Skip to main content

Computing by Mobile Robotic Sensors

  • Chapter
  • First Online:
Theoretical Aspects of Distributed Computing in Sensor Networks

Abstract

The research areas of mobile robotic sensors lie in the intersection of two major fields of investigations carried out by quite distinct communities of researchers: autonomous robots and mobile sensor networks. Robotic sensors are micro-robots capable of locomotion and sensing. Like the sensors in wireless sensor networks, they are myopic: their sensing range is limited. Unlike the sensors in wireless sensor networks, robotic sensors are silent: they have no direct communication capabilities. This means that synchronization, interaction, and communication of information among the robotic sensors can be achieved solely by means of their sensing capability, usually called vision. In this chapter, we review the results of the investigations on the computability and complexity aspects of systems formed by these myopic and silent mobile sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notable exceptions are the robotic networks studied in the control community that assume and use direct communication, e.g., [7, 65].

  2. 2.

    Any time spent to activate its sensors (before the snapshot is taken) and to process the information retrieved with the snapshot will be charged to the Sleep and the Compute state, respectively.

  3. 3.

    For example, in some applications, sensors are dropped from the air.

  4. 4.

    A is the smallest cellular rectangle enclosing \({\mathcal M}\)

  5. 5.

    i.e., agreement on axes and directions (positive vs. negative) of a common coordinate system, but not necessarily on the origin nor on the unit distance.

References

  1. N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM Journal on Computing, 36:56–82, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. A distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Transactions on Robotics and Automation, 15(5):818–828, 1999.

    Article  Google Scholar 

  3. H. Ando, I. Suzuki, and M. Yamashita. Formation and agreement problems for synchronous mobile robots with limited visibility. In: Proceedings of IEEE Symposium of Intelligent Control, pages 453–460, 1995.

    Google Scholar 

  4. L. Barrière, P. Flocchini, E. Mesa-Barrameda, and N. Santoro. Uniform scattering of autonomous mobile robots in a grid. International Journal of Foundations of Computer Science, to appear (2011).

    Google Scholar 

  5. M. A. Batalin and G. S. Sukhatme. Coverage, exploration and deployment by a mobile robot and communication network. Telecommunication Systems, 26(2):181–196, 2004.

    Article  Google Scholar 

  6. D. Bhadauria and V. Isler. Data gathering tours for mobile robots. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3868–3873, 2009.

    Google Scholar 

  7. F. Bullo, J. Cortes, and S. Martinez. Distributed Control of Robotic Networks. Princeton University Press, Princeton, NJ, 2009.

    MATH  Google Scholar 

  8. Y. U. Cao, A. S. Fukunaga, A. B. Kahng, F. Meng. Cooperative mobile robotics: Antecedents and directions. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 226–234, 1995.

    Google Scholar 

  9. I. Chatzigiannakis, M. Markou, S. Nikoletseas. Distributed circle formation for anonymous oblivious robots. In: Proceedings of 3rd International Workshop on Experimental and Efficient Algorithms (WEA), pages 159–174, 2004.

    Google Scholar 

  10. M. Cieliebak, P. Flocchini, G. Prencipe, N. Santoro. Solving the gathering problem. In: Proceedings of 30th International Colloquium on Automata, Languages and Programming (ICALP), pages 1181–1196, 2003.

    Google Scholar 

  11. J. Clark, R. Fierro. Mobile robotic sensors for perimeter detection and tracking. ISA Transactions, 46(1):3–13, 2007.

    Article  Google Scholar 

  12. R. Cohen, D. Peleg. Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM Journal on Computing, 34:1516–1528, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Cohen, D. Peleg. Local spreading algorithms for autonomous robot systems. Theoretical Computer Science, 399:71–82, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  14. K. Dantu, M. Rahimi, H. Shah, S. Babel, A. Dhariwal, G.S. Sukhatme. Robomote: enabling mobility in sensor networks. In: Proceedings of 4th International Symposium on Information Processing in Sensor Networks (IPSN), pages 404–409, 2005.

    Google Scholar 

  15. S. Das, P. Flocchini, S. Kutten, A. Nayak, N. Santoro. Map construction of unknown graphs by multiple agents. Theoretical Computer Science, 385(1–3):34–48, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Das, E. Mesa-Barrameda, N. Santoro. Deployment of asynchronous robotic sensors in unknown orthogonal environments. In: Proceedings of 4th International Workshop on Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSOR), pages 25–140, 2008.

    Google Scholar 

  17. X. A. Debest. Remark about self-stabilizing systems. Communication of the ACM, 2(38):115–177, 1995.

    Google Scholar 

  18. X. Défago, M. Gradinariu, S. Messika, P. R. Parvédy. Fault-tolerant and self-stabilizing mobile robots gathering. In: Proceedings of 20th International Symposium on Distributed Computing (DISC), pages 46–60, 2006.

    Google Scholar 

  19. X. Défago, A. Konagaya. Circle formation for oblivious anonymous mobile robots with no common sense of orientation. In: Proceedings of Workshop on Principles of Mobile Computing, pages 97–104, 2002.

    Google Scholar 

  20. X. Défago, S. Souissi. Non-uniform circle formation algorithm for oblivious mobile robots with convergence toward uniformity. Theoretical Computer Science, 396(1–3):97–112, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  21. Y. Dieudonné, S. Dolev, F. Petit, M. Sega. Deaf, dumb, and chatting asynchronous robots. In: Proceedings of 13th International Conference on Principles of Distributed Systems (OPODIS), LNCS 5923, pages 71–85, 2009.

    Google Scholar 

  22. Y. Dieudonné, O. Labbani-Igbida, F. Petit. Circle formation of weak mobile robots. ACM Transactions on Autonomous and Adaptive Systems, 3(4):1–20, 2008.

    Article  Google Scholar 

  23. Y. Dieudonné, F. Petit. Circle formation of weak robots and lyndon words. Information Processing Letters, 4(104):156–162, 2007.

    Article  Google Scholar 

  24. Y. Dieudonné, F. Petit. Swing words to make circle formation quiescent. In: Proceedings of 14th International Colloquium on Structural Information and Communication Complexity (SIROCCO), LNCS 4474, pages 166–179, 2007.

    Google Scholar 

  25. E. W. Dijkstra. Selected Writings on Computing: A Personal Perspective. Springer, New York, NY, 1982.

    MATH  Google Scholar 

  26. S. Dobrev, P. Flocchini, G. Prencipe, N. Santoro. Searching for a black hole in arbitrary networks: optimal mobile agents protocols. Distributed Computing, 19(1):1–19, 2006.

    Article  Google Scholar 

  27. M. Dunbabin, P. Corke, I. Vasilescu, D. Rus. Data muling over underwater wireless sensor networks using an autonomous underwater vehicle. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2006.

    Google Scholar 

  28. A. Efrima, D. Peleg. Distributed models and algorithms for mobile robot systems. In: Proceedings of 33rd Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM), LNCS 4362, pages 70–87, 2007.

    Google Scholar 

  29. Y. Elor, A. M. Bruckstein. Multi-agent deployment and patrolling on a ring graph. Technical Report CIS-2009-16, Computer Science Department, Technion, Israel, 2009.

    Google Scholar 

  30. N. Fatès. Solving the decentralized gathering problem with a reaction-diffusion-chemotaxis scheme. Swarm Intelligence (to appear), 4(2): 91–115, 2010.

    Article  Google Scholar 

  31. P. Flocchini, G. Prencipe, N. Santoro. Self-deployment algorithms for mobile sensors on a ring. Theoretical Computer Science, 402(1):67–80, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  32. P. Flocchini, G. Prencipe, N. Santoro. Near gathering of weak robots with limited visibility: Algorithms and applications. Technical report, Carleton University, 2010.

    Google Scholar 

  33. P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer. Pattern formation by autonomous robots without chirality. In: Proceedings of 8th International Colloquium on Structural Information and Communication Complexity (SIROCCO), pages 147–162, 2001.

    Google Scholar 

  34. P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer. Gathering of asynchronous mobile robots with limited visibility. Theoretical Computer Science, 337:147–168, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  35. P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer. Arbitrary pattern formation by asynchronous oblivious robots. Theoretical Computer Science, 407(1–3):412–447, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  36. P. Fraigniaud, L. Gasieniec, D. Kowalski, A. Pelc. Collective tree exploration. Networks, 48:166–177, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  37. J. Fredslund, M. J. Matarić. A general algorithm for robot formations using local sensing and minimal communication. IEEE Transactions on Robotics and Automation, 18(5):837–846, 2002.

    Article  Google Scholar 

  38. A. Ganguli, J. Cortes, F. Bullo. Visibility-based multi-agent deployment in orthogonal environments. In: Proceedings of American Control Conference, pages 3426–3431, 2007.

    Google Scholar 

  39. A. Ganguli, J. Cortés, F. Bullo. Multirobot rendezvous with visibility sensors in nonconvex environments. IEEE Transactions on Robotics, 25(2):340–352, 2009.

    Article  Google Scholar 

  40. S. Gilbert, N. Lynch, S. Mitra, T. Nolte. Self-stabilizing robot formations over unreliable networks. ACM Transactions on Autonomous and Adaptive Systems, 4(3):1–29, 2009.

    Article  Google Scholar 

  41. N. Gordon, Y. Elor, A. M. Bruckstein. Gathering multiple robotic agents with crude distance sensing capabilities. In: Proceedings of 6th International Conference on Ant Colony Optimization and Swarm Intelligence, LNCS 5217, pages 72–83, 2008.

    Google Scholar 

  42. N. Gordon, I. A. Wagner, A. M. Bruckstein. Gathering multiple robotic a(ge)nts with limited sensing capabilities. In: Proceedings of 2nd International Conference on Ant Colony Optimization and Swarm Intelligence, LNCS 3172, pages 142–153, 2004.

    Google Scholar 

  43. N. Heo, P. K. Varshney. A distributed self spreading algorithm for mobile wireless sensor networks. In: Proceedings of IEEE Wireless Communication and Networking Conference, volume 3, pages 1597–1602, 2003.

    Google Scholar 

  44. N. Heo, P. K. Varshney. Energy-efficient deployment of intelligent mobile sensor networks. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 35(1):78–92, 2005.

    Article  Google Scholar 

  45. A. Howard, M. J. Mataric, G. S. Sukhatme. An incremental self-deployment algorithm for mobile sensor networks. Autonomous Robots, 13(2):113–126, 2002.

    Article  MATH  Google Scholar 

  46. A. Howard, M. J. Mataric, G. S. Sukhatme. Mobile sensor network deployment using potential fields. In: Proceedings of 6th International Symposium on Distributed Autonomous Robotics Systems (DARS), pages 299–308, 2002.

    Google Scholar 

  47. T.-R. Hsiang, E. Arkin, M. A. Bender, S. Fekete, J. Mitchell. Algorithms for rapidly dispersing robot swarms in unknown environments. In: Proceedings of 5th Workshop on Algorithmic Foundations of Robotics (WAFR), pages 77–94, 2002.

    Google Scholar 

  48. Y. Ikemoto, Y. Hasegawa, T. Fukuda, K. Matsuda. Gradual spatial pattern formation of homogeneous robot group. Information Sciences, 171(4):431–445, 2005.

    Article  Google Scholar 

  49. D. Jung, G. Cheng, A. Zelinsky. Experiments in realising cooperation between autonomous mobile robots. In: Proceedings of 5th International Symposium on Experimental Robotics (ISER), pages 513–524, 1997.

    Google Scholar 

  50. A. Kansal,W. Kaiser, G. Pottie, M. Srivastava, G. S. Sukhatme. Reconfiguration methods for mobile sensor networks. ACM Transactions on Sensor Networks, 3(4):22–23, 2007.

    Article  Google Scholar 

  51. M. Kasuya, N. Ito, N. Inuzuka, K. Wada. A pattern formation algorithm for a set of autonomous distributed robots with agreement on orientation along one axis. Systems and Computers in Japan, 37(10):89–100, 2006.

    Article  Google Scholar 

  52. Y. Katayama, Y. Tomida, H. Imazu, N. Inuzuka, K. Wada. Dynamic compass models and gathering algorithms for autonomous mobile robots. In: Proceedings of 14th Colloquium on Structural Information and Communication Complexity (SIROCCO), LNCS 4474, 2007.

    Google Scholar 

  53. B. Katreniak. Biangular circle formation by asynchronous mobile robots. In: Proceedings of 12th International Colloquium on Structural and Communication Complexity (SIROCCO), LNCS 3499, pages 185–199, 2005.

    Google Scholar 

  54. O. Kosut, A. Turovsky, J. Sun, M. Ezovski, G. Whipps, L. Tong. Integrated mobile and static sensing for target tracking. In: Proceedings of Military Communications Conference (MILCOM), pages 1–7, 2007.

    Google Scholar 

  55. G. Lee, S. Yoon, N. Y. Chong, H. Christensen. A mobile sensor network forming concentric circles through local interaction and consensus building. Journal of Robotics and Mechatronics, 21(4):469–477, 2009.

    Google Scholar 

  56. J. Lee, S. Venkatesh, M. Kumar. Formation of a geometric pattern with a mobile wireless sensor network. Journal of Robotic Systems, 21(10):517–530, 2004.

    Article  MATH  Google Scholar 

  57. X. Li, H. Frey, N. Santoro, I. Stojmenovic. Focused coverage by mobile sensor networks. In: Proceedings of 6th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS), pages 466–475, 2009.

    Google Scholar 

  58. X. Li, N. Santoro. An integrated self-deployment and coverage maintenance scheme for mobile sensor networks. In: Proceedings of 2nd International Conference on Mobile Ad-Hoc and Sensors Networks (MSN), pages 847–860, 2006.

    Google Scholar 

  59. J. Lin, A.S. Morse, B.D.O. Anderson. The multi-agent rendezvous problem. Part 1: The synchronous case. SIAM Journal on Control and Optimization, 46(6):2096–2119, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  60. J. Lin, A.S. Morse, B.D.O. Anderson. The multi-agent rendezvous problem. Part 2: The asynchronous case. SIAM Journal on Control and Optimization, 46(6):2120–2147, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  61. B. Liu, P. Brass, O. Dousse, P. Nain, D. Towsley. Mobility improves coverage of sensor networks. In: Proceedings of 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pages 300–308, 2005.

    Google Scholar 

  62. L. Loo, E. Lin, M. Kam, P. Varshney. Cooperative multi-agent constellation formation under sensing and communication constraints. Cooperative Control and Optimization, pages 143–170, 2002.

    Google Scholar 

  63. N. Lynch, S. Mitra, T. Nolte. Motion coordination using virtual nodes. In: Proceedings of 44th IEEE Conference on Decision and Control, 2005.

    Google Scholar 

  64. S. Martínez. Practical multiagent rendezvous through modified circumcenter algorithms. Automatica, 45(9):2010–2017, 2009.

    Article  MATH  Google Scholar 

  65. S. Martínez, F. Bullo, J. Cortes, E. Frazzoli. On synchronous robotic networks—parts i and ii. IEEE Transactions on Automatic Control, 52(12):2199–2226, 2007.

    Article  Google Scholar 

  66. E. Martinson, D. Payton. Lattice formation in mobile autonomous sensor arrays. In: Proceedings of International Workshop on Swarm Robotics (SAB), pages 98–111, 2004.

    Google Scholar 

  67. Y. Mei, C. Xian, S. Das, Y.C. Hu, Y.-H. Lu. Sensor replacement using mobile robots. Computer Communications, 30(13):2615–2626, 2007.

    Article  Google Scholar 

  68. T. Miyamae, S. Ichikawa, F. Hara. Emergent approach to circle formation by multiple autonomous modular robots. Journal of Robotics and Mechatronics, 21(1):3–11, 2009.

    Google Scholar 

  69. S. E. Nikoletseas. Models and algorithms for wireless sensor networks (smart dust). In: Proceedings of 32nd Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM), LNCS 3831, pages 64–83, 2006.

    Google Scholar 

  70. Y. Oasa, I. Suzuki, M. Yamashita. A robust distributed convergence algorithm for autonomous mobile robots. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pages 287–292, 1997.

    Google Scholar 

  71. M.R. Pac, A. M. Erkmen, I. Erkmen. Scalable self-deployment of mobile sensor networks: A fluid dynamics approach. In: Proceedings of IEEE/RSJ International Conference Intelligent Robots and Systems, pages 1446–1451, 2006.

    Google Scholar 

  72. S. Poduri, G. S. Sukhatme. Constrained coverage for mobile sensor networks. In: Proceedings of IEEE International Conference on Robotic and Automation, pages 165–173, 2004.

    Google Scholar 

  73. S. Poduri, G. S. Sukhatme. Achieving connectivity through coalescence in mobile robot networks. In: Proceedings of 1st ACM International Conference on Robot Communication and Coordination (RoboComm), volume 318, pages 1–6, 2007.

    Google Scholar 

  74. O. Powell, P. Leone, J. Rolim. Energy optimal data propagation in wireless sensor networks. Journal of Parallel and Distributed Computing, 67(3):302–317, 2007.

