Skip to main content

A Composite P&O MPPT Control with Intelligent Orthogonal Particle Swarm Optimization for Steepest Gradient River Current Power Generation System

  • Conference paper
  • 2216 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6216))

Abstract

This paper proposes a demonstration system of steepest gradient river current (SGRC) power generation with energy storage system. A direct-drive permanent magnet synchronous generator with multiple poles is used to transfer the steepest gradient river current power into electric power. Energy storage control system is included in the power generation system. An isolated DC/DC converter controller with perturbation and observation (P&O) maximum power point tracking (MPPT) and orthogonal particle swarm optimization (OPSO) algorithms is used to charge the battery pack. Experimental results show that the P&O and OPSO MPPT control can perform very well. It is believed that the proposed energy storage system is valuable for the steepest gradient river current power generation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oman, H.: Magnetic Braking of the Earth’s Rotation. IEEE Aerospace and Electronic Systems Magazine 4, 3–10 (1989)

    Article  Google Scholar 

  2. Werner, J., Evans, M., Bethem, T.: Real-time Narrative Summaries for NOAA’s PORTS. In: Proceedings of MTS/IEEE, pp. 1–3 (2005)

    Google Scholar 

  3. Trapp, A.D., Watchorn, M.: EB Development of Tidal Stream Energy. In: Proceedings MAREC, pp. 169–173 (2001)

    Google Scholar 

  4. Jones, A.T., Westwood, A.: Economic Forecast for Renewable Ocean Energy Technologies. Presented at EnergyOcean 2004, Palm Beach, Florida (2004)

    Google Scholar 

  5. Jones, A.T., Rowley, W.: Global Perspective: Economic Forecast for Renewable Ocean Energy technologies. MTS Journal 36, 85–90 (2002)

    Google Scholar 

  6. Elghali Ben, S.E., Benbouzid, M.E.H., Charpentier, J.F.: Marine Tidal Current Electric Power Generation Technology: State of the Art and Current Status. In: IEEE International on Electric Machines & Drives Conference, vol. 2, pp. 1407–1412 (2007)

    Google Scholar 

  7. Li, J.C.: A Rational Complex Frequency Domain Model for the Completely Transposed Transmission Line with Initial Voltage and Current Distributions. IEEE Trans. on Circuits and Systems 42, 223–225 (1995)

    Article  Google Scholar 

  8. Drouen, L., Charpentier, J.F., Semail, E., Clenet, S.: Study of an Innovative Electrical Machine Fitted to Marine Current Turbines. In: Europe Oceans, pp. 1–6 (2007)

    Google Scholar 

  9. Vauthier, P.: The Underwater Electric Kite East River Deployment. In: IEEE Proceedings on 88’ Oceans, vol. 3, pp. 1029–1033 (1988)

    Google Scholar 

  10. Mohan, N.: Power Electronics and Drivers. Mnpere Minneapolis or John Wiley and Sons, Chichester (2003)

    Google Scholar 

  11. Hart Daniel, W.: Introduction to Power Electronics. Prentice-Hall, Englewood Cliffs (1998)

    Google Scholar 

  12. De Broe, A.M., Drouilhet, S., Gevorgian, V.: A Peak Power Tracker for Small Wind Turbines in Battery Charging Applications. IEEE Transactions on Energy Conversion 14, 1630–1635 (1999)

    Article  Google Scholar 

  13. Hussein, K.H., Muta, I., Hoshino, T., Osakada, M.: Maximum Photovoltaic Power Tracking: an Algorithon for rapidly changing atmospheric conditions. IEE proc. Gener. Transm. Distrib. 142, 59–64 (1995)

    Article  Google Scholar 

  14. Harashima, F., Inaba, H., Takashima, N.: Microprocessor-Controlled SIT Inverter for Solar Energy System. IEEE Trans. on Industrial Electronics IE 34, 50–55 (1987)

    Article  Google Scholar 

  15. Shi, Y., Eberhart, R.: A Modified Particle Swarm Optimization. In: Proc. of IEEE International Conference on Evolutionary Computation (ICEC), pp. 69–72 (1998)

    Google Scholar 

  16. Eberhart, R.C., Shi, Y.: Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization. In: Proc. Congress on Evolutionary Computation, pp. 84–88 (2000)

    Google Scholar 

  17. Ho, S.Y., Lin, H.S., Liauh, W.H., Ho, S.J.: OPSO: Orthogonal Particle Swarm Optimization and Its Application to Task Assignment Problems. IEEE Trans. on Systems, Man, and Cybernetics, Part A 38, 288–298 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuo, JL., Chang, CJ. (2010). A Composite P&O MPPT Control with Intelligent Orthogonal Particle Swarm Optimization for Steepest Gradient River Current Power Generation System. In: Huang, DS., Zhang, X., Reyes García, C.A., Zhang, L. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2010. Lecture Notes in Computer Science(), vol 6216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14932-0_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14932-0_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14931-3

  • Online ISBN: 978-3-642-14932-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics