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Abstract. In the context of strategic games, we provide an axiomatic
proof of the statement

(Imp) Common knowledge of rationality implies that the players will
choose only strategies that survive the iterated elimination of strictly
dominated strategies.

Rationality here means playing only strategies one believes to be best
responses. This involves looking at two formal languages. One, LO , is
first-order, and is used to formalise optimality conditions, like avoiding
strictly dominated strategies, or playing a best response. The other, Lν ,
is a modal fixpoint language with expressions for optimality, rationality
and belief. Fixpoints are used to form expressions for common belief and
for iterated elimination of non-optimal strategies.

1 Introduction

There are two main sorts of solution concepts for strategic games: equi-
librium concepts and what might be called “effective” concepts. One in-
terpretation of the equilibrium concepts, for example Nash equilibrium,
tacitly presupposes that a game is played repeatedly (see, e.g. [13, page
14]). Thus the standard condition for Nash equilibrium in terms of the
knowledge or beliefs of the players [3] – the so-called “epistemic analysis”
of Nash equilibrium – includes a requirement that players know the other
players’ strategy choices.

L R

L 1, 1 0, 0
R 0, 0 1, 1

L R

U 1, 1 1, 0
D 0, 0 0, 1

Fig. 1. Two strategic games
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Consider the left-hand game in Figure 1, in which each player has two
choices L and R and both players get payoff of 1 if they coordinate, and
0 otherwise. Then there are two Nash equilibria1: both play L or both
play R. But this does not translate by itself into an effective strategy for
either player reasoning in isolation, without some exogenous information.

In contrast, effective solution concepts, for example the iterated elim-
ination of strictly dominated strategies, are compatible with such a “one-
shot” interpretation of the game. Thus the epistemic analysis of the it-
erated elimination of strictly dominated strategies does not require that
the players know each other’s strategy choice.

A strategy si is strictly dominated if there is an alternative strategy
ti such that no matter what the opponent does, ti is (strictly) better for
i than si. Say that a player is sd-rational if he never plays a strategy that
he believes to be strictly dominated. What the iterated elimination of
strictly dominated strategies does in general require, see [4], is then that
players have common true belief that each other is rational, that is: they
are rational, believe that all are rational, believe that all believe that all
are rational, etc.

In the right-hand game in Figure 1, the column player, on first look-
ing at her choices L or R is, superficially, in the same situation as be-
fore: choose L and risk the opponent playing D or choice R and risk the
opponent playing U . However, this time the row player can immediately
dismiss playing D on the grounds that U will always be better, no matter
what the column player does. So if the column player knows (or believes)
this, then he cannot rationally play R, and so must play L.

In this paper we study the logical form of epistemic characterisation
results of this second kind, so we give formal proof-theoretic principles
to justify some given effective or algorithmic process in terms of common
belief of some form of rationality. We will introduce two formal languages.
One, LO, is a first-order language, that can be used to define ‘optimality
conditions’. Avoiding playing a strictly dominated strategy is an example
of an ‘optimality condition’. Another one is choosing a best response.

However, as observed in [2] for all such notions there are two versions:
‘local’ and ‘global’. Notice that in our informal description of when si is
strictly dominated by ti we did not specify where i is allowed to choose
alternative strategies from. In particular, since we are thinking of an it-
erated procedure, if ti has been eliminated already then it would seem
unreasonable to say that i should consider it. That intuition yields the

1 A Nash equilibrium in a two-player game is a pair (s1, s2) of strategies, one for each
player such that s1 is a best response to s2 and vice-versa.
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local definition; the global definition states the opposite: that player i
should always consider his original strategy set from the full game when
looking to see if a strategy is dominated.

A motivation for looking at global versions of optimality notions is
that they are often mathematically better behaved. On finite games the
iterations for various local and global versions coincide [1], but on infinite
games they can differ. In a nutshell: an optimality condition φi for player
i is global if i does not ‘forget’, during the iterated elimination process,
what strategies he has available in the whole game. The distinction is
clarified in the respective definitions in LO.

An optimality condition φ induces an optimality operator Oφ on the
complete lattice of restrictions (roughly: the subgames) of a given game.
Eliminating non-φ-optimal strategies can be seen as the calculation of a
fixpoint of the corresponding operator Oφ. Furthermore, common belief is
characterised as a fixpoint (cf. Note 3 below). Viewed from the appropri-
ate level of abstraction, in terms of fixpoints of operators, this connection
between common belief of rationality and the iterated elimination of non-
optimal strategies becomes clear.

We define a language Lν that describes things from this higher level
of abstraction. Each optimality condition defines a corresponding notion
of rationality, which means playing a strategy that one believes to be φ-
optimal. Lν is a modal fixpoint language with modalities for belief and
optimality, and so can express connections between optimality, rationality
and (common) belief.

We say that an operator O on an arbitrary lattice (D,⊆) is mono-

tonic when for all A,B ∈ D, if A ⊆ B then O(A) ⊆ O(B). The global
versions of relevant optimality operators, in particular of the operators
corresponding to the best response and strict dominance, are monotonic.
This is immediately verifiable in LO by observing that the relevant defi-
nition is positive.

Our first result is a syntactic proof of the following result, where φ is
a monotonic optimality condition:2

Theorem 1 Common true belief of φ-rationality entails all played strate-
gies survive the iterated elimination of non-φ-optimal strategies.

Although this theorem relies on a rule for fixpoint calculi that is only
sound for monotonic operators, the semantics of the language Lν allows
also for arbitrary contracting operators, i.e. such that for all A, O(A) ⊆

2 By “common true belief” we mean a common belief that is correct. In particular,
common knowledge entails common true belief.
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A. We are therefore able to look at what more is needed in order to justify
the following statement (cf. [4, Proposition 3.10]), where gbr-rationality
means avoiding avoiding strategies one believes to be never best responses
in the global sense:

Theorem 2 (Imp) Common true belief of gbr-rationality implies that
the players will choose only strategies that survive the iterated elimination
of strictly dominated strategies.

This theorem connects a global notion of gbr-rationality with a local
one, referred to in the iterated elimination operator. Our language allows
for arbitrary contracting operators, and their fixpoints to be formed, and
we exhibit one sound rule connecting the resulting fixpoints with mono-
tonic fixpoints.

Our theorems hold for arbitrary games, and the resulting potentially
transfinite iterations of the elimination process. The syntactic approach
clarifies the logical underpinnings of the epistemic analysis. It shows that
the use of transfinite iterations can be naturally captured in Lν, at least
when the relevant operators are monotonic, by a single inference rule that
involves greatest fixpoints.

The relevance of monotonicity in the context of epistemic analysis
of finite strategic games has already been pointed out in [5], where the
connection is also noted between the iterated elimination of non-optimal
strategies and the calculation of the fixpoint of the corresponding opera-
tor.

To our knowledge, although several languages have been suggested for
reasoning about strategic games (e.g. [7]), none use explicit fixpoints (ex-
cept, as we mentioned, for some suggestions in [5]) and none use arbitrary
optimality operators.

Therefore they are not appropriate for reasoning at the level of ab-
straction that we suggest when studying the epistemic foundations of
these “effective” solution concepts. For example while [7, Section 13] does
provide some analysis of the logical form of the argument that common
knowledge of one kind of rationality implies not playing strategies that
are strictly dominated, the fixpoint reasoning is done at the meta-level.
What [7] provides is a proof schema, that shows how, for any finite game,
and any natural number n, to give a proof that common knowledge of
rationality entails not playing strategies that are eliminated in n rounds
of elimination of non-optimal strategies.

The more general and elegant reasoning principle is captured by using
fixpoint operators and optimality operators. Another important advan-
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tage to our approach is that we are not restricted in our analysis to finite
games. This means in particular that our logical analysis covers the mixed
extension of any finite game.

Our use of transfinite iterations is motivated by the original finding
of [12], where a two-player game is constructed for which the ω0 (the first
infinite ordinal) and ω0 + 1 iterations of the rationalizability operator of
[6] differ.

2 Games and the language LO

A strategic game is a tuple (T1, . . . , Tn, <1, . . . , <n), where {1, . . . , n}
are the players and each Ti is player i’s set of strategies, and <i is player i’s
preference relation, which is a total linear order over the set of strategy
profiles T =

∏n
i=1 Ti. Note that we assume arbitrary games, rather than

restricting to games in which T is finite. To depict games it is sometimes
easier, as we did in Figure 1, to write down a number for the players’
“payoffs”, rather than just a preference ordering. We use some standard
notation from game theory, writing s−i for (s1, . . . si−1, si+1, . . . sn) and
(si, t−i) for the strategy profile (t1, . . . ti−1, si, ti+1, . . . sn), as well as S−i
for

∏
j 6=i Sj. A restriction of the game (T1, . . . , Tn, <1, . . . , <n) is a se-

quence S = (S1, . . . , Sn) with Si ⊆ Ti for all players i, i.e. a (possibly
empty) subgame in which the payoff information is left out.

The language we use for specifying optimality conditions is a first-
order language, with variables V = {x, y, z, . . .}, a monadic predicate C,
a constant o and a family of n ternary relation symbols · ≥i

· ·, where
i ∈ [1..n]. So LO is given by the following inductive definition:

φ ::= C(a) | a ≥i
c b | ¬φ | φ ∧ φ | ∃xφ,

where i ∈ [1..n] and {a, b, c} ⊆ V ∪ {o}.

We use the standard abbreviations→ and ∨, further abbreviate ¬a ≥i
c

b to b >ic a, ∀xφ to ¬∃x¬φ, ∃x(C(x)∧φ) to ∃x ∈ C φ, and ∀x(C(x) → φ)
to ∀x ∈ C φ.

An optimality model (G,G′, s) is a triple consisting of a strategic game
G = (T1, . . . , Tn, <1, . . . , <n), a restriction G′ of G, and a strategy profile
s ∈ T . G will be used to interpret the predicate C, and s will be the
interpretation of o. An assignment for (G,G′, s) is a function α assigning
a strategy profile in T to each variable, and s to o. The ternary satisfaction
relation |= between optimality models, assignments and formulas of LO
is defined inductively as follows, where α is an assignment for (G,G′, s),
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and 6|= the complement of |=:

(G,G′, s) |=α C(x) ⇔ ∀i ∈ {1, . . . , n}, (α(x))i ∈ G′
i

(G,G′, s) |=α x ≥i
z y ⇔ (α(x)i, α(z)−i) ≥i (α(y)i, α(z)−i)

(G,G′, s) |=α ¬φ ⇔ (G,G′, s) 6|=α φ

(G,G′, s) |=α φ1 ∧ φ2 ⇔ (G,G′, s) |=α φ1 and (G,G′, s) |=α φ2
(G,G′, s) |=α ∃xφ ⇔ there is α′ : (G,G′, s) |=α′ φ and

∀y ∈ V with x 6= y, α(y) = α′(y)

If for any assignment α for G we have (G,G′, s) |=α φ then we write
(G,G′, s) |= φ. A variable x occurs free in φ if it is not under the scope
of a quantifier ∃x; a formula is closed if it has no free variables.

An optimality condition for player i is a closed LO-formula in which
all the occurrences of the atomic formulas a ≥j

c b are with j equal to i.
Intuitively, an optimality condition φi for player i is a way of specifying
what it means for i’s strategy in o to be an ‘OK’ choice for i given that
i’s opponents will play according to C−i and that i’s alternatives are Ci.

In particular, we are interested in the following optimality conditions:

– lsdi := ∀y ∈ C ∃z ∈ C o ≥i
z y,

– gsdi := ∀y ∃z ∈ C o ≥i
z y,

– gbri := ∃z ∈ C ∀y o ≥i
z y.

The optimality conditions listed define some fundamental notions
from game theory: lsdi says that oi is not locally strictly dominated in
the context of C; gsdi says that oi is not globally strictly dominated in
the context of C; and gbri says that oi is globally a best response in the
context of C.

The distinction between local and global properties, studied further in
[2], is clarified below. It important for us here because the global versions,
in contrast to the local ones, satisfy a syntactic property to be defined
shortly.

First, as an illustration of the difference between gbri and gsdi, con-
sider the game in Figure 2. Call that game H, with the row player 1 and
the column player 2. Then we have

(H, (T1, T2), (D,R)) |= gsd1,

but

(H, (T1, T2), (D,R)) |= ¬gbr1.
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L R

U 2, 1 0, 0
M 0, 1 2, 0
D 1, 0 1, 2

Fig. 2. An illustration of the difference between strict dominance and
best response

The local notions are such that when the ‘context’ restriction C consists
of a singleton strategy for a player i, then that strategy is locally optimal.
So for example

(H, ({U,M}, {R}), (U,R)) |= lsd2,

whereas

(H, ({U,M}, {R}), (U,R)) |= ¬gsd2.

We say that an optimality condition φi is positive when any sub-
formula of the form C(z), with z any variable, occurs under the scope of
an even number of negation signs (¬). Note that both gbri and gsdi are
positive, while lsdi is not. As we will see in a moment, positive optimality
conditions induce monotonic optimality operators, and monotonicity will
be the condition required of optimality operators in Theorem 1 relating
common knowledge of φ-rationality with the iterated elimination of non-φ
strategies.

3 Optimality operators

Henceforth let G = (T1, . . . , Tn, <1, . . . , <n) be a fixed strategic game. Re-
call that a restriction of the game G is a sequence S = (S1, . . . , Sn) with
Si ⊆ Ti for all players i. We will interpret optimality conditions as opera-
tors on the lattice of the restrictions of a game ordered by component-wise
set inclusion:

(S1, . . . , Sn) ⊆ (S′
1, . . . , S

′
n) iff Si ⊆ S′

i for all i ∈ [1..n].

Given a sequence φ giving an optimality condition φi for each player
i, we introduce an optimality operator Oφ defined by

Oφ(S) =
n∏

i=1

{si ∈ Si | φi(si, S).}
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Consider now an operator O on an arbitrary complete lattice (D,⊆)
with largest element ⊤. We say that an element S ∈ D is a fixpoint of
O if S = O(S) and a post-fixpoint of O if S ⊆ O(S).

We define by transfinite induction a sequence of elements Oα of D,
for all ordinals α:

– O0 := ⊤,
– Oα+1 := O(Oα),
– for limit ordinals β, Oβ :=

⋂
α<β O

α.

We call the least α such that Oα+1 = Oα the closure ordinal of O and
denote it by αO. We call then OαO the outcome of (iterating) O and
write it alternatively as O∞.

Not all operators have fixpoints, but the monotonic and contracting
ones (already defined in the introduction) do:

Note 1. Consider an operator O on (D,⊆).

(i) If O is contracting or monotonic, then it has an outcome, i.e., O∞ is
well-defined.

(ii) The operator O defined by O(X) := O(X) ∩X is contracting.
(iii) If O is monotonic, then the outcomes of O and O coincide.

Proof. For (i), it is enough to know that for every set D there is an ordinal
α such that there is no injective function from α to D.

Note that the operators Oφ are by definition contracting, and hence
all have outcomes. Furthermore, it is straightforward to verify that if φi
is positive for all players i, then Oφ is monotonic.

The following classic result due to [14] also forms the basis of the
soundness of some part of the proof systems we consider.3

Tarski’s Fixpoint Theorem For every monotonic operator O on (D,⊆)

O∞ = νO = ∪{S ∈ D | S ⊆ O(S)},

where νO is the largest fixpoint of O.

We shall need the following lemma, which is crucial in connecting
iterations of arbitrary contracting operators with those of monotonic op-
erators. It also ensures the soundness of one of the proof rules we will
introduce.

3 We use here its ‘dual’ version in which the iterations start at the largest and not at
the least element of a complete lattice.
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Lemma 1. Consider two operators O1 and O2 on (D,⊆) such that

– for all S ∈ D, O1(S) ⊆ O2(S),
– O1 is monotonic.

Then O∞
1 ⊆ O2

∞
.

Proof. By Note 1(i) the outcomes of O1 and O2 exist.
We prove now by transfinite induction that for all α

O1
α
⊆ O2

α

from which the claim follows, since by Note 1(iii) we have O∞
1 = O2

∞
.

By the definition of the iterations we only need to consider the in-
duction step for a successor ordinal. So suppose the claim holds for some
α.

The second assumption implies that O1 is monotonic. We have the
following string of inclusions and equalities, where the first inclusion holds
by the induction hypothesis and monotonicity of O1 and the second one
by the first assumption

O1
α+1

= O1(O1
α
) ⊆ O1(O2

α
) = O1(O2

α
)∩O2

α
⊆ O2(O2

α
)∩O2

α
= O2

α+1
.

4 Beliefs and the modal fixpoint language Lν

Recall that G is a game (T1, . . . , Tn, P1, . . . , Pn). A belief model for G is
a tuple (Ω, s1, . . . , sn, P1, . . . , Pn), with Ω a non-empty set of ‘states’, and
for each player i, si : Ω → Ti and Pi : Ω → 2Ω . The Pi’s are possibility
correspondences cf. [4]. The idea of a possibility correspondence Pi is
that if the actual state is ω then Pi(ω) is the set of states that i considers
possible: those that i considers might be the actual state.

Subsets of Ω are called events. A player i believes an event E if that
event holds in every state that i considers possible. Thus at the state ω,
player i believes E iff Pi(ω) ⊆ E.

Given some event E we write GE to denote the restriction of G de-
termined by E:

(GE)i = {si ∈ Ti | ∃u ∈ E : si(u) = si}.

In the rest of this section we present a formal language Lν that will be
interpreted over belief models. To begin, we consider the simpler language
L, the formulas of which are defined inductively as follows, where i ∈
[1..n]:

9



ψ ::= ratφi | ψ ∧ ψ | ¬ψ | �iψ | Oφiψ,

with φi an optimality condition for player i. We abbreviate the formula∧
i∈[1..n] ratφi to ratφ,

∧
i∈[1..n]�iψ to �ψ and

∧
i∈[1..n]Oφiψ to Oφψ.

Formulas of L are interpreted as events in (i.e. as subsets of the domain
of) belief models. Given a belief model (Ω, s1, . . . , sn, P1, . . . , Pn) for G,
we define the interpretation function J·K : L → P(Ω) as follows:

– JratφiK = {ω ∈ Ω | φi(si(ω), GPi(ω))},

– Jφ ∧ ψK = JφK ∩ JψK,

– J¬ψK = Ω − JψK,

– J�iψK = {ω ∈ Ω | Pi(ω) ⊆ JψK},

– JOφiψK = {ω ∈ Ω | (G,GJψK, si(ω)) |= φi}.

Pi(ω) gives the set of states that i considers possible at ω, so JratφiK
is the event that player i is φi-rational, since it means that i’s strategy is
optimal according to φi in the context that the player considers it possible
that he is in. The semantic clause for �i was mentioned at the begin of
this section and is familiar from epistemic logic: J�iψK is the event that
player i believes the event JψK. JOφiψK is the event that player i’s strategy
is optimal according to the optimality condition φi, in the context of the
restriction GJψK.

Then clearly JratφK is the event that every player i is φi-rational;
JOφψK is the event that every player’s strategy is φi-optimal in the context
of the restriction GJψK; and J�ψK is the event that every player believes
the event JψK to hold.

Although L can express some connections between our formal defi-
nitions of optimality rationality and beliefs, it could be made more ex-
pressive. The language could be extended with, for example, atoms si
expressing the event that the strategy si is chosen. This choice is made
for example in [7], where modal languages for reasoning about games are
defined. The language we introduce is not parametrised by the game, and
consequently can unproblematically be used to reason about games with
arbitrary strategy sets.

We will use our language to talk about fixpoint notions: common
belief and iterated elimination of non-optimal strategies. Let us therefore
explain what is meant by common belief . Common belief of an event E
is the event that all players believe E, all players believe that they believe
E, all players believe that they believe that. . . , and so on. Formally, we
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define CB(E), the event that E is commonly believed, inductively:

B1(E) = {ω ∈ Ω | ∀i ∈ [1..n], Pi(ω) ⊆ E}

Bm+1(E) = B1(Bm(E))

CB(E) =
⋂

m>0

Bm(E)

Notice that B1(E) is the event that everybody believes that E (indeed,
we have B1JψK = J�ψK), B2(E) is the event that everybody believes that
everybody believes that E, etc.

‘Common belief’ is called ‘common knowledge’ when for all players i
and all states ω ∈ Ω, we have ω ∈ Pi(ω). In such a case the players have
never ruled out the current state, and so it is legitimate to interpret �iψ

as ‘i knows that ψ’.
Both common knowledge and common belief are known to have equiv-

alent characterisations as fixpoints, and we will exploit this below in defin-
ing them in the modal fixpoint language which we now specify.

We extend the vocabulary of L with a single set variable denoted byX
and the contracting fixpoint operator νX. (The corresponding extension
of first-order logic by the dual, inflationary fixpoint operator µX was first
studied in [8].) Modulo one caveat the resulting language Lν is defined as
follows:

ψ ::= ratφi | (ψ ∧ ψ) | ¬ψ | �iψ | Oφiψ | νX.ψ

The caveat is the following:

– φ must be ν-free , which means that it does not contain any occur-
rences of the νX operator.

This restriction is not necessary but simplifies matters and is sufficient
for our considerations.

To extend the interpretation function J·K to Lν , we must keep track
of the variable X. Therefore we first extend the function J·K : L → P(Ω)
to a function J· | ·K : Lν × P(Ω) → P(Ω) by padding it with a dummy
argument. We give one clause as an example:

– J�iψ | EK = {ω ∈ Ω | Pi(ω) ⊆ Jψ | EK}.

We use this extra argument in the semantic clause for the variable X:

– JX | EK = E.

Those formulas whose semantics we have so far given define operators.
More specifically, for each of them Jψ | ·K is an operator on the powerset
P(Ω) of Ω. We use this to define the clause for νX:

11



– JνX.ψ | EK = (Jψ ∧X | ·K)∞.

WhenX does not occur free in ψ, we have Jψ | EK = Jψ | F K for any events
E and F , so in these cases we can write simply JψK. Note that JνX.ψK is
well-defined since for all E we have Jψ∧X | EK = Jψ | EK∩ JX | EK ⊆ E,
so the operator Jψ ∧X | ·K is contracting.

We say that a formula ψ of Lν is positive in X when each occurrence
of X in ψ is under the scope of an even number of negation signs (¬),
and under the scope of an optimality operator Oφi only if φi is positive.

Note 2. When ψ is positive, the operator Jψ | ·K is monotonic.

Then by Tarski’s Fixpoint Theorem and Note 1(iii) we can use the fol-
lowing alternative definition of JνX.ψK in terms of post-fixpoints:

JνX.ψK =
⋃

{E ⊆ Ω | E ⊆ Jψ | EK}.

Let us mention some properties the language Lν can express. First
notice that common belief is definable in Lν using the νX operator. An
analogous characterization of common knowledge is in [9, Section 11.5].

Note 3. Let ψ be a formula of L. Then JνX.�(X ∧ ψ)K is the event that
the event JψK is common belief.

From now on we abbreviate the formula νX.�(X ∧ ψ) with ψ a for-
mula of L to �

∗ψ. So Lν can define common belief. Moreover, as the
following observation shows, it can also define the iterated elimination of
non-optimal strategies.

Note 4. In the game determined by the event JνX.OφXK, every player
selects a strategy which survives the iterated elimination of non-φ-optimal
strategies.

Proof. It follows immediately from the following equivalence, which is
obtained by unpacking the relevant definitions:

GJOφX∧X|EK = Oφ(GE).

5 Proof Systems

Consider the following formula:

(ratφ ∧�
∗ratφ) → νX.OφX. (1)

12



By Notes 3 and 4, we see that (1) states that: true common belief that
the players are φ-rational entails that each player selects a strategy that
survives the iterated elimination of non-φ-optimal strategies.

In the rest of this section we will discuss a simple proof system in
which we can derive (1). We will use an axiom and rule of inference
for the fixpoint operator taken from [11] and one axiom for rationality
analogous to the one called in [7] an “implicit definition” of rationality.
We give these in Figure 3, where, crucially, ψ is positive in X, and all the
φi’s are positive. We denote here by ψ[X 7→ χ] the formula obtained from
ψ by substituting each occurrence of the variable X with the formula χ.
Assuming given some standard proof rules for propositional reasoning, we
add the axioms and rule given in Figure 3 to obtain the system P.

Axiom schemata

ratφ → (�χ→ Oφχ) ratDis

νX.ψ → ψ[X 7→ νX.ψ] νDis

Rule of inference

χ→ ψ[X 7→ χ]

χ→ νX.ψ
νInd

Fig. 3. Proof system P

A formula is a theorem of a proof system if it is derivable from the
axioms and rules of inference. An Lν-formula ψ is valid if for every belief
model (Ω, . . .) for G we have JψK = Ω. We now establish the soundness
of the proof system P, that is, that its theorems are valid.

Lemma 2. The proof system P is sound.

Proof. We show the validity of the axiom ratDis:

Let (Ω, s1, . . . , sn, Pi, . . . , Pn) be a belief model for G. We must show
that Jratφ → (�χ → Oφχ)K = Ω. That is, that for any χ the inclusion
JratφK ∩ J�χK ⊆ JOφχK holds. So take some ω ∈ JratφK ∩ J�χK. Then for
every i ∈ [1..n], φi(si(ω), GPi(ω)), and Pi(ω) ⊆ JχK. So by monotonicity
of φi, φi(si(ω), GJχK), i.e. ω ∈ JOφiχK as required.

The axioms νDis and the rule νInd were introduced in [11]; they for-
malise, respectively, the following two consequences of Tarski’s Fixpoint
Theorem concerning a monotonic operator F :
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– νF is a post-fixpoint of F , i.e., νF ⊆ F (νF ) holds,
– if Y is a post-fixpoint of F , i.e., Y ⊆ F (Y ), then Y ⊆ νF .

Next, we establish the already announced claim.

Theorem 1. The formula (1) is a theorem of the proof system P.

Proof. The following formulas are instances of the axioms ratDis (with
ψ := �

∗ratφ ∧ ratφ) and νDis (with ψ := �(X ∧ ratφ)) respectively:

ratφ → (�(�∗ratφ ∧ ratφ) → Oφ(�
∗ratφ ∧ ratφ)), (2)

�
∗ratφ → �((�∗ratφ) ∧ ratφ). (3)

Putting these two together via some propositional logic, we obtain

((�∗ratφ) ∧ ratφ) → Oφ((�
∗ratφ) ∧ ratφ),

which is of the right shape to apply the rule νInd (with χ := �
∗ratφ∧ratφ

and ψ := OφX). We then obtain

(�∗ratφ ∧ ratφ) → νX.OφX,

which is precisely the formula (1).

Corollary 1. The formula (1) is valid.

It is interesting to note that no axioms or rules for the modalities � or
O were needed in order to derive (1), other than those connecting them
with rationality. In particular, no introspection is required on the part of
the players, nor indeed is the K axiom �(ϕ ∧ ψ) ↔ (�ϕ ∧�ψ) needed.

In the language Lν , the ratφi are in effect propositional constants.
We might instead define them in terms of the �i and Oφi modalities but
to this end we would need to extend the language Lν . One way to do
this is to use a quantified modal language, allowing quantifiers over set
variables, so extending Lν by allowing formulas of the form ∀Xϕ. Such
quantified modal logics are studied in [10]. It is straightforward to extend
the semantics to this larger class of formulas:

J∀Xϕ | EK = {ω ∈ Ω | ∀F ⊆ Ω, ω ∈ Jϕ | F K}.

In the resulting language each ratφi constant is definable by a formula of
this second-order language:

ratφi ≡ ∀X(�iX → OφiX). (4)

The following observation then shows correctness of this definition.
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Note 5. For all i ∈ [1..n] the formula (4) is valid in the semantics sketched.

To complete our proof-theoretic analysis we augment the proof system P

with the following proof rule where we assume that χ is positive in X,
but where ψ is an arbitrary ν-free Lν-formula:

χ→ ψ

νX.χ→ νX.ψ
Incl

The soundness of this rule is a direct consequence of Lemma 1.
To formalize the statement Imp we need two optimality conditions,

gbri and lsdi.
To link the proof systems for the languages LO and Lν we add the

following proof rule, where each φi and ψi is an optimality condition in
LO, and OφX → OψX is a formula of Lν .

φi → ψi, i ∈ [1..n]

OφX → OψX
Link

The soundness of this rule is a direct consequence of the semantics of the
formulas OφX and OψX.

We denote the system obtained from P by adding to it the above two
proof rules and standard first-order logic rules concerning the formulas in
the language LO, like

∃y ∀xφ

∀x ∃yφ

by R. We can now formalize the statement Imp as follows:

(ratgbr ∧�
∗ratgbr) → νx.Olsdx. (5)

The following result then shows that this formula can be formally
derived in the considered proof system.

Theorem 2. The formula (5) is a theorem of the proof system R.

Proof. The properties gbri are monotonic, so the following implication is
an instance of (1):

(ratgbr ∧�
∗ratgbr) → νx.Ogbrx.

Further, since the implication gbri → lsdi holds, we get by the Link
rule

νx.Ogbrx→ νx.Olsdx,

from which (5) follows.

Corollary 2. The formula (5) is valid.
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6 Summary

We have studied the logical form of epistemic characterisation results,
for arbitrary (including infinite) strategic games, of the form “common
knowledge of φ-rationality entails playing according to the iterated elim-
ination of non-φ′ properties”. A main contribution of this work is in re-
vealing, by giving syntactic proofs, the reasoning principles involved in
two cases: firstly when φ = φ′ (Theorem 1), and secondly when φ entails
φ′ (Theorem 2). In each case the result holds when φ is monotonic. The
language Lν that we used to formalise this reasoning is to our knowledge
novel in combining optimality operators with fixpoint notions. Such a
combination is natural when studying such characterisation results, since
common knowledge and iterated elimination are both fixpoint notions.

The language Lν is parametric in the optimality conditions used by
players. It is therefore built on the top of a first-order language LO used
to define syntactically optimality conditions relevant for our analysis.
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