Skip to main content

Multi-Objective Evolutionary Algorithms Used in Greenhouse Planning for Recycling Biomass into Energy

  • Conference paper

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 79))

Abstract

Advanced parallel Multi-Objective Evolutionary Algorithms (MOEA) have been used in order to solve a wide array of problems, including the planning of greenhouse crops. This paper shows the application of MOEA using the Island Parallel Model to solve a problem involving greenhouse crop planning in order to maximize profits and the production of biomass while reducing economic risks. The interest in maximizing biomass waste lies in the possibility of recycling it into heat and energy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   469.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Transactions on Evolutionary Computation 6(5), 443–462 (2002)

    Article  Google Scholar 

  2. Amador, F., Sumpsi, J.M., Romero, C.: A non-interactive methodology to asses farmers utility functions: An application to large farms in andalusia, spain. European Review of Agricultural Economics 25, 92–109 (1998)

    Google Scholar 

  3. Coello, C., van Veldhuizen, D.A., Lamont, G.: Evolutionary Algorithms for solving Multi-Objective Problems. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  4. Corne, D.W., Knowles, J.D., Oates, M.J.: The pareto envelope-based selection algorithm for multiobjective optimization. In: Proceedings of the Parallel Problem Solving from Nature VI Conference, pp. 839–848. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2002)

    Google Scholar 

  6. Deb, K., Agrawa, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algoritm for multiobjective optimization: Nsga-ii. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Gil, C., Márquez, A., Baños, R., Montoya, M.G., Gómez, J.: A hybrid method for solving multi-objective global optimization problems. Journal of Global Optimization 38(2), 265–281 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. IEC: Análisis de la campaña hortofrutícola de Almería, campaña 2007-2008 (greenhouse crop analisys in Almeria for the 2007/2008 season) (2009), http://fundacioncajamar.es/instituto.htm

  9. Manzano Agugliaro, F.: Gasification of greenhouse residues for obtaining electrical energy in the South of Spain: Localization by gis. Interciencia 32(2), 131–136 (2007)

    Google Scholar 

  10. Márquez, A., Manzano-Agugliaro, A., Gil, C., Cañero-León, R., Montoya, F., Baños, R.: Multiobjective evolutionary optimization of greenhouse vegetable crop distributions. In: INSTICC (ed.) Proceedings of International Joint Conference on Computational Intelligence 2009 (2009)

    Google Scholar 

  11. Sumpsi, J.M., Amador, F., Romero, C.: On farmers’ objectives: A multi-criteria approach. European Journal of Operation Research 96, 64–71 (1997)

    Article  MATH  Google Scholar 

  12. Veldhuizen, D., Zydallys, J., Lamont, G.: Considerations in engineering parallel multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(2), 144–173 (2003)

    Article  Google Scholar 

  13. Voorneveld, M.: Characterization of pareto dominance. Operations Research Letters 31(1), 7–11 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Whitley, D., Rana, S., Heckendorn, R.B.: The island model genetic algorithm: On separability, population size and convergence. Journal of Computing and Information Technology 7, 33–47 (1998)

    Google Scholar 

  15. Zitzler, E., Laumanns, M., Thiele, L.: Spea2: Improving the strength pareto evolutionary algorithm. Tech. rep. (2001)

    Google Scholar 

  16. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Márquez, A.L., Gil, C., Manzano-Agugliaro, F., Montoya, F.G., Fernández, A., Baños, R. (2010). Multi-Objective Evolutionary Algorithms Used in Greenhouse Planning for Recycling Biomass into Energy. In: de Leon F. de Carvalho, A.P., Rodríguez-González, S., De Paz Santana, J.F., Rodríguez, J.M.C. (eds) Distributed Computing and Artificial Intelligence. Advances in Intelligent and Soft Computing, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14883-5_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14883-5_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14882-8

  • Online ISBN: 978-3-642-14883-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics