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Abstract. Obligations can apply to individuals, either severally or collectively. 

When applied severally, each individual or member of a team is independently 

responsible to fulfill the obligation. When applied collectively, it is the group as 

a whole that becomes responsible, with individual members sharing the 

obligation. In this paper, we present several variations of teamwork models 

involving the performance of collective obligations. Some of these rely heavily 

on a leader to ensure effective teamwork, whereas others leave much room for 

member autonomy. We strongly focus on the implementation of such models. 

We demonstrate how KAoS policies can be used to establish desired forms of 

cooperation through regulation of agent behavior. Some of these policies 

concern invariant aspects of teamwork, such as how to behave when a leader is 

present, how to ensure that actions are properly coordinated, and how to 

delegate actions. Other policies can be enabled or disabled to regulate the 

degree of autonomy of the team members. We have implemented a prototype of 

a Mars-mission scenario that demonstrates varying results when applied across 

these different teamwork models. 
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1. Introduction 

 

Autonomy is perhaps the most fundamental property of an agent. Generally speaking, 

we might say that the more control an agent has over its own actions and internal 

state, the greater its autonomy. By this definition, collaboration almost always entails 

a reduction in autonomy. In collaboration, we are willing to give up some degree of 

autonomy in the service of achieving joint objectives [15]. 

Obligations can be either voluntarily adopted or imposed. Researchers who study 

norms generally focus on the ways in which agents learn, recognize, and adopt such 

obligations through their own deliberation, including the consideration of incentives 

and sanctions [5]. Our research interest has been to understand similar issues with 



respect to policies, constraints that are imposed and enforced prescriptively on agents 

[2]. Constraining an agent’s collaborative activities in this way is often accomplished 

by virtue of the organizations to which it belongs [7][13]. The purpose of this paper is 

to report on the latest developments within the KAoS policy and services framework, 

in particular w.r.t. teamwork and collective obligations.  

A KAoS policy is defined as “an enforceable, well-specified constraint on the 

performance of a machine-executable action by a subject in a given situation” [2]. 

There are two main types of polices; authorizations and obligations. Authorization 

policies specify which actions are permitted (positive authorizations) or forbidden 

(negative authorizations) in a given situation. Obligation policies specify which 

actions are required (positive obligations) or waived (negative obligations) in a given 

situation. KAoS uses OWL (Web Ontology Language: 

http://www.w3.org/2004/OWL) to represent policies.  

KAoS policies have already been successfully applied to important aspects of joint 

activity in the context of human-robot teamwork [11]. In this paper, we extend this 

research by adding the notion of a collective obligation [4]. The difference between 

an individual obligation (IO) and a collective obligation (CO) is that in IO’s each 

individual or member of a team is independently responsible to fulfill the obligation. 

On the other hand, in CO’s, it is the group as a whole that becomes responsible, with 

individual members sharing the obligation. CO’s are especially useful in governing 

complex abstract behavior—in our case, for example, the obligation that agents have 

to ensure safety. The difficulty of writing individual obligations for ensure-safety is 

that it is probably not an action that can be directly executed by any one agent. Most 

likely, a plan must be created to decompose ensure-safety into more concrete actions. 

It is also difficult to decide, beforehand, who is the best candidate to carry out the 

plan, as a different plan might be adopted in different circumstances. Moreover, 

agents may have different capabilities, enabling them to contribute individually or 

jointly in particular roles. For such reasons, constraints requiring the performance of 

abstract team actions like ensure-safety are usually better implemented as collective, 

as opposed to individual, obligations. 

Because a CO often does not direct activity at the level of the single agent’s 

behavior, we must find a way to translate the CO to the individual level. Our research 

aim in this paper can thus be described: to develop general policies to fulfill collective 

obligations, and to map these obligations to individuals based on the current context. 

Inspired by previous theoretical groundwork on these issues [4][12], we follow a 

very practical approach. First, we demonstrate how to represent and reason about 

collective obligations in OWL. Second, we describe three sets of KAoS policies that 

we defined to govern agent behavior in the execution of collective obligations. Third, 

we provide a configuration policy set that is used to adjust specific aspects of the 

teamwork model for use in a given situation. Finally, we present a prototype we have 

implemented to demonstrate the use of these policies in the context of a Mars mission 

scenario [16]. 

We claim several benefits for developers of agent teams. The first concerns 

reusability. Because the policies describe near-universal teamwork aspects, they are 

domain independent and can apply to many kinds of applications, thus saving 

development time. The second benefit concerns sharedness. Because teamwork 

requires maintaining common ground among the participants [15], agents benefit 



when the code that generates team behavior can be shared by all agents. By 

introducing a shared collection of teamwork policies for the whole system, in 

conjunction with KAoS monitoring and enforcement capabilities, newly added agents 

fit easily into the team, no matter who developed them or which language they are 

programmed in. The policies accommodate even the most primitive agents by 

eliminating the requirement that each agent be capable of sophisticated deliberation in 

order to collaborate. Next, there is the benefit of separation of concerns. By using 

KAoS policies, the code that implements teamwork is cleanly segregated from the rest 

of the agent code. This avoids the typical clutter experienced when teamwork code is 

scattered in arbitrary locations among all agents. Finally, KAoS policies are very 

straightforward to read and understand, making them more suitable to implement this 

kind of behavior than generic rule languages or more low-level programming 

languages. 

In addition to the benefits for agent developers, we also believe that this approach 

is more conducive to scientific progress towards the much more ambitious goal of 

human and machine joint activity [18][8]. Although the policies described in this 

paper are relatively simple and elementary, they are fundamental in human teamwork. 

Hence, when agents adopt important aspects of human teamwork, people may find 

them more predictable and understandable. 

The remainder of the paper is outlined as follows. Section 2 explains the basic 

teamwork model. Section 3 provides an overview of the KAoS policy services 

framework. In Sections 4, 5 and 6, we describe how we used KAoS to implement the 

teamwork model: ontological aspects in Section 4; policies in Section 5; an 

implemented prototype with agents in a Mars-mission scenario in Section 6. Related 

work is discussed in Section 7, followed by conclusions in Section 8. 

 

2. Team Design 
Teamwork is a topic of great complexity and breadth. Here, our focus is only on 

one aspect of teamwork, i.e., collective obligations. Collective obligations require 

teams to perform some action whenever some event or state triggers the obligation. 

Performing such actions typically involves planning, delegation and coordination. The 

aim of team design is to ensure that this process is adequately supported. Three 

primary aspects of team design are pertinent to the issues discussed in this paper: 

leadership assumption, task allocation, and plan coordination. Each of these aspects 

can vary, resulting in different team behavior. Figure 1 depicts these aspects in three 

dimensions, where each combination of aspects represents a different kind of team. 

Along the x-axis, two possibilities for leadership assumption are shown. We can 

appoint someone as a leader beforehand (i.e. pre-established leadership), or we can 

defer the choice and allow leaders to volunteer on demand (i.e. ad hoc leadership 

assumption). Whereas "pre-established" and "ad hoc" qualify as two extremes on the 

leadership assumption dimension, there are, of course, intermediate options possible 

that we do not consider here. One example is that of a predefined line of succession 

which is used to determine leadership if all higher-ranking leaders are unavailable. 
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Figure 1 Three dimensions in team design 

The task allocation dimension is shown along the y-axis. Individual task allocation 

means that requests are directed at individual agents. In group task allocation, the 

request is directed to the group as a whole, without specifying which individual must 

perform the task. 

Plan coordination is depicted on the z-axis, with the two alternatives being 

centralized and decentralized. Figure 2 depicts the communication pattern for these 

two ways of coordinating plans. The left side of the figure depicts centralized 

coordination, i.e. the requester agent (the grey agent) is responsible for making sure 

that the actions are executed in the right order. The right side of the figure shows 

decentralized coordination, i.e. the agents executing the plan take care of the 

coordination themselves. In the latter case, the requester delegates plan coordination. 

It may do so by sending a request for action a, together with information about who 

will perform the subsequent action b. In the figure, this is written as “creq a,b.” 
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Figure 2 Centralized and decentralized coordination patterns 

With centralized coordination, the requested agents may not be aware that their 

actions are part of a larger plan. With decentralized coordination, the requested agents 

require more knowledge about the action’s context, i.e. they must know which agent 

is responsible for performing the next action in the plan. 

 

2.1 Considerations for team design 
The three dimensions outlined above can be regarded as different aspects of the 

dichotomy between central authority and member autonomy [3]. Pre-established 

leadership means that one central authority remains in charge of the team, whereas ad 

hoc leadership allows for more member autonomy because each team member may 

become a leader under certain circumstances. Centralized plan coordination allocates 



the task of coordinating plans to one central authority, whereas decentralized plan 

coordination allows each agent to make its contribution to coordination, i.e. reflecting 

more member autonomy. Individual task allocation implies that one central authority 

decides who performs the tasks; whereas group task allocation yields more member 

autonomy as the team members decide this among themselves. 

In Figure 1, the team with most central authority is represented as the black cube. 

For the other teams, we can say that the further away the cube is from the black cube, 

the more member autonomy exists in the team. The white cube represents the team 

with most member autonomy. Which of these eight team configurations is the best 

one depends on the circumstances and cannot be decided in general. Below, we 

outline some general considerations when choosing between central authority and 

member autonomy; the discussion is not intended to be exhaustive. An advantage of 

using a central authority might be that it allows the team designer to select the best 

agent for the most important tasks. In this way, the team can be better adapted to the 

different qualities of agents. Another advantage of a central authority approach might 

be accountability: that is, that it would be easier to identify the responsible agent 

when things go wrong. 

A disadvantage of a central authority might be that it would be less robust in 

certain circumstances, e.g., when the leader becomes unavailable, the entire team 

becomes dysfunctional. Another disadvantage of central authority might arise when 

not every team member has the same access to the situation. For example, it may be 

better to have a crisis operation led by someone on site than by a predefined leader 

who is far away. As a last disadvantage, we mention the potentially increased 

response time of strongly hierarchical teams. For example, when an incident happens, 

this must communicated all the way up to a leader, after which the leader makes a 

decision and communicates it all the way down to those carrying out the work. A 

faster response may be obtained by allowing the observer of the incident to take 

immediate action. 

Before we explain how these teamwork models can be implemented, we will first 

give some background on the KAoS policy framework. 

3. KAOS POLICY FRAMEWORK 
KAoS [2] provides a general framework for regulation of a variety of systems, 

including agent-based and robotic systems [2], web services, grid services, and 

traditional distributed systems. It also provides the basic services for distributed 

computing, including message transport and directory services, as well as more 

advanced features like domain and policy services. 

Two important requirements for the KAoS architecture are modularity and 

extensibility. These requirements are supported through a framework with well-

defined interfaces that can be extended, if necessary, with the components required to 

support application-specific policies. The basic elements of the KAoS architecture are 

shown in Figure 3; its three layers of functionality correspond to three different policy 

representations. 



 

Figure 3 Notional KAoS Policy Services Architecture 

• Human Interface layer: This layer uses a hypertext-like graphical interface for policy 

specification in the form of very natural English sentences, composed from pop-up 

menus. The vocabulary is automatically provided from the relevant ontologies, consisting 

of highly reusable core concepts augmented by application-specific ones. 

• Policy Management layer: Within this layer, OWL is used to encode and manage policy-

related information. The Distributed Directory Service (DDS) encapsulates a set of OWL 

reasoning mechanisms. 

• Policy Monitoring and Enforcement layer: KAoS automatically “compiles” OWL 

policies to an efficient format that can be used for monitoring and enforcement. This 

representation provides the grounding for abstract ontology terms, connecting them to the 

instances in the runtime environment and to other policy-related information. 

Maintaining consistency among these layers is handled automatically by KAoS. 

 

3.1 System development in KAoS 
Multi-agent system development in KAoS takes place at different locations, in 

different languages, using different tools, as summarized in the following table. 

 

 

 

 Figure 4 KAoS system development components 

OWL ontologies provide the vocabulary used in specifying policies. They define 

all actions, action properties, and actor types and can be developed directly in OWL 

 Language Development Tool 

Agents or other 

Applications 
E.g., Java E.g., Eclipse 

Policies KAoS Policies (OWL) KPAT 

Ontologies OWL E.g., Protégé, COE 



or using an ontology editor, such as Protégé (http://protege.stanford.edu/) or COE 

(Cmap Ontology Editor).  

Policies are also represented in OWL. They can be created using the KAoS Policy 

Administration Tool (KPAT). KPAT hides the complexity of OWL from the human 

users and allows the user to create, modify and manage policies in a very natural 

hypertext interface. Policies can be ranked in terms of their priorities. In case two 

conflicting policies are applicable at the same moment, the policy with the highest 

priority takes precedence.  

The policies are used to govern the actions of agents (or other applications) within 

the system being developed. We use Java and Eclipse (http://www.eclipse.org/) to 

implement the agents for our prototype, although any other combination of a 

programming language and IDE could be used. KAoS includes a number of features 

that can be exploited in the development of agent-based systems. 

As an example of system development in KAoS, suppose that we have a set of 

robots and we want to obligate them to beep before they move, in order to alert any 

nearby people of the pending movement. First, we would specify the terms Robot, 

Beep and Move in an ontology. Then, we would create a policy using KPAT, which 

would look like the following: 

Once the policy has been created, it is sent by KPAT to the Directory Service for 

analysis and deconflication, before it is  ”compiled” and distributed to the guards for 

run-time enforcement. Since the policy applies only to robots, it is automatically 

distributed only to the guards responsible for governing robots. Local enforcement 

mechanisms on each platform intercept movements as appropriate and check with the 

guard resident on that platform for policy constraints. With the new policy in place, 

an obligation to beep would be applied prior to each movement. 

An important part of building systems in this way is deciding where to implement 

a given behavior. In general, there are three possible places; in the agent, in the 

policies, or in the ontology (cf. Figure 4). Each has advantages and disadvantages in 

different situations. Without policy, we would be forced to represent everything in the 

agent itself, so, for our beep example, the beep action might simply be coded in Java 

within the move method. This is not very flexible and is hidden from those unfamiliar 

with the code. In situations where the source code is unavailable, it simply cannot be 

implemented at all. A second option is to implement the behavior by adapting the 

ontology, i.e. by defining a move as a beep that is followed by a physical move, and 

having the agents query the ontology for the definition of the action. This would 

amount to redefining the commonly accepted meaning of move into something else 

entirely – not be a good idea either. The third option is to add the policy of Figure 5. 

This seems to us the cleanest method. The policy is defined external to the robot’s 

program and thus is viewable and editable by anyone using the system. To give an 

example that pushes some knowledge back into the robots, suppose that we modify 

our policy to state “robots must warn before they move.” The main idea is still 

1  Robot is obligated to start performing Beep 

2  which  has any attributes 

3  before Robot starts performing Move 

4  which has any attributes 

Figure 5 KAoS policy example 



modeled in policy, though less specific. The ontology could be used to model the 

knowledge that beeping and flashing lights are both appropriate methods to warn. 

Finally, the robot could chose the appropriate warning method based on its own 

capabilities and preferences. 

In the following three sections we will explain how the teamwork model described 

in Section 3 can be implemented by developing ontologies, policies, and agents. 

4. ONTOLOGY 
Extending KAoS so it can handle collective obligations posed some additional 

requirements to the core ontology. The first issue concerned the representation of 

teams. The property teamMemberOf was used to assert that an agent (represented by 

an individual in class agent) is a member of some team (represented by an individual 

in class team). To represent the collective obligation of a team, the property 

HasCollectiveObligation was used to refer to the instance representation1 of the 

action that constitutes the CO. 

The second issue concerned the representation of plans. Because a plan typically 

consists of multiple actions, we can represent that an action contains subactions by 

using the properties subAction1 and subAction2. The property subActionRelation 

specifies whether the two subactions are composed in parallel or sequence. In this 

way, composite actions can be represented as an AND-OR graph, or planning tree 

[17]. 

The last ontological issue concerned the relationship between the plan and the 

action the plan seeks to achieve. Because different circumstances require different 

plans, we specify this as a context-dependent relation, using a rule of the form “X 

counts-as Y in context C.” These so-called counts-as rules can be used in an ontology 

to translate between actions of different levels of abstraction [11]. For example, the 

sequence of actions bring-to-habitat and nurse (the plan) counts as ensure-safety 

(what the plan is designed to achieve) in the context of spacesuit-failure-of-Benny-at-

11:00am (the context). An action and its associated context are related by the property 

hasContext. To represent the fact that an action has been performed, the property 

hasStatus is set to performed. Because we represent counts-as rules as subclass 

relations (e.g. “X subClassOf Y” represents the fact that X counts as Y), the OWL 

reasoner automatically derives that if X hasStatus performed, then also Y 

hasStatus performed. 

The issues discussed above are important when monitoring policy compliance. An 

agent complies with an obligation to do action X, if X has the status performed before 

the deadline set by the obligation. This definition has two important consequences. 

First, the agent to which the obligation applies is not required to perform the action 

itself, but may also delegate the action to another agent. Second, the agent can choose 

to perform a plan which counts as action X (in the current context), because 

performance of the plan entails performance of X. Both of these two issues play a 

fundamental role in our approach to teamwork and are therefore implemented at the 

ontology level. 

                                                           
1 Because OWL-DL does not allow the use of classes as property values, we created a prototypical instance 

for every action class (e.g. ensureSafety). This prototypical instance represents the same (e.g. 

ensureSafetyPrototypicalInstance). In this way, we can refer to actions both at the class 

level, and at the instance level. 



 

5. POLICIES FOR AGENT TEAMS 
The general pattern of the teamwork described in this paper consists of three steps. 

First, the collective obligation is triggered. Second, a plan is created. Third, this plan 

is carried out. The policies described in this section serve to support this process by 

governing issues such as: how is the CO-trigger communicated to the agent creating 

the plan? Who creates the plan? Who carries out the plan? How is the plan 

coordinated to ensure the right order of actions? 

 

5.1 Leader Policy Set 
If there is a team leader, it has a special responsibility and must be treated by the 

other agents in a distinct way. The purpose of the Leader Policy Set is to lay down 

these responsibilities, managing both task allocation and plan coordination. 

Definition 1 Leader Policy Set 
1. The leader of a team should adopt the collective obligations of its team as its 

own individual obligations 

2. Team members should notify their leader when the collective obligation of their 

team is triggered 

3. The leader of a team may request members of its team to perform actions 

4. The leader of a team may create plans 

The first policy captures the intuition that leaders must take responsibility for their 

team. Definition 1.1 states more precisely what this means for collective obligations. 

The policy as implemented in KAoS is shown in Figure 6. The trigger of the policy is 

implemented at line 5,6,7 and 8 using a role-value map  [1] which compares the 

values of two properties of the Action which the agent has just finished performing. 

It states that the property prototypicalInstance must have a value in common with 

the concatenation of the properties performedBy, teamMemberOf and 

HasCollectiveObligationTrigger. As an example of an action that would trigger 

the obligation, consider agent Herman performing the action 

observeSpaceSuitFailure (i.e. observeSpaceSuitFailure performedBy Herman) 

and that Herman is teamMemberOf MecaTeam and that MecaTeam HasCol-

lectiveObligationTrigger observeSpaceSuitFailurePrototypicalInstance. 

The obligation is described in lines 1, 2, 3 and 4 of Figure 6. Lines 2-3 is a role-value 

map which describes that the actor must do the action which is given by the property 

triggerOfCollectiveObligation of the action that triggered the obligation. In our 

example, observeSpaceSuitFailure is triggerOfCollectiveObligation of 

1 Leader is obligated to start performing Action which has attributes: 

2  all prototypicalInstance values equal the Trigger action's  

3    triggerOfCollectiveObligation of the prototypicalInstance values  

4  the performedBy value equals the Trigger action's performedBy values 

5 after Leader finishes performing Action which has attributes: 

6  any prototypicalInstance values are in the set of this action's  

7    HasCollectiveObligationTrigger of the teamMemberOf of the  

8    performedBy values 

 

Figure 6 KAoS hypertext statement representing the policy of Definition 1.1 



ensureSafety. Hence, the actor is obliged to perform ensureSafety. Line 4 

describes that the agent that must fulfill the obligation is the same agent that has 

triggered the obligation. 

The second policy of Definition 1 ensures that, in case nobody else in the team 

triggers the collective obligation (for example by observing a spacesuit failure), this 

agent will notify the leader about the event. This captures the intuition that team 

members must help their leader. This policy is implemented in a similar fashion to 

policy 1.1 (Figure 6). 

The third policy in the leader policy set states that leaders do not have to do the 

work all by themselves, but they are authorized to request actions from their team 

members. 

The fourth policy states that the leader is authorized to create a plan. Plan creation 

is done by adding a counts-as rule to the ontology (see Section 4). The effect of this is 

that all agents may perform a different action than the action they were initially 

obliged to do. Therefore, the right to create new plans is not self-evident. It is, 

however, a right that belongs to a leader. 

 

5.2 Coordination Policy Set 
The coordination policy set describes how actions in a plan should be coordinated. 

We consider two coordination patterns (as depicted in Figure 2), which are both 

governed by this policy set. 

Definition 2 Coordination Policy Set 

1. An agent should notify the requester after it has performed a requested action 

2. If the agent knows who will perform the subsequent action, it should notify that 

agent after it finishes performing its own action 

3. If the agent knows who will conduct the subsequent action, it is not required to 

notify the requester after it finishes performing its action 

The first policy ensures that, in case of centralized coordination, the requester 

knows when the subsequent action may begin. This is due to the “done” messages 2, 4 

and 6 on the left side of Figure 2. In case of decentralized coordination, the requester 

is notified after the plan is finished, i.e. by “done” message 6 on the right side of the 

figure. 

The second policy of Definition 2 concerns the case of decentralized coordination. 

When an agent has received a request for a coordinated action, it knows who will 

perform the subsequent action, and must notify that agent after it has finished its 

action. 

The third policy is enforced with high priority, and can be regarded as an 

exception to the first policy of Definition 2. This policy prevents requested agents 

from notifying their requester when the plan is only partially completed. As can be 

seen on the right hand side of Figure 2, the two agents that are requested to perform 

action a and action b of the plan do not send a “done” message to their requester. The 

rationale behind this is that, in the decentralized case, partially-finished notifications 

are not needed for plan coordination, which is the purpose of this policy set. There 

may be other reasons why this may be desirable, e.g., to monitor plan progress to 

respond to unexpected events in a timely way [8]. This can always be implemented in 



an additional higher priority policy set, which is specially designed for that purpose. 

However, issues such as dealing with plan failure or replanning are issues of future 

research. 

 

5.3 Leader Absence Policy Set 
What if the agents find themselves in a leaderless team? This may happen either 

because nobody has been appointed as a leader or else the leader is (temporarily) 

unavailable. In this case, the other agents in the team must take care of the collective 

obligation themselves. This issue is handled by ensuring that one agent assumes the 

leader role, and thereby becomes subject to the leadership policies of Definition 1. 

Definition 3 Leader Absence Policy Set 

1. When no leader is present, the CO is triggered, and the agent knows it can fulfill 

the CO, it should assume the leader role 

2. When no leader is present, the CO is triggered, but the agent cannot fulfill the 

CO, it should notify the whole team of the CO trigger 

3. An agent should not notify its team about a CO trigger, when it has been notified 

itself by another team member about that CO trigger 

The first policy ensures that a capable leader will volunteer in case the collective 

obligation is triggered in a leaderless team. An agent may assume leadership by 

registering with the KAoS directory-service, which only accepts such a registration 

when there are no other leaders already currently available. In this way, we prevent 

multiple agents from taking leadership at the same time, on a first come, first served 

basis. 

The second policy is a variation on the policy of Definition 1.2, adapted to the 

leaderless scenario. For example, when an agent observes a safety critical event (the 

CO is triggered), but the agent is not capable of ensuring safety, the agent should 

notify all of its team members about it, so someone else in the team can fulfill the CO. 

The third policy is an exception to the second rule, and prevents agents from 

repeatedly notifying one another about the same collective obligation trigger. 

 

5.4 Configuration Policy Set 

The policies discussed so far are the same for all eight different kinds of teams 

depicted in Figure 1. In this section, we will discuss the configuration policy set 

which states which of the eight team strategies the agents must follow.  

Definition 4 Configuration Policy Set 

1. Do not request distributed coordinated actions 

2. Do not request actions to a team 

In contrast to the policy sets we discussed earlier, these policies are optional, and 

can be switched on and off depending on the way the team designer wishes to 

configure the team. If the first policy is switched on, the team will apply centralized 

plan coordination. If it is switched off, the team will apply decentralized plan 

coordination. 



If the second policy is switched on, the team will apply individual task allocation. 

If it is switched off, the team applies group task allocation. Group task allocation can 

be implemented using collective obligations that are dealt with using the policies 

described in the previous sections. For example, to request action a to a group, the 

action a is added as a collective obligation to that group. The leader absence policy 

set (Definition 3) ensures that a leader which is capable of performing action a stands 

up, after which the leader policy set (Definition 1) ensures that this agent performs 

action a. 

To implement pre-established leadership assumption, a leader must be appointed 

beforehand, using KPAT. To implement ad hoc leadership assumption, no leader 

should be defined beforehand, such that the policy in Definition 3.1 ensures that a 

leader will volunteer at runtime if needed. 

 

6. MECA SCENARIO 
We tested the policies using a Mars mission scenario developed in the Mission 

Execution Crew Assistant (MECA) project [16]. This long-term project aims at 

enhancing the cognitive capacities of human-machine teams during planetary 

exploration missions by means of an electronic partner. The e-partner helps the crew 

to assess a situation and determine a suitable course of actions when problems arise. 

A large part of the project is devoted to developing a requirements baseline, taking 

into account human factors knowledge, operational demands, and envisioned 

technology. Developing new prototypes using emerging technologies, such as this 

one, is a continuous activity in the project. 

One of the major themes is dealing with the long communication delays between 

Earth and Mars. This has led researchers to consider new forms of mission control 

that are less centralized on Earth, allowing greater autonomy to the astronauts on 

Mars [10]. We believe that our work on policies and team strategies is a useful 

contribution to this problem. 

One of the use-cases that has driven the development of MECA’s requirements 

baseline concerns an astronaut suffering from hypothermia. The initial situation is 

depicted in Figure 7. 

Herman is in the Habitat; Anne, Albert and two rovers are in team A; Benny and 

Brenda are in team B. Benny and Brenda are on a rock-collecting procedure. 

Suddenly, Benny’s space suit fails. Brenda and the MECA system diagnose the 

problem together and predict hypothermia. Immediate action is required. A rover 

from team B comes to pick Benny up and brings him to the habitat. Someone with 

surgery skills and someone with nursing skills await him there and take care of 

Benny, after which he safely recovers. 

One of the requirements of MECA is that safety of the crew must be ensured at all 

times. We implemented this requirement using a collective obligation of the MECA 

team to EnsureSafety. The trigger of this collective obligation is Observe-

SafetyCriticalEvent. Within the scenario, both of these actions are added in a specific 

MECA-action ontology which extends the KAoS core action ontology. The ontology 

also specifies several subconcepts of ObserveSafetyCriticalEvent, such as Observe-

SpaceSuitFails. This causes ObserveSpaceSuitFails to trigger the collective 

obligation.  



 

Figure 7 MECA prototype 

The seven agents in the example (five astronauts and two rovers) are implemented 

in Java. Because most of the agent behavior in this demonstration is implemented by 

the policies, the Java implementation could remain very simple. We used Java to 

implement how the actions, such as BringToHabitat, are performed. For the purposes 

of this demonstration, a simple screen animation was sufficient. We also implemented 

in Java how the agents remain policy-compliant. This means that they consult the 

KAoS guard to check which obligations and authorization policies apply. They fulfill 

an obligation by simply executing the code that implements the action concerned. It 

fulfills a negative authorization by refraining from executing the corresponding piece 

of code. 

The most important aspect of this demonstration is the unfolding of the scenario 

after the action ObserveSpaceSuitFails is performed. This is driven exclusively by 

KAoS policies. By applying the different team configurations described in Section 0, 

we obtain different event traces which demonstrate the functioning of the team. The 

event trace for the most centrally organized team (represented by the black cube in 

Figure 1) is shown below. 

 
Brenda performs ObserveSpaceSuitFails 
Brenda is obliged to perform SendNotificationOfTrigger 
Brenda to Herman: SendNotificationOfTrigger 
Herman is obliged to perform EnsureSafety 
Herman is authorized to perform CreatePlan 
Herman performs CreatePlan 
Herman is not authorized to perform RequestCoordinatedAction 
Herman is authorized to perform RequestAction 
Herman to Rover1: request BringToHabitat 
Rover1 performs BringToHabitat 
Rover1 is obliged to perform SendNotificationOfRequestedActionFinished 
Rover1 to Herman: SendNotificationOfRequestedActionFinished 
Herman to Albert: request PerformSurgery 
Albert performs PerformSurgery 
Albert is obliged to perform SendNotificationOfRequestedActionFinished 
Albert to Herman: SendNotificationOfRequestedActionFinished 
Herman to Anne: request Nurse 



Anne performs Nurse 
Anne is obliged to perform SendNotificationOfRequestedActionFinished 
Anne to Herman: SendNotificationOfRequestedActionFinished 

Figure 8 Event trace of MECA team with maximal central authority 

The events printed in bold are actions; the underlined events are communication 

actions; the italicized events represent policies that were triggered. Typical to this 

event trace is that Brenda immediately knows that she must contact Herman after she 

observed the spacesuit failure. This is due to the pre-established leadership of 

Herman. Furthermore, Herman delegates the parts of the plan to individual agents (i.e. 

individual task allocation), and he waits until the requested agent is finished before he 

requests the next action in the plan (i.e. centralized plan coordination). 

The event trace for the team with most member autonomy (represented by the 

white cube in Figure 1) is shown in Figure 9. 

 
Brenda performs ObserveSpaceSuitFails 
Brenda is obliged to perform SendNotificationOfTrigger 
Brenda to Rover1: SendNotificationOfTrigger 
Brenda to Anne: SendNotificationOfTrigger 
Brenda to Albert: SendNotificationOfTrigger 
Brenda to Rover2: SendNotificationOfTrigger 
Brenda to Herman: SendNotificationOfTrigger 
Brenda to Benny: SendNotificationOfTrigger 
Anne is obliged to perform AssumeLeaderRole 
Anne is obliged to perform EnsureSafety 
Anne is authorized to perform CreatePlan 
Anne performs CreatePlan 
Anne is authorized to perform RequestCoordinatedAction 
Anne is authorized to perform TeamRequestAction 
Anne to MecaTeam: request BringToHabitat 
Anne to MecaTeam: request PerformSurgery after BringToHabitat 
Anne to MecaTeam: request Nurse after PerformSurgery  
Rover1 is obliged to perform AssumeLeaderRole 
Rover1 performs BringToHabitat 
Rover1 is obliged to perform SendNotificationOfTrigger 
Rover1 to MecaTeam: SendNotificationOfTrigger 
Albert is obliged to perform AssumeLeaderRole 
Albert performs PerformSurgery 
Albert is obliged to perform SendNotificationOfTrigger  
Albert to MecaTeam: SendNotificationOfTrigger  
Herman is obliged to perform AssumeLeaderRole 
Herman performs Nurse 

Figure 9 Event trace of MECA team with maximal member autonomy 

Typical to this event trace is that Brenda notifies the whole team about the CO 

trigger, after which Anne becomes a leader (i.e. ad hoc leadership assumption). 

Furthermore, Anne delegates her actions to the MECA team (i.e., group task 

allocation). Also, she delegates all actions at once and instructs the agents how to 

coordinate the actions (i.e., decentralized plan coordination). 

7. RELATED WORK 
A similar approach to teamwork, based on electronic institutions, is reported in [9]. 

This framework captures coordination aspects by dynamically composing existing 

teamwork components, s.a. communication protocols and operational descriptions, to 

meet the current problem requirements. Our approach is more centered around the 



idea of constraining autonomy, i.e. by using computational policies as basic teamwork 

components.  

The pioneering research of Cohen and Levesque [4] introduced the notion of a 

joint persistent goal as the ultimate driving force behind teamwork. In our framework, 

a collective obligation serves a similar purpose. A difference is that Cohen and 

Levesque based their approach on mentalistic notions, such as goals, beliefs and 

intentions, whereas our approach is based on institutional notions, such as obligations 

and authorizations. This allows the approach to be used by both simple and 

sophisticated agents, of heterogeneous varieties. 

A similar difference can be observed when comparing our implementation with 

other teamwork model implementations, such as STEAM [1]. STEAM is based on 

Soar, a general cognitive architecture for intelligent systems, whereas our approach is 

based on KAoS, which is a policy framework. A correspondence between our 

implementation and STEAM is that both approaches heavily rely on plans in the 

teamwork process. A crucial requirement for effective teamwork is maintaining a 

sufficient level of common ground [15]. By adopting the KAoS framework, some 

important aspects of common ground were naturally ensured. The common ontology, 

which is maintained by the directory service and distributed to the guards, ensures 

that every agent shares understanding of the domain terms. Also the collective 

obligations of the team, which are represented in the ontology, are mutually known. 

8. CONCLUSION 
In this paper, we have proposed a policy-based approach for human-agent teams. 

We have implemented a variety of teamwork models in KAoS. These models have 

demonstrated their value in a simulation of a Mars-mission scenario, where a delicate 

decision must be made between central authority and member autonomy. 

We believe that our approach to teamwork has considerable benefits in terms of 

reusability, clarity, and generality. Although the types of teamwork we support are 

still elementary, we believe that more complex teamwork can be implemented by 

utilizing additional policies on top of the policies we have proposed here. 

In the future, we plan to extend the teamwork model to deal with unexpected 

events. This requires a leader to monitor his or her plan, and to perform replanning if 

the plan does not go as expected. Also, the team members can be of help here by 

notifying their leaders when their requested actions fail (cf. [8]). Such policies can be 

implemented in KAoS, in a similar fashion as we have described in this paper. 
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