Skip to main content

An Auditory Oddball Based Brain-Computer Interface System Using Multivariate EMD

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6216))

Abstract

A brain-computer interface (BCI) is a communication system that allows users to act on their environment by using only brain-activity. This paper presents a novel design of the auditory oddball task based brain-computer interface (BCI) system. The subject is presented with a stimulus presentation paradigm in which low-probability auditory targets are mixed with high-probability ones. In the data analysis, we employ a novel algorithm based on multivariate empirical mode decomposition that is used to extract informative brain activity features through thirteen electrodes’ recorded signal of each single electroencephalogram (EEG) trial. Comparing to the result of arithmetic mean of all trials, auditory topography of peak latencies of the evoked event-related potential (ERP) demonstrated that the proposed algorithm is efficient for the detection of P300 or P100 component of the ERP in the subject’s EEG. As a result we have found new ways to process EEG signals to improve detection for a P100 and P300 based BCI system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolpaw, J.R., Birbaumer, N., Mcfarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-Computer Interfaces for Communication and Control. Clinical Neurophysiology 113, 767–791 (2002)

    Article  Google Scholar 

  2. Cichocki, A., Washizawa, Y., Rutkowski, T., Bakardjian, H., Phan, A., Choi, S., Lee, H., Zhao, Q., Zhang, L., Li, Y.: Noninvasive BCIs: Multiway Signal-Processing Array Decompositions. Computer 41, 34–42 (2008)

    Article  Google Scholar 

  3. Sajda, P., Mueller, K.-R., Shenoy, K.V.: Brain Computer Interfaces. IEEE Signal Processing Magazine, Special issue, 16–17 (January, 2008)

    Google Scholar 

  4. Rutkowski, T.M., Vialatte, F., Cichocki, A., Mandic, D.P., Barros, A.K.: Auditory Feedback for Brain Computer Interface Management - An EEG Data Sonification Approach. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4253, pp. 1232–1239. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Farwell, L.A., Donchin, E.: Talking off the top of your head: Toward a Mental Prosthesis Utilizing Event-related Brain Potentials. Electroencephalography and Clinical Neurophysiology 70, 512–523 (1988)

    Article  Google Scholar 

  6. Gao, X., Xu, D., Cheng, M., Gao, S.: A BCI-based Environmental Controller for The Motion-disabled. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 137–140 (2003)

    Article  Google Scholar 

  7. Rehman, N., Mandic, D.P.: Multivariate Empirical Mode Decomposition. Proceedings of the Royal Society A (2010) (in print), http://www.commsp.ee.ic.ac.uk/~mandic/research/emd.htm

  8. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: The Empirical Mode Decomposition and The Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. Proceedings of the Royal Society of London, A 454, 903–995 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Huang, N.E., Wu, M., Long, S., Shen, S., Qu, W., Gloersen, P., Fan, K.: A Confidence Limit for The Empirical Mode Decomposition and Hilbert Spectral Analysis. Proc. R. Soc. Lond. A 459, 2317–2345 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Tanaka, T., Mandic, D.P.: Complex Empirical Mode Decomposition. IEEE Signal Processing Letters 14, 101–104 (2006)

    Article  Google Scholar 

  11. Altaf, M.U., Gautama, T., Tanaka, T., Mandic, D.P.: Rotation Invariant Complex Empirical Mode Decomposition. In: Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, Honolulu, HI, pp. 1009–1012 (2007)

    Google Scholar 

  12. Rilling, G., Flandrin, P., Goncalves, P., Lilly, J.M.: Bivariate Empirical Mode Decomposition. IEEE Signal Process. Lett. 14, 936–939 (2007)

    Article  Google Scholar 

  13. Rehman, N., Mandic, D.P.: Empirical Mode Decomposition for Trivariate Signals. IEEE T. Signal Process (in print)

    Google Scholar 

  14. Sharbrough, F., Chatrian, C.E., Lesser, R.P., Luders, H., Nuwer, M., Picton, T.W.: American Electroencephalographic Society Guidelines for Standard Electrode Position Nomenclature. Journal of Clinical Neurophysiology 8, 200–202 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, Q. et al. (2010). An Auditory Oddball Based Brain-Computer Interface System Using Multivariate EMD. In: Huang, DS., Zhang, X., Reyes García, C.A., Zhang, L. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2010. Lecture Notes in Computer Science(), vol 6216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14932-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14932-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14931-3

  • Online ISBN: 978-3-642-14932-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics