasons and related colors
of fruits and trees: the red season, the blue season and the green season. Agents are
intrinsically motivated to look for and to eat red fruits during the red season, blue fruits
during the blue season and green fruits during the green season. Environmental dynam-
ics are characterized by periodic season cycles: after st rounds the season changes on
the basis of a periodic function and the intrinsic motivation of an agent changes accord-
ingly. Fruits of any color occupy cells (i, j) (with 1 ≤ i ≤ 16 and 1 ≤ j ≤ 9), where
i indicates the number of the macro-area in the grid and j the number of the cell inside
the macro-area. Trees of any color occupy macro-areas i of size 3×3 (with 1 ≤ i ≤ 16)
in the grid depicted in Fig. 1(a). We suppose that at each moment for every color there
is exactly one fruit and tree of that color in the grid. Moreover, we suppose an objective
dependence between trees and fruits in the grid: a fruit of a certain color is a sign of
the presence of a fruit of the same color in the immediate neighborhood. Agents exploit
these signs during their search of fruits. We suppose that a tree of any color is randomly
placed in a macro-area i of size 3 × 3. Given a tree of a certain color in a macro-area
i of size 3 × 3, a fruit of the same color is randomly placed by the simulator in one of
the nine cells inside the macro-area i. For example, if a red tree is in the macro-area
1 of the grid then for each cell (1, i) with 1 ≤ i ≤ 9, there is 1

9 of probability that

(a) (b)

AGENT

TREE

FRUIT

Fig. 1. Environment grid in agent’s domain representation (a) and the running experiment (b)



a red fruit is located in that cell. Fruits and trees change periodically their positions.
The dynamism factor δ indicates how many seasons have to pass before a tree location
changes.

We impose constraints on the perceptual capabilities of agents by supposing that an
agent sees only those fruits which are in the cells belonging to the same macro-area in
which the agent is. For example, if the agent is in cell (6, 1), he only sees those fruits
which are in the cells belonging to the macro-area 6. Moreover we suppose that an agent
sees only those trees which are situated in the same macro-area in which the agent is or
in the four neighboring macro-areas on the left, right, up or down. For example, if the
agent is in cell (6, 1), he only sees those trees which are in macro-areas 2, 5, 7 or 10.

The knowledge of our agents is encoded by means of the following eight random
variables VAR= {SEAS ,POS ,RF ,BF ,GF ,RT ,BT ,GT}. The variables RF , BF ,
GF , POS take values from the sets {(i, j) | 1 ≤ i ≤ 16, 1 ≤ j ≤ 9}, whilst the vari-
ables RT , BT , GT take values from the set {i | 1 ≤ i ≤ 16} . Finally, SEAS takes
value from the set {r, b, g}. Variables RF , BF , GF specify respectively the position of
a red/ blue/ green fruit in the grid depicted in Fig. 1 (a). Variables RT , BT , GT spec-
ify respectively the position of a red/blue/green tree in the grid. For example, RT=13
means “there is a red tree in the macro-area 13”. Variable SEAS specifies the current
season. For example, SEAS=blue means “it is time to look for blue fruits!”. Finally,
Variable POS specifies the position of the agent in the grid.

The variables in VAR are organized in the Bayesian network K as follows:
par(POS )= {∅}, par(SEAS)= {∅}, par(RT )= {∅}, par(BT )= {∅}, par(GT )= {∅},
par(RF )= {RT}, par(BF )= {BT}, par(GF )= {GT}. Since there are 144 possible
positions of a fruit and 16 possible positions of a tree in the grid, each conditional
probability table associated with P (RF | RT), P (BF | BT ) and P (GF | GT ) has
144 × 16=2304 entries. We suppose that the knowledge an agent has about the de-
pendencies between trees and fruits perfectly maps the objective dependencies between
trees and fruits. Hence, we only specify for each tree of a certain color – and arbitrary
macro-area i ∈ {1, . . . , 16} in the grid in which a tree can appear – the 9 conditional
probabilities that a fruit of the same color appears in one cell in that macro-area. We sup-
pose for each of them the same probability value 1

9 . All other conditional probabilities
have value 0, that is, given a tree of a certain color which appears in an arbitrary macro-
area i ∈ {1, . . . , 16}, the probability that there is a fruit of the same color outside that
macro-area is zero. More precisely, we have that for all 1 ≤ i, j ≤ 16 and 1 ≤ z ≤ 9:
(i) if i=j then P (RF=(j, z) | RT=i)= 1

9 ; (ii) if i 
= j then P (RF=(j, z) | RT=i)=0.
Desire-generating rules in DG are exploited by agents for solving the general task

of finding a fruit of a certain color in the grid. Agents are endowed with three general
classes of desire-generating rules.

The first class includes desire-generating rules of the following form. For i ∈ ValSEAS :
(SEAS=i)=1 =⇒ SEAS=i. These desire-generating rules are responsible for chang-
ing the intrinsic motivation of an agent, according to the season change, that is: if an
agent is certain that it is time to look for fruits of kind i, then he should form the desire
to look for fruits of kind i.

The second class includes desire-generating rules shown in Table 1 (DG Group 1).
These are responsible for orienting the search toward a certain macro-area, according to



Table 1. Desire-generating rules governing agents’ intention selection. At an implementation
level (i.e. in Jason) the formuled expressions are stated in terms of context conditions and used
for the applicability of related plans.

DG Group 1
For 1 ≤ i ≤ 16:
(RT=i)=1 | SEAS=r =⇒ RT=i
(BT=i)=1 | SEAS=b =⇒ BT=i
(RT=i)=1 | SEAS=g =⇒ GT=i

DG Group 2
For 1 ≤ i ≤ 16 and 1 ≤ j ≤ 9:
(RF=(i, j))=1 | SEAS=r =⇒ RF=(i, j)
(BF=(i, j))=1 | SEAS=b =⇒ BF=(i, j)
(RF=(i, j))=1 | SEAS=g =⇒ GF=(i, j)

the current season (i.e. an intention to find fruits of a certain color) and his beliefs about
the position of trees in the grid. For instance, if an agent is certain that there is a red
tree in the macro-area 3 of the grid (i.e. (RT=3)=1) and desires to find a red fruit (i.e.
SEAS=red), then he should form the intention to reach that position of a red tree (i.e.
RT=3). Finally, agents are endowed with the kind of desire-generating rules shown in
Table 1 (DG Group 2). These desire-generating rules are responsible for orienting the
search of an agent toward a certain cell, according to the current season (i.e. an intention
to find fruits of a certain color) and his beliefs about the position of fruits in the grid. For
example, if an agent desires to find a blue fruit (i.e. SEAS=blue) and knows/ is certain
that there is a blue fruit in cell (10, 1) of the grid (i.e. (BF=(10, 1))=1), then he should
form the intention to move toward that position of the blue fruit (i.e. BF=(10, 1)).

We suppose that agents have five basic actions in repertoire: MoveDown , MoveUp ,
MoveLeft , MoveRight and EatFruit . Indeed, at each round they can only move from
one cell to the next one. Planning rules encode approaching policies which depend
on the agent’s current intentions and his actual position in the grid. Agents have both
planning rules for reaching macro-areas in the grid (given their current positions) and
planning rules for reaching cells in the grid (given their current positions). The latter
planning rules are exploited for the local search of a fruit of a certain color inside a
macro-area. An example of these planning rule is the following: (POS=(15, 1))=1
| RT=3 =⇒ MoveUp . Thus, if an agent intends to reach position 3 of a red
tree and is certain to be in cell (15, 1) then he should form the plan to move one
step up.

5 Pragmatic Relevance and Belief Update

In this section we present two different architectures and corresponding typologies of
cognitive agents to be tested in the scenario described above. The first type of agent
corresponds to a standard BDI agent whose control loop is described in the right column
of Table 2. The second type of agent, whose control loop is described in the left column
of Table 2, is a BDI agent endowed with a relevance-based mechanism of belief update.
We call this second type of agent BDIrelagent.

The formal description of the control loop of the standard BDI agent is similar to
[27,22]. In lines 1-2 the beliefs and intentions of the agent are initialized. The main



Table 2. Abstract interpreter implemented by the two typologies of agents

BDIrelagent control loop
1. B:=B0;
2. I:=I0;
3. while (true) do
4. get new percept Γ;
5. if REL(I, Γ, B) > Δ then
6. B:=bu∗(Γ,B, I);
7. end-if
8. D:=options(B, I);
9. I:=filter(B, D, I);
10. π:=plan(B, I);
11. execute(π);
12. end-while

BDI agent control loop
1. B:=B0;
2. I:=I0;
3. while (true) do
4. get new percept Γ;
5. B:=bu(Γ, B);
6. D:=options(B, I);
7. I:=filter(B, D, I);
8. π:=plan(B, I);
9. execute(π);
10. end-while

control loop is in lines 3-10. In lines 4-5 the agent perceives some new facts Γ and
updates his beliefs according to a function bu. In line 6 the agent generates new desires
by exploiting his desire-generating rules. In line 7 he deliberates over the new generated
desires and his current intentions according to the function filter.3 Finally, in lines 8-9
the agent generates a plan for achieving his intentions by exploiting his planning rules
and he executes an action of the current plan. The main difference between the standard
BDI agent and the BDIrelagent is the belief update part in the control loop. We suppose
that a process of belief update is triggered in the BDIrelagent only if the agent perceives
a fact and evaluates this to be relevant with respect to what he intends to achieve (line 5
in the control loop of the BDIrelagent). In this sense, the BDIrelis endowed with a
cognitive mechanism of relevance-based belief update. In fact, this mechanism filters
out all perceived facts that are irrelevant with respect to the current intentions. Thus, the
BDIrelagent only updates his beliefs by inputs which are relevant with respect to his
current intentions. Differently, at each round the standard BDI agent updates his beliefs
indiscriminately: for any fact he perceives, he updates his beliefs whether the perceived
fact is relevant with respect to his intentions or not.

One might argue that the belief update strategy adopted by the BDIrelagent is some-
what shortsighted. Indeed, the BDIrelagent only considers inputs which are relevant
with respect to his current intentions. We postpone to future work the analysis and the
design of more sophisticated agents who consider in their belief update strategies also
those inputs that they expect to be relevant for their future intentions.

In order to design the mechanism of relevance-based belief update, we define a no-
tion of local relevance of an input Γ with respect to an intention Y =y ∈ I, given the
configuration of beliefs B. This is denoted by rel(Y =y,Γ,B) and is defined as follows,
where for every c ∈ [−1, 1], Abs[c] returns the absolute value of c.

3 Space restrictions prevent a formal description of the function filter here (see [27] for a de-
tailed analysis). Only notice that this function is responsible for updating the agent’s intentions
with his previous intentions and current beliefs and desires (i.e. filter : B × 2I × 2D �→ 2I).
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rel(Y =y,Γ,B)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⇒ If Y ∈ ΓVar :
1−B(Γ(Y ))

⇒ If par(Y ) ⊆ ΓVar and Y /∈ ΓVar :
Abs[B(Y =y)−P (Y =y | {Xi=x | Xi ∈ par(Y ) and Xi=x ∈ Γ})]

⇒ If par(Y ) �⊆ ΓVar and Y /∈ ΓVar :
0

(1)

The degree of local relevance of the percept Γ with respect to intended fact Y =y ∈ I
(given the agent’s configuration of beliefs B) is defined on the basis of three conditions.

According to the first condition, if the intended variable Y is also a perceived vari-
able in ΓVar (i.e. there exists an instantiation of Y which is an element of Γ) then,
rel(Y=y,Γ,B) is equal to the degree of unexpectedness of the perceptΓ(i.e. 1−B(Γ(Y ))).
The degree of unexpectedness of the percept Γ is inversely proportional to the prior
probability assigned by the agent to the perceived instantiation of the intended variable
Y (see [15] for an analysis of the notion of unexpectedness).

According to the second condition, if the intended fact Y =y is not an instantiation
of a perceived variable in ΓVar and the parents of Y in the Bayesian network K are
perceived variables in ΓVar then, rel(Y =y,Γ,B) is equal to the degree of discrepancy
between the intended fact Y =y and the percept Γ. The degree of discrepancy between
the intended fact Y =y and the percept Γ is given by the absolute value of the difference
between the probability assigned to Y =y (i.e. B(Y =y)) and the conditional probability
that Y =y is true given that the perceived instantiations of the parents of Y are true (i.e.
P (Y =y | {Xi=x | Xi ∈ par(Y ) and Xi=x ∈ Γ})).

According to the third condition, if the intended fact Y =y is not an instantiation of
a perceived variable in ΓVar and there is some parent of Y in the Bayesian network K
that is not a perceived variable in ΓVar then rel(Y =y,Γ,B) is zero. This third condi-
tion corresponds to the irrelevance of the incoming input Γ with respect to the agent’s
intention Y =y. Under this third condition, the agent simply ignores the input.

Let us now define a notion of global relevance, noted REL(I, Γ, B), as the maximum
value of local relevance for each intended fact Y =y ∈ I:

REL(I, Γ, B)= max
Y =y∈I

rel(Y =y,Γ,B) (2)

This notion of global relevance is used in the control loop of the BDIrelagent: if the new
percept Γ is responsible for generating a degree of global relevance higher than Δ (with
Δ ∈ [0, 1]) then a process of belief update is triggered and the BDIrelagent adjusts his
beliefs with the perceived data Γ according to a function bu∗. The belief update function
bu∗ of the BDIrelagent takes in input the set of intentions I, the belief configuration B
and the percept Γ and returns an update belief configuration B′, that is:

bu∗ : 2Inst × BEL × 2INT 	→ BEL.

More precisely, suppose that bu∗(Γ, B, I)=B′. The set B′ is defined according to the
following three conditions. For every Y ∈ VAR we have:

(A) If Y ∈ IVar or Y ∈ SUPPVar , and Y ∈ ΓVar then:
B′(Γ(Y ))=1 and for every Y =x ∈ InstY \ Γ(Y ), B′(Y =x)=0.



(B) If Y ∈ IVar or Y ∈ SUPPVar , and par(Y ) ⊆ ΓVar and Y /∈ ΓVar then:
for every Y =y ∈ InstY , B′(Y =y)=P (Y =y | {Xi=x | Xi ∈ par(Y ) and Xi=x ∈ Γ}).

(C) Otherwise:
for every Y =y ∈ InstY , B′(Y =y)=B(Y =y).

According to the previous formal characterization of the function bu∗, the BDIrelagent
only reconsiders the probability distributions over his intentions Y ∈ IVar and over his
intention supports Y ∈ SUPPVar . In fact, we suppose that the BDIrelagent only recon-
siders those beliefs which are directly related with his intentions or with his intention
supports, since he allocates his attention on the current task he is trying to solve. More
precisely: if Y is either an intended random variable in IVar or an intention support
in SUPPVar , and Y is a perceived variable in ΓVar , then the updated probability dis-
tribution over Y assigns probability 1 to the perceived instantiation Γ(Y ) of variable
Y and probability 0 to all the other instantiations of variable Y (condition A); if Y
is either an intended random variable in IVar or an intention support in SUPPVar , Y
is not a perceived variable in ΓVar , but Y ’s parents in the Bayesian network are per-
ceived variables in ΓVar , then the updated probability distribution over Y assigns to
each instantiations Y =y of variable Y a probability which is equal to the conditional
probability that Y =y is true given that the perceived instantiations of the parents of Y
are true (i.e. P (Y =y | {Xi=x | Xi ∈ par(Y ) and Xi=x ∈ Γ})) (condition B). In all
other cases the probability distribution over Y is not updated (condition C).

Space restrictions prevent a formal description of the belief update function bu of
the standard BDI agent. Let us only say that function bu (differently from the function
bu∗ of the BDIrelagent) updates indiscriminately all beliefs of the agent, that is, at each
round the standard BDI agent reconsiders the probability distributions over all random
variables Y ∈ VAR. The function bu has the same conditions of function bu∗ specified
above. The only difference is that in bu the requirement ‘Y ∈ IVar or Y ∈ SUPPVar ’
is not specified.

6 Programming Model

This section introduces the programming model implementing the mechanism of
relevance-based belief update described above. The experimental platform has been
built on top of CArtAgO, a framework for developing MAS environments based on the
abstraction of agents and artifacts [17]. Agents have been implemented by extending
Jason, a programming platform for BDI agents based on AgentSpeak(L) [2].

Environment. The rationale behind the adoption of the Agents and Artifacts (A&A)
meta-model for the design of the experimental platform resides in the particular in-
teraction model provided by CArtAgO, where all the mechanisms related to agent’s
perception and action are regulated, at a system level, by the framework. Agents –
independently from their internal model and technology– are allowed to play in
CArtAgO environments by interacting with artifacts through operation of use which
consists in exploiting the artifact’s usage interface. Besides, agent’s perceptive activities
are defined through the notions of observation which consists in retrieving the informa-
tion that artifacts display, and perception, enabling agents to sense signals and events



coming from artifacts. In this perspective artifacts are conceived as a target for agents’
overall activity, and thus exploited by agents either to execute their actions upon the
environment, and to obtain information in a machine-readable format. To implement
the scenario described in section 4, the environment has been instrumented with the
following artifacts.

– Timer provides agents with timing information and enables the automatic mecha-
nisms regulating the dynamism of the environment. Accordingly, it makes available
two properties which are related to its internal state: ticktime (indicating the actual
value of simulated time) and season (indicating the value of the ongoing season).

– GridBoard provides operations to be used as pragmatic actions by agents (i.e. Move,
Eat) and feedback information in terms of percepts about the effects of these ac-
tions in the environment. In addition, based on the temporal signals generated by
the Timer and on the actions performed by the agents, it provides the logic govern-
ing the dynamics and the physical consistency of the overall environment.

– GridboardGUI is linked to the previously described artifacts and is based on their
internal states. It provides the graphical user interface for the system and allows the
execution of experiment trials.

It is worth to remark that the adopted artifact-based environment promotes a principled
design for agent perceptive activities. Thanks to the defined A&A interaction, events
coming from artifacts can signal to the agent situations which require special attention.
These signals are automatically sent back to the agent control system in order to be
filtered and processed. For instance, once an artifact observable property or a signal
is sensed by an agent, it can be filtered according to the given relevance function and
possibly become a perceived datum (i.e. a percept). Following the basic idea provided
in this work, only if such a percept is relevant it can be used to update the agent’s belief
base.

Agents. The overall goal for agents is to find and to eat fruit items. At any time step
(i.e., round) agents can perfom only one pragmatic action (i.e., a move action in an
adjacent cell) while, the score associated to the various fruit items depends on the on-
going season: a fruit of a given color (e.g. blue) provides a reward of +1 only if the
ongoing season has the same color (e.g. the blue season), otherwise agents obtain no
reward. In so doing, agents’ performances are straightforwardly related to the environ-
ments dynamics. It is supposed that a tree changes its position at regular time intervals
due to the ongoing dynamism δ, hence agents need to adaptively govern their behavior
with respect to the actual situation. In particular, an agent needs to maintain an updated
knowledge of the overall environment in order to avoid wasting resources, thus a certain
amount of agent resources need to be allocated to exploration and epistemic activities.
Besides, looking for food items in an area which is actually related to a food type that is
not consistent with the ongoing season is a disadvantageous behavior in terms of global
performance. In these conditions, an effective strategy is to look for fruits by using trees
as reference points. Once a tree which is related to the ongoing season is encountered,
the agent can perform epistemic actions aimed at updating his beliefs about the presence
of fruits in the macro-area in which the agent is located.



At an architectural level, a Bayesian network governing goal deliberation and in-
tention selection has been realized. To have a seamless integration with the Jason pro-
gramming language, the kernel units used by the reasoning engine to perceive and up-
date beliefs have been extended (namely, the architecture.AgArch and asSemantics.Agent

components). In particular, specialized data-types and methods allowing the dynamic
query on the probability distribution of domain entities have been introduced. In addi-
tion, agent’s representation of the problem domain has been realized with a series of
dynamic hash-maps. Each hash-map is, in this case, a problem representation related
to a given season type. At any given time step this working memory can be accessed
by the agent by indicating the coordinates of a given cell, thus returning the content of
the cell in terms of entities which are expected to be there. For instance, once a tree is
perceived, the agent can control if any information relating to that location is present
and possibly update it. Accordingly, when an agent updates his belief about the posi-
tion of a certain tree, he will also update the belief about the position of the fruit of
the same color, given a possibly known probability distribution (we assume that agents
know which relation exists between the location of a certain tree and the probability to
find food items in the cells belonging to the same area).

Thanks to their perceptive skills, once some particular signal is encountered, agents
can exploit it for updating their beliefs, or for reconsidering their intentions. Therefore,
after becoming aware of some relevant facts, agents can elicit belief update or an adap-
tive re-allocation of their computational resources. Artifacts provide, in this case, two
kinds of signals: signals for temporal synchronization (agents rule their actions based on
a clock signals perceived from the Timer) and signals belonging to the set ΓVar , which
in turn contains the percepts corresponding to visible entities. For instance, as shown in
the following Jason cutout, once a clock signal is received from the focused Timer, an
internal action gridworld.perceptRel interacts with the GridBoard to retrieve the list of
percepts indicating all the visible entities.

+tick_time(X)[source("percept"), artifact("timer"), workspace("Relevance")]
: actual_season(S)
<- -+time(X);

gridworld.perceptRel(S);
!deliberateTarget.

The gridworld.perceptRel perceptive action has two different implementations respec-
tively for the BDI agent and for the BDIrelagent. gridworld.perceptRel is supposed to
realize the belief update functions bu and bu∗. Percepts are inserted in the agent working
memory and then filtered by the belief update function. In the case of the BDIrelagent,
once these percepts are related to the current intention (i.e. actual season) they are stored
in the agent memory as permanent belief facts. In particular, bu∗ is supposed to retrieve
from the GridBoard the list of visible entities (these elements become percepts). More-
over, for each retrieved fact, bu∗ deletes the beliefs actually referring to entities which
are not already present in the actual range of sight (trees and fruits can disappear due
to the environment dynamism) and adds a new fact to the belief base only if the scru-
tinized percept in Γ matches the current intention. For discriminating relevant and not
relevant percepts a simple pattern matching is used. Hence, the function of local rel-
evance rel(Y =y,Γ,B) is greater than zero when the current season matches the entity



Table 3. Amount of achieved goals and performed belief updates measured at the end of the
experiment series for BDI and BDIrelagents in environments with dynamism δ ∈ {1, 2, 3}

δ = 3 δ = 2 δ = 1

BDI BDIrel BDI BDIrel BDI BDIrel

Goal.eff 42.375 42.375 38.185 37.625 33.937 33.875
Cost.eff 92.125 78.437 101.437 85.312 143.125 107.875
cost.ratio 2.381 2.012 2.882 2.252 4.379 3.214

type, otherwise r = 0. Notice that in the case of the described scenario (where actual
agent’s intention depends on the current season) the threshold Δ is set to 0.

After the execution of the perceptRel, the BDI agent has a complete knowledge of
the actual state of its surroundings (i.e. the belief base is supposed to be consistent with
the actual state of the visible area). On the other side, BDIrelonly considers the infor-
mation that is relevant with respect to the current situation. Then, to achieve their goals,
both BDI and BDIrelagents can adopt the following plans to decide the next course of
action.

+!deliberateTarget
: actual_season(S) & food(S,X,Y)
<- -+targetLoc(X,Y);

!doAction.

+!deliberateTarget
: actual_season(S) & not food(S,_,_)
& tree(S,X,Y)
<- -+targetLoc(X,Y);

!doAction.
+!deliberateTarget <- !doAction.

It is worth nothing that, according to the Jason transition system, the desire-generating
rules described in Tab. 1 are here expressed by means of context-conditions, i.e. in form
of expression of beliefs (belief formulae). The belief targetLoc(X,Y) can refer to a given
fruit location only if the agent has already located a fruit and has stored a related fact in
his belief base. If there are no facts in the belief base concerning fruits or trees related
to the ongoing season, the agent will perform an epistemic action, i.e. by exploring the
grid in order to discover some new relevant fact. Besides, once beliefs are canceled from
the belief base by the internal belief update activities –ruled respectively by bu for the
standard BDI agent and bu∗ for the BDIrelagent– the agent reconsiders its intentions
and selects a new target to be reached.

-food(T,X,Y) : targetLoc(X,Y)
<- !deliberateTarget.

-tree(T,X,Y) : targetLoc(X,Y)
<- !deliberateTarget.

In so doing, both the BDI agent and the BDIrelagent update their belief base in two cir-
cumstances: (i) when the actual belief base is wrong (not consistent with the perceived
state of the environment), and (ii) when the actual belief base is incomplete (due to a
lack of knowledge). Finally, by using the operations allowed by the GridBoard interface,
and taking into account the planning rules discussed in section 4, a !doAction realizes
the basic pragmatic actions (i.e., eat a fruit or move towards targetLoc(X,Y)).

7 Experiment

This section discusses a series of experiments comparing the performances of BDI vs.
BDIrel agents engaged in in the scenario presented in section 4.



7.1 Experiment Setting

In our experimental setting we suppose for simplicity that agents have always access
to their current position in the grid, and that they are always notified about simulation
steps and season changes. Therefore, at the beginning of a new season, an agent always
knows that it is time to look for fruits of a different color, and thus adopting the goal
to look for fruits belonging to the ongoing color. In order to have a measure about the
trade-off between effectiveness and efficiency, agents’ performances have been eval-
uated according to a twofold metric. On the one hand, goal effectiveness (Goal.eff )
represents the total amount of achieved goals during a trial (i.e., eaten fruits), while
cost effectiveness (Cost.eff ) is the total amount of update operations performed by
the agent on his belief base. On the other hand, we define the cost.ratio of an agent
in terms of the agent’s belief update cost divided by the total amount of achieved goals
(Cost.eff/Goal.eff ). This in particular gives a quantitative measure of efficiency,
namely how many units of cost the agent needs to spend for each achieved goal. In
other terms, a cost.ratio = 1 means that the agents has performed a belief update
operation for each achieved goal (i.e., eaten fruit). Besides, since only one Move ac-
tion is allowed for each time step, the adopted metrics provide insights on how many
pragmatic actions are needed for agents to achieve their goals.

The length of experiments has been set to 900 rounds in order to be long enough for
the chosen metrics to become stable. The global performance of each agent is measured
by averaging cost.ratio of 16 trials in environments with different dynamism δ. Season
length st is set at 15 rounds, while we consider n=3 seasons (respectively red, blue and
green) with three associated types of tree and fruit. The initial placements of entities are
randomly selected, while a fruit of a given color is generated at the beginning of each
corresponding season. Finally, we assume that for any color at most one fruit is present
in the grid at the same time.

7.2 Discussion

Fig. 1 (b) shows a snapshot of the running simulation. Experiments have been con-
ducted using three different variables of dynamism δ for the environment. The first
two columns in Tab.3 show the cost.ratio respectively for the BDI agent and the
BDIrelagent operating in a static environment (δ = 3, a tree changes its location every
3 seasons, 45 rounds). Both agents attain an average of 43.375 eaten fruits on their tri-
als. However they have to pay quite different costs of belief update (BDI performs an
average of 92.125 update operations, while BDIrel78.437). Considering the cost.ratio,
once agents have overcome their transitory phase they spend respectively 2.381 (BDI)
and 2.012 (BDIrel) costs for each eaten fruit.

The central columns show the performances of the two agents in environments with
medium dynamism (δ = 2, a tree changes its location every 2 seasons, 30 rounds).
Here, due to the frequent tree changes, both agents rely on a less accurate knowledge
model. In terms of eaten fruits the BDI agent attains a higher performances (38.185),
clearly outperforming the BDIrelagent (37.125). On the other hand, as far as costs
of belief update are concerned, BDIrelperforms better: in fact, under the same con-
ditions, BDIreldoes less belief update operations (85.312 vs. 101.437). As a conse-
quence, BDIrelconsiderably shows a better effectiveness with respect to the cost.ratio
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Fig. 2. Cost ratio in environments characterized by different dynamism: δ=1 (a) and δ=2 (b)

(see Fig.2.b) whose value converges, at the end of the experiments, at an average of
2.252 belief update operations per achieved goal (vs. 2.882 for the BDI agent).

The last two columns shows the results in a highly dynamic environment (δ = 1,
a tree changes its location every season change, 15 rounds). Here, due to the mas-
sive epistemic activities, the standard BDI agent is able to maintain a more consistent
and complete knowledge of the environment. Therefore, he performs better than the
BDIrelagent in terms of achieved goals (with an average of 33.937 number of eaten
fruits against 33.875). In contrast, the BDI agent has to pay higher costs related to his
epistemic activities, even beyond the initial transitory phase. In this case, the costs of
belief update are 143.125 for the BDI agent and 107.875 for the BDIrelagent. As de-
picted in Fig.2.a, the cost.ratio reflects this difference by converging to a value of about
4.379 for the BDI and of 3.214 for the BDIrel.

Despite the simplicity of the problem domain, the experiments show a noticeable
effect of the relevance-based filter of belief update on the BDIrelperformance. By re-
porting agent effectiveness both in terms of goal achieved and in terms of costs for belief
update, cost.ratio is, indeed, a good indicator for analyzing the trade-off in agents per-
formances (see Fig.2). As the results of the experimental analysis show, on the one side
the BDI agent is always the best in terms of goal effectiveness, thus able to achieve
an higher amount of goals. BDI agents are passively affected by all incoming informa-
tion, hence they obtain a precise knowledge of their surroundings and result in a more
acknowledged decision making. Consequently, we may argue that the more an agent
spends his resources for belief update, the more his belief base will be correct and ade-
quate with respect to the current state of the environment, and the more the agent will
find fruits in the grid. On the other side, BDIrelagents adopt an active perception style
and exploits their relevance-based mechanism to filter percepts: if the incoming input is
not relevant with respect to the current intention, then the BDIrelagent simply ignores
it. Besides a worse performance in terms of goal achieved, this mechanism allows the
BDIrelagent to avoid wasting computational resources for belief update, thus result-
ing in a better global performance in terms of cost.ratio. This aspect is worth to be
considered in cases where agents have bounded resources and environments are char-
acterized by strong dynamicity or information richness. As the results show, the higher
the dynamism of the environment is, the higher the computational costs which are paid
by BDI agents for belief update processes. In these conditions, BDIrelagents have a



concrete advantage in filtering noise and in considering only what is expected to be
useful for achieving their current goals.

8 Conclusion

We have presented in this work a mechanism of relevance-based belief update providing
a computational model for BDI agents, and implemented it using Jason platform. As the
experimental results show, the costs for belief update are effectively reduced by using
the mechanism for filtering relevant percepts. Despite the simple scenario adopted, the
experimental results can be easily generalized as well as the computational model for
relevance aware agents can be straightforwardly applied to more complex application
domains. We think that a notion of pragmatic relevance is a pivotal one for the imple-
mentation of forthcoming agent-based systems, for instance in all the cases in which
agents have to perform complex and resource demanding activities in highly dynamic
and information-rich environments (i.e., the Web, as well as pervasive systems in the
real world).

In this line, the directions for future works are manifold. We are actually working
on a generalization of our model of pragmatic relevance which consists in adding a
quantitative dimension for intentions. In this generalized model, the degree of rele-
vance of a certain input with respect to an agent’s intention will also depend on the
utility/importance of the intended outcome. Besides, we will further investigate the re-
lationships between the notion of relevance and intention reconsideration mechanisms.
Since the persistence of an intention over time depends on the persistence of those be-
liefs which support this intention (i.e. beliefs are reasons for intending), we will study
how the relevance-based filter of belief update discussed in this paper may affect the
persistence of intentions in an indirect way. Moreover, we intend to develop in the fu-
ture a more advanced model extending an agent’s abilities to manage a probabilistic
belief base (i.e., by introducing salience maps, dynamic Bayesian networks, influence
diagrams, etc.).

Finally, as already noticed in section 5, we intend to extend our model to a more so-
phisticated type of agent than the BDIrelagent who also considers inputs that he expects
to be relevant for his future intentions. For instance, if such an agent has the current in-
tention to cook a meal and he expects that tomorrow morning he will have the intention
to go from Paris to Rome by train, he will also consider information that are relevant
with respect to his expected intention (e.g. the information “there will a train strike”).
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