    Article  MATH  Google Scholar 

  75. G. Prencipe. The effect of synchronicity on the behavior of autonomous mobile robots. Theory of Computing Systems, 38:539–558, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  76. G. Prencipe, N. Santoro. Distributed algorithms for mobile robots. In: Proceedings of 5th IFIP International Conference on Theoretical Computer Science (TCS), 2006.

    Google Scholar 

  77. S. Samia, X. Défago, T. Katayama. Convergence of a uniform circle formation algorithm for distributed autonomous mobile robots. In: Proceedings of Journés Scientifiques Francophones (JSF), Tokio, Japan, 2004.

    Google Scholar 

  78. A. T. Samiloglu, V. Gazi, A. Bugra Koku. Comparison of three orientation agreement strategies in self-propelled particle systems with turn angle restrictions in synchronous and asynchronous settings. Asian Journal of Control, 10(2):212–232, 2008.

    Article  MathSciNet  Google Scholar 

  79. S. Souissi, X. Défago, M. Yamashita. Using eventually consistent compasses to gather memory-less mobile robots with limited visibility. ACM Transactions on Autonomous and Adaptive Systems, 4(1):1–27, 2009.

    Article  Google Scholar 

  80. O. Soysal, E. Bahçeci, E. Şahin. Aggregation in swarm robotic systems: Evolution and probabilistic control. Turkish Journal Electrical Engineering, 15(2):199–225, 2007.

    Google Scholar 

  81. K. Sugihara, I. Suzuki. Distributed algorithms for formation of geometric patterns with many mobile robots. Journal of Robotics Systems, 13:127–139, 1996.

    Article  MATH  Google Scholar 

  82. S. Susca, S. Martinez, F. Bullo. Monitoring environmental boundaries with a robotic sensor network. IEEE Transactions on Control Systems Technology, 16(2):288–296, 2008.

    Article  Google Scholar 

  83. I. Suzuki, M. Yamashita. Distributed anonymous mobile robots: Formation of geometric patterns. SIAM Journal on Computing, 28(4):1347–1363, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  84. T. Suzuki, R. Sugizaki, K. Kawabata, Y. Hada, Y. Tobes. Deployment and management of wireless sensor network using mobile robots for gathering environmental information. In: Proceedings of 9th International Symposia on Distributed Autonomous Robotic Systems (DARS), pages 63–72, 2009.

    Google Scholar 

  85. O. Tanaka. Forming a circle by distributed anonymous mobile robots. Technical report, Department of Electrical Engineering, Hiroshima University, Japan, 1992.

    Google Scholar 

  86. O. Tekdas, J. H. Lim, A. Terzis, V. Isler. Using mobile robots to harvest data from sensor fields. IEEE Wireless Communications, 16(1):22–28, 2009.

    Article  Google Scholar 

  87. G. Wang, G. Cao, P. Berman, T. La Porta. A bidding protocol for deploying mobile sensors. IEEE Transactions on Mobile Computing, 6(5):563–576, 2007.

    Article  Google Scholar 

  88. G.Wang, G. Cao, T. La Porta. Movement-assisted sensor deployment. IEEE Transactions on Mobile Computing, 5(6):640–652, 2006.

    Article  Google Scholar 

  89. P. K. C. Wang. Navigation Strategies for Multiple Autonomous Mobile Robots Moving in Formation. Journal of Robotic Systems, 8(2):177–195, 1991.

    Article  MATH  Google Scholar 

  90. M. Yamashita, I. Suzuki. Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theoretical Computer Science (to appear), 411(26–28): 2433–2453, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  91. J. Yu, M. LaValle, D. Liberzon. Rendezvous without coordinates. In: Proceedings of 47th IEEE Conference on Decision and Control, pages 1803–1808, 2008.

    Google Scholar 

  92. Y. Zou, K. Chakrabarty. Sensor deployment and target localization in distributed sensor networks. ACM Transactions on Embedded Computing Systems, 3(1):61–91, 2004.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by the Natural Sciences and Engineering Research Council of Canada, under Discovery Grants, and by PRIN 2008—MadWeb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Flocchini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flocchini, P., Prencipe, G., Santoro, N. (2011). Computing by Mobile Robotic Sensors. In: Nikoletseas, S., Rolim, J. (eds) Theoretical Aspects of Distributed Computing in Sensor Networks. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14849-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14849-1_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14848-4

  • Online ISBN: 978-3-642-14849-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics