Skip to main content

A Research Framework for Interaction Computing

  • Conference paper
Book cover Digital Ecosystems (OPAALS 2010)

Abstract

This paper lays out an interdisciplinary research framework that integrates perspectives from physics, biology, mathematics, and computer science to develop a vision of interaction computing. The paper recounts the main insights and lessons learned in the past six years across multiple projects, gives a current definition of the problem, and outlines a research programme for how to approach it that will guide our research over the coming years. The flavour of the research is strongly algebraic, and the bridge to specification of behaviour of automata through new formal languages is discussed in terms of category theory. The style of presentation is intuitive and conceptual as the paper is meant to provide a foundation widely accessible to an interdisciplinary audience for five threads of research in experimental cell biology, algebraic automata theory, dynamical systems theory, autopoietic architectures, and specification languages, the first four of which are represented by more focussed technical papers at this same conference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andréka, H., Neméti, I., Sain, I.: Universal Algebraic Logic, 1st edn. Studies in Universal Logic. Springer, Heidelberg (to appear)

    Google Scholar 

  2. Bergstra, J.A., Klop, J.W.: ACPτ: a universal axiom system for process specification, pp. 447–463 (1989)

    Google Scholar 

  3. Bjorner, D., Jones, C.B. (eds.): The Vienna Development Method: The Meta-Language. LNCS, vol. 61. Springer, Heidelberg (1978)

    MATH  Google Scholar 

  4. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LOTOS. Comput. Netw. ISDN Syst. 14(1), 25–59 (1987)

    Article  Google Scholar 

  5. Briscoe, G.: D6.1-Entropy-Based Complexity Measure for the Evolution-Based Self-Organisation of Agent Populations. DBE Project (2004), http://files.opaals.org/DBE/deliverables

  6. Briscoe, G., De Wilde, P.: D6.2-Self-Organisation of Evolving Service Populations. DBE Project (2005), http://files.opaals.org/DBE/deliverables

  7. Briscoe, G., De Wilde, P.: D6.4-Intelligence, learning and neural networks in distributed agent systems. DBE Project (2005), http://files.opaals.org/DBE/deliverables

  8. Briscoe, G., De Wilde, P.: D6.5-The effect of distributed intelligence in evolutionary dynamics. DBE Project (2006), http://files.opaals.org/DBE/deliverables

  9. Briscoe, G., Dini, P.: Towards Autopoietic Computing. In: Proceedings of the 3rd OPAALS International Conference, Aracaju, Sergipe, Brazil, March 22-23 (2010)

    Google Scholar 

  10. Buckingham, E.: The principle of similitude. Nature 96, 396–397 (1915)

    Article  MATH  Google Scholar 

  11. Chu, D., Ho, W.K.: A Category Theoretical Argument Against the Possibility of Artificial Life: Robert Rosens Central Proof Revisited. Artificial Life 12, 117–134 (2006)

    Article  Google Scholar 

  12. Chu, D., Ho, W.K.: Computational Realizations of Living Systems. Artificial Life 13, 369–381 (2007)

    Article  Google Scholar 

  13. Chu, D., Ho, W.K.: The Localization Hypothesis and Machines. Artificial Life 13, 299–302 (2007)

    Article  Google Scholar 

  14. Cornish-Bowden, A., Cardenas, M.L.: Self-organization at the origin of life. Journal of Theoretical Biology 252, 411–418 (2008)

    Article  MathSciNet  Google Scholar 

  15. Dini, P.: D18.4-Report on self-organisation from a dynamical systems and computer science viewpoint. DBE Project (2007), http://files.opaals.org/DBE

  16. Dini, P., Berdou, E.: D18.1-Report on DBE-Specific Use Cases. DBE Project (2004), http://files.opaals.org/DBE

  17. Dini, P., Briscoe, G., Munro, A.J., Lain, S.: D1.1: Towards a Biological and Mathematical Framework for Interaction Computing. OPAALS Deliverable, European Commission (2008), http://files.opaals.org/OPAALS/Year_2_Deliverables/WP01/

  18. Dini, P., Horvath, G., Schreckling, D., Pfeffer, H.: D2.2.9: Mathematical Framework for Interaction Computing with Applications to Security and Service Choreography. BIONETS Deliverable, European Commission (2009), http://www.bionets.eu

  19. Dini, P., Schreckling, D.: More Notes on Abstract Algebra and Logic: Towards their Application to Cell Biology and Security. In: 1st OPAALS Workshop, Rome, November 26-27 (2007)

    Google Scholar 

  20. Dini, P., Schreckling, D.: On Abstract Algebra and Logic: Towards their Application to Cell Biology and Security. In: Altman, E., Dini, P., Miorandi, D., Schreckling, D. (eds.) D2.1.1 Paradigms and Foundations of BIONETS research (2007)

    Google Scholar 

  21. Dini, P., Schreckling, D.: Notes on Abstract Algebra and Logic: Towards their Application to Cell Biology and Security. In: 2nd International Conference on Digital Ecosystems and Technologies, IEEE-DEST 2008, February 26-29 (2008)

    Google Scholar 

  22. Dini, P., Schreckling, D., Yamamoto, L.: D2.2.4: Evolution and Gene Expression in BIONETS: A Mathematical and Experimental Framework. BIONETS Deliverable, European Commission (2008), http://www.bionets.eu

  23. Egri-Nagy, A., Dini, P., Nehaniv, C.L., Schilstra, M.J.: Transformation Semigroups as Constructive Dynamical Spaces. In: Proceedings of the 3rd OPAALS International Conference, Aracaju, Sergipe, Brazil, March 22-23 (2010)

    Google Scholar 

  24. Egri-Nagy, A., Nehaniv, C.L.: Algebraic Properties of Automata Associated to Petri Nets and Applications to Computation in Biological Systems. BioSystems 94(1-2), 135–144 (2008)

    Article  Google Scholar 

  25. Egri-Nagy, A., Nehaniv, C.L., Rhodes, J.L., Schilstra, M.J.: Automatic Analysis of Computation in Biochemical Reactions. BioSystems 94(1-2), 126–134 (2008)

    Article  Google Scholar 

  26. Egri-Nagy, A., Nehaniv, C.L.: Hierarchical coordinate systems for understanding complexity and its evolution with applications to genetic regulatory networks. Artificial Life 14(3), 299–312 (2008) (Special Issue on the Evolution of Complexity)

    Article  Google Scholar 

  27. Egri-Nagy, A., Nehaniv, C.L.: SgpDec - software package for hierarchical coordi-natization of groups and semigroups, implemented in the GAP computer algebra system (2008), http://sgpdec.sf.net

  28. Eigen, M., Schuster, P.: The Hypercycle. Naturwissenschaften 65(1) (1978)

    Google Scholar 

  29. Fielding, R.: Architectural Styles and the Design of Network-based Software Architectures. UC Irvine PhD Dissertation (2000), http://www.ics.uci.edu/fielding/pubs/dissertation/top.htm

  30. Gabriel, R.P., Goldman, R.: Conscientious software. In: OOPSLA’06, Portland, Oregon, October 22-26 (2006)

    Google Scholar 

  31. Golubitsky, M., Stewart, I.: Nonlinear Dynamics of Networks: The Groupoid Formalism. Bulletin of the American Mathematical Society 43, 305–364 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Heistracher, T., Kurz, T., Marcon, G., Masuch, C.: D9.1-Report on Fitness Landscape. DBE Project (2005), http://files.opaals.org/DBE/deliverables

  33. Hoare, C.A.R.: Communicating sequential processes. ACM Commun. 21(8), 666–677 (1978)

    Article  MATH  Google Scholar 

  34. Horvath, G.: Functions and Polynomials over Finite Groups from the Computational Perspective. The University of Hertfordshire, PhD Dissertation (2008)

    Google Scholar 

  35. Horvath, G., Dini, P.: Lie Group Analysis of p53-mdm3 Pathway. In: Proceedings of the 3rd OPAALS International Conference, Aracaju, Sergipe, Brazil, March 22-23 (2010)

    Google Scholar 

  36. Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory. McGraw-Hill, New York (1969)

    MATH  Google Scholar 

  37. Kauffman, S.: The Origins of Order: Self-Organisation and Selection in Evolution. Oxford University Press, Oxford (1993)

    Google Scholar 

  38. Krohn, K., Rhodes, J.: Algebraic Theory of Machines. I. Prime Decomposition Theorem for Finite Semigroups and Machines. Transactions of the American Mathematical Society 116, 450–464 (1965)

    MathSciNet  MATH  Google Scholar 

  39. Kurz, T., Marcon, G., Okada, H., Heistracher, T., Passani, A.: D9.2-Report on Evolutionary and Distributed Fitness Environment. DBE Project (2006), http://files.opaals.org/DBE/deliverables

  40. Lahti, J., Huusko, J., Miorandi, D., Bassbouss, L., Pfeffer, H., Dini, P., Horvath, G., Elaluf-Calderwood, S., Schreckling, D., Yamamoto, L.: D3.2.7: Autonomic Services within the BIONETS SerWorks Architecture. BIONETS Deliverable, European Commission (2009), http://www.bionets.eu

  41. Louie, A.H.: A Living System Must Have Noncomputable Models. Artificial Life 13, 293–297 (2007)

    Article  Google Scholar 

  42. Maeda, S.: The similarity method for difference equations. IMA Journal of Applied Mathematics 38, 129–134 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  43. Manrubia, S.C., Mikhailov, A.S., Zanette, D.H.: Emergence of Dynamical Order. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  44. Maturana, H., Varela, F.: Autopoiesis and Cognition, the Realization of the Living. D. Reidel Publishing Company, Boston (1980)

    Book  Google Scholar 

  45. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)

    Book  MATH  Google Scholar 

  46. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, I. Inf. Comput. 100(1), 1–40 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. Nehaniv, C.L., Rhodes, J.L.: The Evolution and Understanding of Hierarchical Complexity in Biology from an Algebraic Perspective. Artificial Life 6, 45–67 (2000)

    Article  Google Scholar 

  48. Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems. Wiley, New York (1977)

    MATH  Google Scholar 

  49. Olver, P.: Applications of Lie Groups to Differential Equations. Springer, Heidelberg (1986)

    Book  MATH  Google Scholar 

  50. Rashevsky, N.: Mathematical Biophysics and Physico-Mathematical Foundations of Biology, vol. II. Dover, New York (1960)

    Google Scholar 

  51. Rosen, R.: A Relational Theory of Biological Systems. Bulletin of Mathematical Biophysics 20, 245–260 (1958)

    Article  MathSciNet  Google Scholar 

  52. Rosen, R.: The Representation of Biological Systems from the Standpoint of the Theory of Categories. Bulletin of Mathematical Biophysics 20, 317–341 (1958)

    Article  Google Scholar 

  53. Rosen, R.: Some relational cell models: The metabolism-repair systems. In: Rosen, R. (ed.) Foundations of Mathematical Biology. Cellular Systems, vol. II, Academic Press, London (1972)

    Google Scholar 

  54. Rosen, R.: Life Itself. Columbia University Press, New York (1991)

    Google Scholar 

  55. Rowe, J.E., Mitavskiy, B.: D8.1 - report on evolution of high-level software components (April 2005)

    Google Scholar 

  56. Sanchez, R., Grau, R., Morgado, E.: A novel Lie algebra of the genetic code over the Galois field of four DNA bases. Mathematical Biosciences 202, 156–174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  57. Sanchez, R., Morgado, E., Grau, R.: The genetic code boolean lattice. Communications in Mathematical and Computational Chemistry 52, 29–46 (2004)

    MATH  Google Scholar 

  58. Sanchez, R., Morgado, E., Grau, R.: Gene algebra from a genetic code algebraic structure. Journal of Mathematical Biology 51, 431–457 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  59. Schreckling, D., Dini, P.: Distributed Online Evolution: An Algebraic Problem? In: IEEE 10th Congress on Evolutionary Computation, Trondheim, Norway, May 18-21 (2009)

    Google Scholar 

  60. Spivey, J.M.: The Z notation:a reference manual. Prentice-Hall, Inc., Upper Saddle River (1989)

    MATH  Google Scholar 

  61. Stewart, I.: Galois Theory, 2nd edn. Chapman and Hall, London (1989)

    Book  MATH  Google Scholar 

  62. Van Leeuwen, I., Munro, A.J., Sanders, I., Staples, O., Lain, S.: Numerical and Experimental Analysis of the p53-mdm2 Regulatory Pathway. In: Proceedings of the 3rd OPAALS International Conference, Aracaju, Sergipe, Brazil, March 22-23 (2010)

    Google Scholar 

  63. Voss, R.F., Clarke, J.: 1/f noise in music: Music from 1/f noise. Journal of the Acoustical Society of America 63(1) (1978)

    Google Scholar 

  64. Weinstein, A.: Groupoids: unifying internal and external symmetry. Notices of the American Mathematical Society 43, 744–752 (1996)

    MathSciNet  MATH  Google Scholar 

  65. Wolkenhauer, O.: Interpreting Rosen. Artificial Life 13, 291–292 (2007)

    Article  Google Scholar 

  66. Wu, C.W.: Synchronization in Coupled Chaotic Circuits and Systems. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Dini, P., Schreckling, D. (2010). A Research Framework for Interaction Computing. In: Antonio Basile Colugnati, F., Lopes, L.C.R., Barretto, S.F.A. (eds) Digital Ecosystems. OPAALS 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14859-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14859-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14858-3

  • Online ISBN: 978-3-642-14859-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics