

An Agent Language with Destructive Assignment and

Model-Theoretic Semantics

Robert Kowalski and Fariba Sadri

Department of Computing, Imperial College London, 180 Queens Gate, London SW7 2AZ

{rak, fs}@doc.ic.ac.uk

Abstract. In this paper we present an agent language that combines agent functionality

with an action theory and model-theoretic semantics. The language is based on

abductive logic programming (ALP), but employs a simplified state-free syntax, with an

operational semantics that uses destructive assignment to manipulate a database, which

represents the current state of the environment. The language builds upon the ALP

combination of logic programs, to represent an agent’s beliefs, and integrity constraints,

to represent the agent’s goals. Logic programs are used to define macro-actions,

intensional predicates, and plans to reduce goals to sub-goals including actions. Integrity

constraints are used to represent reactive rules, which are triggered by the current state

of the database and recent agent actions and external events. The execution of actions

and the assimilation of observations generate a sequence of database states. In the case

of the successful solution of all goals, this sequence, taken as a whole, determines a

model that makes the agent’s goals and beliefs all true.

 Keywords – abductive logic programming, agent languages, model-theoretic semantics

1 Introduction

Practical agent languages, many of which were originally inspired by the use of modal
logic specifications of an agent’s Beliefs, Desires and Intentions, have largely
abandoned their original model-theoretic semantics in favour of operational semantics.
They employ procedural representations and perform destructive assignment on
“beliefs” that represent the current state of the agent’s environment.
 ALP (abductive logic programming) agents [12] have both an operational
semantics and a model-theoretic semantics. However, they represent the agent’s
observations in a non-destructive database and explicitly represent and reason about
time or state, using a formal action theory such as the event calculus, with the
consequent inefficiencies of reasoning with explicit frame axioms.
 In this paper we present a language, LPS, that combines a declarative semantics
based on ALP with the features of practical agent languages, including the use of
destructive assignment and a syntax that does not refer to time or state. The semantics
of LPS can be viewed in terms of Kripke possible world structures, as in Transaction
(TR) Logic [2]. However in TR Logic, the truth of sentences is defined along paths of
possible worlds. In LPS, the possible worlds are combined into a single model with
state arguments in the spirit of the situation calculus and Golog [14].

 The database is structured as a deductive database, with extensional predicates that
are represented explicitly and with intentional predicates that are defined by logic
programs. Actions and observations are structured by means of an action theory that
defines the preconditions of actions and the effects of actions and external events on
the extensional predicates of the database. Intentional predicates are modified as
ramifications of changes to the extensional predicates.
 The frame problem is avoided by employing destructive change of state, without
the use of frame axioms. The inefficiencies of planning from first principles are
avoided, by using plan libraries to achieve intended consequences of actions, and by
using the action theory only to transform one state of the database to the next,
implementing consequences of the agent’s actions and external observations.
 In contrast with many agent languages, TR Logic and Golog, but as in ALP
agents, LPS highlights the distinction between maintenance goals (or reactive rules),
represented as integrityconstraints, and beliefs, represented as logic programs. The
approach is based upon our earlier attempt to combine similar features of production
systems with the model-theory of ALP [12]. We retain the name LPS, introduced in an
earlier paper [13], and which stands for Logic-based Production System language,
because we treat production rules and agent plans in the same way.

 In the remainder of the paper, we present motivating examples and background,
and then the syntax, operational semantics and model-theoretic semantics of LPS. We
assume the reader is familiar with logic programs, SLD resolution and the minimal
model semantics of Horn clauses.

1.1 Motivating Examples

The vocabulary of LPS includes both ordinary stateless predicates, as well as fluents,
which are extensional and intensional predicates, and actions, which are atomic
actions, macro-actions, and external events, which are observable by the agent. The
semantics (or internal syntax) of a fluent P has an additional argument P(T), indicating
that P holds in the state T (or at the time T). Atomic and macro actions A have two
additional arguments A(T1, T2), indicating that the action A takes place from T1 to T2.
The semantics of atomic actions and events A happening in the transition from state T
to T+1 is given by A(T, T+1).
 The surface syntax of LPS does not have explicit state arguments. Instead, as well
as the ordinary conjunction ∧, it has two other conjunctions whose meaning is defined
in terms of states. The formal syntax and semantics will be given in Section 3. But, in
the meanwhile, the semantics of the two conjunctions in the following examples can be
understood as follows:

P : Q, where both P and Q are fluents, means P(T) ∧ Q(T).
P : A, where P is a fluent and A is an action means P(T1) ∧ A(T1, T2).
A : P, where A is an action and P is a fluent means A(T1, T2) ∧ P(T2).
P ; Q, where both P and Q are fluents, means P(T1) ∧ Q(T2) ∧ T1 ≤ T2.
P ; A, where P is a fluent and A is an action means P(T1)∧ A(T2, T3) ∧T1≤T2.
A ; B, where both A and B are actions, means A(T1, T2) ∧ B(T3, T4) ∧ T2 ≤ T3.

Below we illustrate our approach by giving examples formalized in the LPS language.

Example 1: We consider an online shopping scenario, similar to the running example

produced by the W3C RIF Working Group on rule interchange
1
. Reactive rules are

used to welcome a customer when she logs in, and to take payment and issue

confirmation when she checks out:

login(X) : customer(X) → welcome(X).

checkout(X): customer(X): shop-cart(X, ID, Value) →

take-payment(X, ID, Value) ; confirm(X, ID, Value).

The goals generated by the reactive rules are solved by macro-actions, in which a

customer is welcomed with an appropriate offer. A new customer is welcomed by an

offer of a promotional item. A gold customer is welcomed by an offer of a

promotional item that is similar to an item recommended by her profile:

welcome(X) ← status(X, new): promotional-item(Y): offer(X, Y).

welcome(X) ← status(X, gold): promotional-item(Y): profile(X, Z):

similar(Y, Z): offer(X, Y).

The semantics (i.e. the state-based translation) of the first reactive rule and the first

macro-action definition are:

login(X, T-1, T) ∧ customer(X, T) → welcome(X, T1, T2) ∧ T≤T1.

welcome(X, T, T1) ← status(X, new, T) ∧ promotional-item(Y, T) ∧

offer(X, Y, T, T1).

Example 2: The following is a reformulation in LPS of an example given in [4].

Reactive Rule: If a room is dirty clean it

is-dirty(Room) → clean(Room).

Macro-actions definitions:

 clean(Room) ← goto(Room); vacuum(Room).

 goto(Y) ← pos(Y).

goto(Y) ← pos(X) : different(X, Y) : adjacent(X, Z): step(X, Z); goto(Y).

Here is-dirty and pos are extensional predicates, adjacent and different are state-

independent predicates, vacuum and step are atomic actions, and clean and goto are

macro-actions. The action step(X,Y) causes a change in location and the action

vacuum(Room) causes a change in the status of the Room via the action theory:

 terminates(step(X,Y), pos(X)) and initiates(step(X,Y), pos(Y)),

 terminates(vacuum(Room), is-dirty(Room)) and

 initiates(vacuum(Room), is-clean(Room)).

The semantics of the last macro-action definition is:

1 http://www.w3.org/2005/rules/wiki/RIF_Working_Group visited in July 2009

goto(Y, T1, T3) ← pos(X, T1) ∧ different(X, Y) ∧ adjacent(X,Z) ∧ step(X, Z,

T1, T1+1) ∧ goto(Y, T2, T3) ∧ T1+1≤T2.

The LPS operational semantics (the LPS cycle) works as follows: The condition is-

dirty(Room) of the reactive rule is checked against a database that represents the

current state of the environment. For all instantiations σ for which the condition is

true, the goal clean(Room)σ is added to the agent’s goals. Each goal is then planned

for by planning rules or macro-actions, the resulting atomic actions are executed, and

each such execution (destructively) updates the database. In general, the planning and

action executions can be interleaved, provided any ordering dictated by the

connectives is respected. The predicate pos acts as a guard in the last two macro-

action clauses, checking the agent’s current location and directing the agent towards

the next action. If all the goals are successfully planned for and the atomic actions are

successfully executed the agent would have traversed a sequence of states the totality

of which corresponds to a (minimum) model in which the reactive rule is true.

Example 3: The following is a reformulation in LPS of another example in [4], which

involves buying a gift. According to the scenario in [4], first the agent checks what

gifts are available in Harrods, and forms a plan to go to Harrods and purchase the gift.

Then for some reason this plan does not succeed and a special plan revision rule

changes the plan to purchasing that same gift from Dell. In LPS the beliefs required

for this scenario can be formalized without plan revision rules, as follows:

Planning rule: have(Gift) ← sells(harrods, Gift): buy(Gift).

Macro-action definitions:

buy(Gift) ← goto(harrods); purchase(Gift, harrods).

buy(Gift)←online(Store):sells(Store,Gift):goOnline(Store);purchase(Gift, Store).

The database contains the fact: online(dell).

 The LPS operational semantics is neutral with respect to the search strategy used

to explore the search space, and the “conflict resolution strategy” used to select an

action to execute. To obtain the behavior of the scenario described in [4], these

strategies would need to try the macro-action rules in the order in which they are

written, try the first action (goto(harrods)), and if it fails, either re-attempt the action

later or execute the alternative action (goOnline(dell)).

 Here is an alternative, more flexible formalization using only planning rules:

have(Gift)←is-Store(Store): sells(Gift, Store): goto(Store); purchase(Gift,Store).

have(Gift)←online(Store):sells(Gift,Store):goOnline(Store);

purchase(Gift,Store).

2 Background

2.1 Informal comparison of Agent Languages and LPS

Practical agent languages can be regarded as an extension of production systems, in
which condition-action rules are generalised to condition-action-and-goal rules. Both

production systems and agent languages manipulate a database of facts or beliefs,
which represents the current state of the environment. The database is updated
destructively both by the agent’s observations and by the agent’s actions. The agent’s
goals are represented either as goal facts in the database, or in a separate stack of goals
and actions, which represents the agent’s intentions.
 Like condition-action rules in production systems, condition-action-and-goal rules,
called plans in agent languages, provide two main functions. Arguably their primary
function is as reactive rules, to react to changes in the database, verifying that the
condition holds and adding the corresponding goals and actions either to the database
or the stack of goals. However, in practice they often function as goal-reduction rules,
to match a current goal with one of the conditions of a plan, verify the other
conditions of the plan, and add the corresponding goals and actions to the database or
stack of intentions.
 LPS borrows from production systems and agent languages their state-free syntax
and their destructively changing database. It uses the database to represent the current
state of the environment, and represents goals (or alternative candidate intentions) as a
set of goal clauses, executing them as in SLD resolution. The search strategy and
selection function can treat the set as a stack in the same way that Prolog implements a
restricted version of SLD resolution. Alternatively, it can use the selection function
more freely to interleave planning with plan execution.
 The main difference between LPS and more conventional agent languages is that
LPS interprets and represents reactive plans and goal-reduction plans differently, and
this difference is exploited to provide LPS with a model-theoretic semantics. It
interprets goal-reduction plans as beliefs and represents them as logic programs. It
provides them with a backward reasoning operational semantics and a minimal model
declarative semantics. It interprets reactive plans as (maintenance) goals (or policies)
and represents them as integrity constraints (as in abductive logic programming). It
provides them with a forward reasoning operational semantics and the model-theoretic
semantics of integrity constraints.
 Production systems and agent languages typically represent actions performed on
the internal database as additions or deletions of facts in the database. LPS employs a
more structured representation of actions in the tradition of the situation calculus and
event calculus. Additions and deletions are not explicit actions, but are consequences
of an action theory. It uses destructive change of state to deal with the computational
aspects of the frame problem.
 In production systems and agent languages, when the conditions of more than one
condition-conclusion rule hold, a choice needs to be made between the different
conclusions. In production systems, this is made by means of a conflict resolution
strategy. In agent languages, it is made by selecting one of the conclusions as an
intention, and possibly repairing the resulting plan if it fails. In ALP and LPS, when
the rules are interpreted as beliefs represented as logic programming clauses, the
choice is dealt with by the selection function and search strategy. When the rules are
interpeted as maintenance goals represented by integrity constraints, all maintence
goals must be made true, by making their conclusions true whenever their conditions
are true.
 However in LPS, an analogue of conflict resolution is performed when the agent
decides which action to execute. In ALP agents, we have explored the use of Decision
Theory for this purpose. However, in LPS we assume that the choice is made by the

selection and search strategies, subject to the constraint that no action is selected if
there are other actions that need to be executed earlier.

2.2 Abductive Logic Programming
LPS is based on abductive logic programming (ALP) [9] and abductive logic
programming agents (ALP agents) [12]. ALP extends logic programming (LP) by
allowing some predicates, Ab, the abducibles, to be undefined, in the sense that they
do not occur in the conclusions of clauses. Instead, they can be assumed, but are
constrained directly or indirectly by a set IC of integrity constraints.
 Thus an ALP framework <L, Ab, IC> consists of a logic program L, a set of
abducibles Ab, and a set of integrity constraints IC. The predicates in the conclusions
of clauses in L are disjoint from the predicates in Ab. An atom whose predicate is in
Ab is called abducible. In LPS, the abducible atoms represent actions and events, and
the integrity constraints represent reactive rules (or policies).
 In LPS, we use integrity constraints for reactive rules and restrict them to the form
condition → conclusion, where condition and conclusion are conjunctions of atoms,
and all the variables occurring in condition are universally quantified over the
implication, and all variables occurring only in the conclusion are existentially
quantified over the conclusion. For simplicitly, we restrict logic programs to Horn
clauses [11]. This restriction has the advantage that Horn clauses have a unique
minimal model [5]. The restriction can be relaxed in various ways, as we will discuss
later.

Definition 1. Given an ALP framework <L, Ab, IC> and a conjunction of atoms C
(which can be the empty clause), a solution is a set of atomic sentences ∆∆∆∆ in the
predicates Ab, such that both C and IC are true in the minimal model of L ∪∪∪∪ ∆∆∆∆. �

This semantics is one of several that have been proposed for ALP and for integrity
constraints more generally. It has the advantage that it provides a natural semantics for
LPS. In LPS, the analogue of the minimal model of L ∪∪∪∪ ∆∆∆∆ is the sequence of database
states extended by the logic programming component of LPS. The analogue of C and
IC being true in the minimal model is the truth of the initial goals and reactive rules.
 The ALP agent model [12] embeds the IFF [8] proof procedure for ALP in an
observation-thought-decision-action cycle, in which abducible atoms Ab represent an
agent’s observations and actions, logic programs L represent the agent’s beliefs, and
integrity constraints IC represent the agent’s goals. Logic programs give the pro-
active behaviour of goal-reduction procedures, and integrity constraints give the
reactive behaviour of condition-action-and-goal rules. However, goals and beliefs also
have a declarative reading, inherited from the semantics of ALP. The ALP agent cycle
generates a sequence of actions in the attempt to make an initial goal and the integrity
constraints true in the agent’s environment.
 In ALP agents, the agent’s environment is an external, destructively changing
semantic structure. The set ∆∆∆∆, on the other hand, is the agent’s internal representation
of its interactions with the environment. This internal representation is monotonic in
ALP, in the sense that observations and actions are time-stamped and state
representations are derived by an action theory, such as the situation or event calculus.
In contrast, in production systems, in many agent systems and in LPS, the
environment is simulated by an internal, destructively changing database. In LPS, this

database can be viewed as a Kripke-like model, transformed into a single situation-
calculus-like model.

3 LPS Language – Informal Description

In this section we give an informal description of the LPS language, and in the next
section we define the language and its internal, state-based representation.

3.1 The Database

The LPS semantics is defined in terms of a minimal model associated with a sequence
of databases state transitions W0, Ob0, a0, …, Wi, Obi, ai…where the Wi represent the
successive states of the database, the Obi represent a set of observations, and the ai
represent the agent’s actions.
 The databases Wi represent the agent’s beliefs about the current state of the
environment. These correspond to the extensional predicates of a deductive database,
e.g. customer(john-smith), spent-to-date(john-smith, 500). Because the transition
from Wi to Wi+1 is implemented by destructive assignment, the facts in Wi are written
without state arguments. This means that the facts that are not affected by the
transformation persist without being copied explicitly from one state to the next.
 In addition to extensional predicates, which represent database states explicitly,
there are intentional predicates defined by clauses Lram. For example:

status(X, gold) ← spent-to-date (X, V): 500≤V.

status(X, new) ← spent-to-date (X, V): V <500.

Here spent-to-date is an extensional predicate, which changes directly as the result of
actions, such as take-payment, and status is an intensional predicate, which changes as
a ramification of changes to the predicate spent-to-date.
 The state-independent predicates are defined by ordinary logic programming
clauses in Lstateless. For example: similar(X, Y) ← cd(X) ∧ dvd(Y).

3.2 The Action Theory
State transitions are defined by a set of action clauses A. The clauses in A are divided
into clauses Apre defining the preconditions and Apost defining the post-conditions of
atomic actions. These have the form:
 initiates(a, p) ← init-conditions

terminates(a, p) ← term-conditions
precondition(a, q) ← pre-conditions

where a represents an atomic action, p represents an extensional predicate and q
represents an intensional, extensional or state-independent predicate. The first two
types of clauses are in Apost, and the last type of clause is in Apre. The conditions init-
conditions and term-conditions are qualifying conditions, and together with pre-
conditions are formulas that are checked in the current state. For example:

initiates(take-payment(X, ID, Value), spent-to-date(X, New)) ←

spent-to- date(X, Old) ∧ New = Old + Value.

terminates(take-payment(X, ID, Value), spent-to-date(X, Old)) ←

spent-to-date(X, Old).

An action a can be executed in state Wi provided that all of its precondions hold. This
is determined by using the action theory to identify all the predicates q that should

hold, and then checking that all such q do indeed hold in the current state Wi extended
by means of the intensional and stateless predicates, as determined by Lram and
Lstateless. Not every action needs to initiate or terminate database facts. In particular, the
LPS agent can execute external actions, which have no impact on the database.
 For simplicity and uniformity, we treat observations as external events that

initiate and terminate fluents. Their postconditions are included in Apost. For example:

 initiates(login(X), logged-on(X)) terminates(logout(X), logged-on(X)).

Because observations only happen if they can happen, there is no need to include their
preconditions in Apre. It is important to note that action theories are not used for
planning, but only to perform the state transitions associated with the agent’s actions
and external events. We use planning clauses for planning.

3.3 Goals
In addition to the changing state of the database, the LPS operational semantics

maintains an associated changing set of goal clauses Gi, each of which can be regarded

as a partial plan for achieving the initial goals G0 and the additional goals generated by

the LPS cycle. These additional goals come from the conclusions of reactive rules.

Both the initial goals and the additional goals are reduced to sub-goals by the logic

programs used to define intensional predicates, macro-actions, stateless predicates and

planning rules. Goals coming from different reactive rules can be solved independently

and concurrently.

 The intended semantics of goals is that, for every Gi, one of the goal clauses in Gi

should be true in the model that is generated by the LPS cycle. G0 may contain only the

empty clause, as is typical of production systems. Informally speaking, the cycle

succeeds in state n, if Gn contains the empty clause. However, the cycle does not

terminate when it succeeds, because future observations may trigger future goals.

 Initial goal clauses can contain actions, fluents, stateless predicates, and any of the

logical connectives in the language, but not events. For example the goal clause

 promotional-offer(Item): discount(Item, 20%, NewPrice); advertise(Item, NewPrice)

requires that a promotional item is determined and discounted by 20%, and then the

item and its new price are advertised.

3.4 Reactive rules

The set P of reactive rules has the same form condition→ conclusion and the same
implicit quantification as ALP integrity constraints, where condition is a conjunction
of atoms and conclusion has the same form as a goal clause. Reactive rules are
executed by checking whether the condition holds in the current state of the database
Wi, and if it does, then the conclusion is added to every goal clause in Gi. The
condition can also include a single atom representing an atomic action executed in the
last cycle and any number of atoms representing the last set of observations. Thus P
can include the event-condition-action rules of active databases. For example:

 take-payment(X, ID, Value) : Value≥50 →issue-sport-voucher(X, ID).

3.5 Macro-actions

It would be possible to write agent programs using reactive rules alone, restricting the
conclusions of reactive rules to atomic actions, and to extensional and intensional
predicates that are checked in the current state as implicit consequences of the agent’s
actions or as serendipitous consequences of external events. Such reactive rules would

be sufficient for implementing purely reactive agents. However, macro-actions and
planning rules in LPS make it possible to implement agents with more
deliberative/proactive capabilities.
 Macro-actions are complex actions defined in terms of simpler (atomic and
macro-) actions and fluents. Macro-actions, defined by the set of clauses Lmacro, are
like transactions in TR Logic and complex actions in Golog. Examples were given in
section 1.1.

3.6 Planning clauses

Agent programs written using only reactive rules and definitions of macro-actions
achieve fluent goals only emergently and implicitly. Planning clauses allow programs
to be written to achieve extensional fluent goals explicitly. To ensure that the agent’s
beliefs are true with respect to the action theory that maintains the database, we impose
the restriction that the last condition in a planning clause is an atomic action that
initiates the conclusion fluent, as determined by the action theory. Lplan represents such
plans for achieving future states of the database. For example:

have(Gift)←is-Store(Store): sells(Gift,Store): goto(Store); purchase(Gift, Store).

Note that that the conclusions of plans represent the motivations of the agent’s actions,
in contrast with the action theory, which represents all the consequences of the agent’s
actions. For example, here the action theory may include clauses specifying other
consequences of purchase(Gift, Store), for example that the agent’s financial
resources will be reduced by the amount of the Gift.
 Thus the planning clauses, together with the macro-action definitions implement
planning from second principles, using pre-compiled plan schemata. However,
planning clauses can also be used to implement planning from first principles, by
including a planning clause of the form:
 p ←init-conditions: pre-conditions1: q1: ….: pre-conditionsn: qn: a
for every set of clauses
 initiates(a, p) ← init-conditions
 precondition(a, q1) ← pre-conditions1
 ….
 precondition(a, qn) ← pre-conditionsn
where the qi are all the preconditions of a.
 Whether the planning clauses are used for planning from first principles or
planning from second principles, they share with classical planning the repeated
reduction of fluent goals to fluent and action sub-goals. Because LPS is neutral with
respect to search and action selection strategies, different strategies for interleaving
planning and execution can be implemented. At one extreme, as in classical planning,
plans can be fully generated before they are executed. At the other extreme, actions
can be executed as soon as they are generated in a partial plan.
 We now define the LPS language formally.

4 LPS Language – Formal Description

The vocabulary of LPS is divided into fluent, action, and auxiliary predicates. The
fluent predicates consist of extensional and intentional predicates. The action
predicates consist of atomic, macro-actions, and observations of external events, in the
sets A, M and Ob respectively. The auxiliary predicates consist of “ordinary” stateless
predicates and the predicates initiates, terminates, precondition in the action theory.
All these sets of predicates are mutually exclusive.

 The LPS framework presented in this paper employs a stateless surface syntax,
which is syntactic sugar for an underlying internal syntax with explicit state arguments
(which specify the semantics of the surface syntax). We use the internal syntax when
describing the operational and the model-theoretic semantics later in the paper. Now
we describe both the surface syntax and its semantics.
 The surface syntax of all LPS components is defined in terms of sequences of
predicates, where consecutive predicates are linked by : or ;. The syntax of sequences is
defined recursively. We take the base case to be the empty sequence, which is also the
empty clause, and we write it as true. If P is a predicate and S is a sequence, then P:S
and P;S are sequences.
 Below, where it is clear from the context, we use the terminology (fluent, stateless,
atomic action, macro-action, event, extensional, intentional) predicate to mean an
atom with such a predicate. The initial goal G0 is a set of goal clauses, each of which
is a sequence with no events. Other goals Gi, derived in the LPS cycle are sets of
clauses expressed in the internal syntax with state arguments. They do not appear in
the surface syntax.
 In the internal syntax, goal clauses are conjunctions of atoms, and the goals Gi
represent disjunctions of goal clauses. These goals have a search tree structure, which
is not apparent in the set representation. As in normal logic programming, other
representations, including search tree and and-or tree representations are possible. For
simplicity, we do not explore these other representations in this paper.

 Lstateless clauses have the form: P ← P1:P2:… :Pn, 0≤n, where P and each Pi are
stateless predicates.
 Lram clauses have the form: P ← P1:P2:… :Pn, 1≤n, where P is an intensional
predicate, each Pi is a fluent or stateless predicate and at least one Pi is a fluent.
 Lmacro clauses have the form: M ← S, where M is a macro-action predicate and S is
a sequence containing at least one fluent or action predicate, and no event.
 Lplan clauses have the form: P ← S where P is an extensional predicate, and S is a
sequence containing no event, and ending in an atomic action.
 P reactive rules have the form: [Evt1∧ Evt2∧ …∧ Evtn∧ A]: Q1:Q2:… :Qm → S
where S is a non-empty sequence, containing no event, and each Qi is a fluent, or
stateless predicate, A is an atomic action, and each Evti is an event. All Evti and A may
be absent, in which case 1 ≤ m, otherwise 0 ≤ m.
 A clauses have the forms : initiates(a, p) ← P1:P2:… :Pn
 terminates(a, p) ← P1:P2:… :Pn
 precondition(a, q) ← P1:P2:… :Pn
where each Pi is a fluent or stateless predicate, and 0≤n.

The semantics of each formula F of LPS, including predicates, goals, rules, clauses and
sequences, is denoted by F*. Either F is a stateless predicate, or F* can be written in
the form F*(T1, T2), where T1 and T2 are as explained below. The semantics of an
atomic formula P is given by:

true is a stateless predicate, true* is true.
If P is a stateless predicate, then P* also written P*(T) is P.
If P is a fluent, then P* also written P*(T, T) is P(T).
If P is an atomic action or an event
then P* also written P*(T, T+1) is P(T, T+1).

If P is a macro-action, then P* also written P*(T1, T2) is P(T1, T2).

Sequences have a similar semantics to predicates, either as stateless sequences or with

two state arguments, which can be identical. The semantics of sequences is defined

recursively, with the empty sequence having the semantics true.

Let P be a predicate and S a sequence, with semantics P* and S* respectively.

 Let F be P:S, where neither P nor S is stateless.

Then F*(T1, S2) is P*(T1, T2) ∧ S*(S1, S2) ∧ T2 = S1.
Let F be P;S where neither P nor S is stateless.
Then F*(T1, S2) is P*(T1, T2) ∧ S*(S1, S2) ∧ T2 ≤ S1.
Let F be P:S or P;S. Then:
If both P and S are stateless, then F* is P*∧ S* and stateless.
If P is stateless and S is not, then F*(T1, T2) is P* ∧ S*(T1, T2).
If S is stateless and P is not, then F*(T1, T2) is P*(T1, T2) ∧ S*.

The semantics of the initial goal G0 is the semantics of its sequences. All the variables
in G0 (and subsequent Gi) are existentially quantified.

The semantics of Lram clauses P ← P1:P2:… :Pn is P(T) ← P1(T)∧P2(T)∧…∧Pn(T).
The semantics of Lmacro clauses M ← S is M(T1, T2) ← S*(T1, T2).
The semantics of Lplan clauses P ← S is P(T2) ← S*(T1, T2).

 Note that these clauses do not contain any analogue of the frame axiom(s) in the
situation calculus. Persistence (or inertia), which is formalised by frame axioms, is
obtained in LPS implicitly through the maintenance of the current state of the database,
without the computational overheads of reasoning with frame axioms.

The semantics of reactive rules [Evt1∧ Ev2∧ …∧ Evtn∧ A]: Q1:Q2:… :Qm → S is
 [Evt1(T-1, T) ∧... ∧ Evtn(T-1, T) ∧ A(T-1, T)] ∧ Q1(T) ∧ Q2(T) ∧…∧ Qm(T) → S*

if S is stateless, and [Evt1(T-1, T) ∧... ∧ Evtn(T-1, T) ∧ A(T-1, T)] ∧ Q1(T) ∧ Q2(T)
∧…∧ Qm(T) → S*(T1, T2) ∧ T ≤ T1 otherwise.

The conditions of reactive rules do not contain macro-actions, because the sequence of
states from T1 to T2 associated with the semantics M(T1, T2) of a macro-action M is
generally not accessible in the current state T of the database.

The semantics of A clauses:

initiates(a, p) ← P1: P2: …: Pn is initiates(a, p, T) ← P1(T) ∧ P2(T) ∧…∧ Pn(T)
terminates(a, p) ← P1: P2: …: Pn is terminates(a, p, T) ← P1(T) ∧ P2(T) ∧…∧ Pn(T)
precondition(a, q) ← P1: P2: …: Pn is precondition(a, q, T)←P1(T) ∧ P2(T) ∧...∧ Pn(T)

Finally if S is a set of formulas then S* is the set of all F* for F in S.

Note that these syntax and semantics impose the restriction that no two actions
(whether from A or M) have the same pair of state arguments. This is because, for
simplicity, the LPS operational semantics executes at most a single action in each
cycle/state. Because the operational and model-theoretic semantics of LPS are both

defined for the internal semantics, it is possible to define other surface syntaxes and to
mix state-based and stateless syntaxes. The syntax chosen for this paper can be
extended in several ways, but has the advantage of simplicity.

5 The Operational Semantics

The operational semantics manipulates the database by adding and deleting
extensional predicates. However, the model-theoretic semantics interprets the facts in
state Wi as containing the implicit state argument i. We use the notation W*i when we
need to refer to facts containing explicit state arguments: W*i = {p(i) : p ∈ Wi}.
 Actions and events update the database from one state to the next, as specified in
the LPS cycle below. However, for the execution of an action a to be attempted all of
its preconditions must hold in the current state of the database Wi.

Definition 2. An action a is executable in state Wi if and only if for every
precondition(a, q, i) that holds in W*i ∪ A* ∪ Lram* ∪ Lstateless ,
q holds in W*i ∪ Lram* ∪ Lstateless . �

In the LPS cycle, when an action is chosen for execution, all of its arguments (other
than state arguments) need to be variable-free (a safety requirement). In addition, the
selection function and search strategy need to be timely, as defined below.

Definition 3. A selection function is safe if and only if, when it selects an action, the
action is ground (except possibly for state variables). A selection function is timely if
and only if, when it selects an action a(t, t+1) in a goal clause C, then C contains no
other atom which is earlier in the same sequence in C. A search strategy is timely if
and only if, when it resolves an extensional atom in a goal clause C with the database,
then C contains no other atom which is earlier in the same sequence in C. �

Note that the selection function is not restricted to selecting predicates in the sequence
in which they are written. Predicates can be selected and resolved, so that planning
and execution are interleaved. However, to ensure the existence of safe selection
functions, LPS frameworks need to be range-restricted. We define range-restriction
after the LPS cycle.
 The operational semantics is a potentially non-terminating cycle in which the
agent repeatedly observes events in the environment, updates the database to reflect
the changes brought about by those events, performs a bounded number of inferences,
and selects an action to execute. If there is no such action that can be executed within
the bound or if the action is attempted and fails, then an empty action is generated.
Similarly, if there is no observation available at the beginning of a cycle then the set
of observations is empty.
 The internal syntax of LPS clauses and rules includes inequalities (≤) between
states. For the model-theoretic semantics we need a theory Ltemp that defines the
inequality relation. However, this theory is not needed for the operational semantics,
because timeliness and range-restriction ensure that if all other goals in a goal clause
succeed, then all the inequalities in the goal clause are also true. So for implementation
purposes we can assume the inequalities are deleted from the clauses and rules. This is
equivalent to resolving inequalities with clauses in Ltemp, which always succeeds.

Definition 4. LPS cycle: Let Max be a bound on the number of resolution steps to be
performed in each iteration of cycle. Given a range-restricted LPS framework <W0 ,
G0, A, P, Lram, Lstateless, Lmacro , Lplan >, a safe and timely selection function s, a timely
search strategy ∑, and a sequence of sets of observations Ob0, Ob1,…., the LPS cycle
determines a sequence of state transitions <W0, G0>, (Ob0, a0), …, <Wi, Gi>, (Obi,
ai)…where for all i, 0 ≤ i , Obi, ai and <Wi+1, Gi+1> are obtained from Obi-1, ai-1 and
<Wi, Gi> by the following steps:

LPS0. Let Obi be the set of observations made in this round of cycle. Wi is updated to

WOi as follows: WOi = (Wi – {p: a∈ Obi and terminates(a, p, i) holds in W*i ∪
A* ∪ Lram* ∪ Lstateless }) ∪ {p: a∈ Obi and initiates(a, p, i) holds in W*i ∪ A* ∪
Lram* ∪ Lstateless}.

LPS1. For every instance condition σ→ conclusion σ of a rule in P* such that

condition σ holds in WOi* ∪ {ai-1*} ∪ Obi-1
*
 ∪Lram* ∪ Lstateless, add conclusion σ

to every clause in Gi. Let GPi
 be the resulting set of goal clauses.

LPS2. Using the selection function s and search strategy ∑, let GPLi be a set of goal

clauses, starting from GPi, derivable by SLD-resolution using the clauses in
WOi*∪ Lram* ∪ Lplan* ∪ Lmacro* ∪ Lstateless such that one of the following holds:

 LPS2.1 No goal clause containing an executable action is generated within the

maximum number, Max, of resolution steps. This includes the case of an empty
clause being generated. Then Gi+1 = GPLi , Wi+1 = WOi, and ai is the empty action
φ (an action that will always succeed, but has no effect on the database). Cycle will
proceed into further rounds because further observations are possible. (An agent
cycle must be perpetual; it never stops, because there can always be observations.)

LPS2.2 At least one goal clause whose selected literal is an executable action is
generated within the maximum number, Max, of resolution steps.

LPS2.2.1 Then one such action a(T,T+1) in a goal clause C in GPLi is chosen for
execution by the search strategy ∑. Note that a(T, T+1) might have been
generated and selected in an earlier cycle, but not have been executable before.
Moreover, even if it was selected and executable before, the search strategy might
have chosen some other action. Moreover, it might have been executed and failed.
It might even have been executed before and succeeded, but might need to be
executed again, because later goals, dependent upon it, have failed. Note T can be
a constant = i or a variable.

LPS2.2.2 The action a(T,T+1) is executed. If the action fails, then Gi+1 = GPLi ,
Wi+1 = WOi, and ai is the empty action φ. If the action succeeds, then ai is a(i, i+1).

 Gi+1 = GPLi ∪ C’, where C’ is the resolvent of C with a(i, i+1).
 Wi+1 = (WOi – delete(a)) ∪ add(a) where

 delete(a) = {p: terminates(a, p, i) holds in WO*i ∪ A* ∪ Lram* ∪ Lstateless }
 add(a) = {p: initiates(a, p, i) holds in WO*i ∪ A* ∪ Lram* ∪ Lstateless }. �

The LPS cycle is an operational semantics, not an efficient proof procedure. However,
there are many refinements that would make it more efficient. These include the

deletion of subsumed clauses (including all other goal clauses, once the empty goal
clause has been generated), as well as the deletion of clauses containing fluents or
actions whose state argument is instantiated to a state earlier that the current state.

Definition 5. The cycle succeeds in state n if and only if Gn contains an empty clause
and GPn

 =Gn. �

Definition 6. An LPS framework <W0, G0, A, P, Lram, Lstateless, Lmacro, Lplan> is range-
restricted if and only if all rules in P and all clauses in A, Lram, Lstateless, Lmacro, Lplan
and G0 are range-restricted, where:
 A sequence S is range-restricted if and only if every variable in an atomic action in
S occurs earlier in the sequence.
 A clause conclusion ← conditions in Lram, Lstateless, Lmacro , Lplan is range-restricted
if and only if conditions is range-restricted and every variable in conclusion occurs in
conditions.
 A clause conclusion ← conditions in A, where conclusion is initiates(a, p),
terminates(a, p), or precondition(a, p), is range-restricted if and only if every variable
in p occurs either in conditions or in a.
 A rule condition → conclusion in P is range-restricted if and only if every
variable occurring in an atomic action a in conclusion, occurs either in the condition
or in an atom earlier than a in the conclusion. �

6 Model-theoretic Semantics
The model-theoretic semantics requires a Horn clause definition Ltemp of the inequality
relations. Any correct definition will serve the purpose including, for example:

0 ≤ T S +1 ≤ T +1 ← S ≤ T.

Every set Sn of sentences W0* ∪ …∪ Wn* ∪ {a0*, …, an-1*}∪ Ob0
*
 ∪…∪ Obn-1

*
 ∪

Lstateless ∪ Lram* ∪ Ltemp ∪ Lmacro* is a Horn clause logic program. Therefore, Sn has a
unique minimal model Mn. This model is like a Kripke structure of possible worlds Mi

= Wi ∪ Lstateless ∪ Lram embedded in a single model Mn, where the actions and
observations {(Ob0, a0), …, (Obn-1, an-1)} determine the transition relation from one
possible world to another.

6.1 Soundness
To prove the soundness of the LPS cycle, Lplan needs to be compatible with the action
theory A. Compatibility ensures that the clauses in Lplan* are true in all Mn.

Definition 7. Lplan is compatible with A if for every clause in Lplan of the form p ← S
there exists an instance of a clause in A of the form initiates(a, p) ← P1: P2: …: Pn
such that S* ∪ Lstateless ∪ Lram* ∪ Ltemp entails (P1: P2: …: Pn)*. �

It is easy to satisfy this condition, and all the examples in this paper, if done in full
will have this property. Note that we can plan to achieve intentional atoms by
combining such clauses in Lplan with clauses in Lram and Lmacro.

Theorem. Given a range-restricted LPS framework <W0 , G0, A, P, Lram, Lstateless,
Lmacro, Lplan>, a safe and timely selection function s, a timely search strategy ∑, and a
sequence of sets of observations Ob0, Ob1,…., Obn-1, if Lplan is compatible with A and

the cycle succeeds in state n, then some clause C0 in G0* is true in Mn and all the rules
in P* are true in Mn.

Sketch of proof: If the cycle succeeds in state n, then Gn contains the empty clause.
The proof of this empty clause can be traced backwards to a sequence of clauses,
starting with some C0 in G0* : C0 ,…,Ci, ….,Cm = true, where Ci+1 is obtained from Ci

in one of two ways:

1. In LPS1, Ci+1 is Ci conjoined with conclusion σ for every instance
condition σ→ conclusion σ of a rule in P* such that condition σ holds in
WOi* ∪ {ai-1*} ∪ Obi-1

*
 ∪ Lram* ∪ Lstateless.

2. Ci+1 is obtained by SLD-resolution between Ci and some clause C in WOi*∪

Lram* ∪ Lplan* ∪ Lmacro* ∪ Lstateless in LPS2, by resolution with aj* in
LPS2.2.2, or by implicit resolution of inequalities with clauses in Ltemp.

It suffices to prove the lemma: All the Ci are true in Mn. The lemma implies that C0 is
true in Mn. Together with the condition GPn

 =Gn, the lemma also implies that all the
rules in P* are true in Mn.

 Proof of lemma: The lemma follows by induction, by showing the base case Cm =
true is true in Mn and the induction step if Ci+1 is true in Mn, then Ci is true in Mn. The
base case is trivial. For the induction step, there are two cases: In case 1 above, if Ci+1
is true in Mn, then Ci is true in Mn, because if a conjunction is true then so are all of its
conjuncts.
 In case 2 above, the clauses Ci+1 and Ci are actually the negations of clauses in
ordinary resolution. So, according to the soundness of ordinary resolution, ¬Ci+1 is a
logical consequence of ¬Ci and C. Therefore, if both C and Ci+1 are true in Mn, then Ci

is true in M. But any clause C in WOi* ∪ {ai-1*} ∪ Lram* ∪ Lmacro* ∪ Lstateless ∪ Ltemp
is true in Mn by the definition of Mn. It suffices to show that all clauses in Lplan* are
also true in Mn. But this follows from the compatibility of Lplan with A. �

This theorem is restrictive in two ways. First, it considers only the first n sets of
observations. Second, it considers only the case in which the actions needed to solve
all the goals in G0 and introduced by the reaction rules are successfully executed by
state n. Both of these restrictions can be liberalised, mainly at the expense of
complicating the statement of the theorem, but the proofs are similar. We omit the
theorems and their proofs for lack of space. However, it is worth noting that to deal
with potentially non-terminating sets of observations, we need minimal models Mωωωω
determined by the potentially infinite Horn clause program W0* ∪ …∪ Wn* ∪ …{a0*,
…, an*,…}∪ Ob0

*
 ∪…∪ Obn

∪… Lstateless ∪ Lram ∪ Ltemp ∪ Lmacro*.
 Note also that LPS can be extended to include negation in both the conditions and
conclusions of reaction rules and in the conditions of clauses. The most obvious such
extension is to the case of locally stratified programs with their perfect models.

6.2 Completeness
Because of the completeness result for the IFF proof procedure [8] for ALP, it might
be expected that a similar completeness result would hold for LPS: Given a minimal
model M of some clause C0 in G0 and of all the rules in P, it might be hoped that there

would exist some search strategy ∑ that together with the LPS cycle could generate
some related model M’, possibly determined by a subsequence of the actions of M.
Unfortunately this is not always possible. The LPS cycle will not generate models that
make rules true by making their conditions false. For example:
 P: q → a A: terminates(b, q) W0 : {q}

Here a and b are actions. There is a minimal model corresponding to the sequence of
actions b, a, but the LPS cycle can only generate the non-terminating sequence a, a, …
 This problem can be dealt with in the manner of the IFF proof procedure, by
replacing every reactive rule of the form p : q → a with rules of the form p: q → a ∨
b∨ c, where b and c are atomic actions such that terminates(b, q) and terminates(c, p).
We do not consider completeness further here for lack of space.

6.3 Relationship with the situation calculus and event calculus
The minimal model M generated by LPS is both like a modal possible worlds
semantic structure and like a minimal model of the situation calculus represented as a
logic program. Ignoring observations and simplifying the situation calculus
representation, the frame axioms have the form:

 P(T+1) ← P(T) ∧ A(T, T+1) ∧ ¬ terminates(A, P, T)

for every extensional predicate P. In LPS, these axioms are true in M, but are not used
to generate M. Instead of reasoning explicitly that most fluents P that hold in state T
continue to hold in T+1, destructive assignment is used to update only those fluents
explicitly affected by A.
 The use of destructive assignment, as in LPS, to implement the frame axiom, can be
exploited for other applications, such as planning, provided only one state is explored
at a time. In particular, for classical planning applications, the LPS approach can be
generalised to store the complete history of actions and events leading up to a current
database state. The database can be rolled back to reproduce previous states, and rolled
forward to generate alternative databases states. However, these possibilities are topics
of research for the future.

7 Related and Future Work

LPS provides an agent framework that combines a model-theoretic semantics with a
state-free syntax and a database maintained by destructive assignment. To the best of
our knowledge, this combination is novel. Most agent frameworks have an operational
semantics, but no declarative semantics. Some logic-based frameworks like Golog,
ALP agents and KGP [10] have a model-theoretic semantics, but represent the
environment using time or state and manipulate the representation using the situation
or event calculus. Metatem [6], on the other hand, is a logic-based agent language
with a Kripke semantics for modal logic sentences resembling production rules.
Because of the Kripke-like semantics of LPS, it would be interesting to explore a
similar modal syntax for LPS.
 Costantini and Tocchio [3] also employ a logic programming approach with a
similar model-theoretic semantics, in which external and internal events transform an
initial agent program into a sequence of agent programs. The semantics of this

evolutionary sequence is given by the associated sequence of models of the sequence
of programs. In LPS, this sequence is represented by a single model.
 FLUX [15] is a logic programming agent language with several features similar to
LPS, including the use of destructive assignment to update states. In FLUX, these
states are not stored in a database as in LPS, but in a reified, list-like structure. FLUX
employs a sensing and acting cycle, which it uses to plan and execute plans for
achievement goals.
 Thielscher [17] provides a declarative semantics for AgentSpeak by defining its
cycle and procedures by means of a meta-interpreter represented as a logic program.
Like LPS, the resulting agent language incorporates a formal action theory. However,
unlike LPS, the language does not distinguish between different kinds of procedures,
according to their different functionalities. LPS, in contrast, distinguishes between
reactive rules, planning rules, macro-actions and ramifications, representing different
kinds of AgentSpeak-like procedures in different ways. On the other hand, the agent
architecture of Hayashi et al. [18] separates the representation of reactive rules and
planning rules, as in LPS.
 There is also related work, combining destructive assignment and model-theoretic
semantics in other fields, not directly associated with agent programming languages.
EVOLP [1], in particular, gives a model-theoretic semantics to evolving logic
programs that change state destructively over the course of their execution. Several
other authors, including [7, 16] obtain a model-theoretic semantics for event-
condition-action rules in active database systems, by translating such rules into logic
programs with their associated model theory.
 Perhaps the system closest to LPS is Transaction Logic [2], which gives a Kripke-
like semantics for transactions (which are similar to macro-actions), represented in a
state-free syntax. TR Logic also gives a semantics to reactive rules, which involves
translating them into transactions. In LPS, the Kripke-like semantics is transformed
into a single situation-calculus-like model, in the spirit of Golog. This transformation
makes it possible to apply the general-purpose semantics of ALP to the resulting
minimal model. In contrast, the semantics of TR Logic and Golog are defined
specifically for those languages.
 Because LPS is based on the ALP agent model and the ALP model is more
powerful than LPS, it would be interesting to extend LPS with some additional ALP
agent features. These features include: partially ordered plans, more complex
constraints on when actions should be performed and when fluent goals should be
achieved, concurrent actions, conditionals in the conditions of clauses, active
observations, a historical database of past actions and observations, abduction to
explain observations that are fluents rather than events, and integrity constraints that
prohibit actions rather than generate actions.
 It would also be useful to study more closely the relationship between LPS and
other agent models with a view to using the LPS approach to provide those languages
with model-theoretic semantics. In addition, because the LPS cycle can be viewed as a
model generator, which makes the reactive rules true, it would be valuable to explore
the relationship with model checking and model generation in other branches of
computing.
 In this paper we have focused on the theoretical framework of LPS. However, the
ultimate test of the framework is its value as a practical agent language. For this
purpose, we are developing further enhancements and are experimenting with an
implementation.

Acknowledgments. We are grateful to Ken Satoh, Luis Moniz Pereira, Harold Boley,
Thomas Eiter and Keith Stenning for helpful discussions, and to the anonymous
referees for helpful suggestions.

References

1. Alferes, J., Leite, J., Pereira, L.M., Przymusinska, H. & Przymusinski, T.:Dynamic Updates of

Non-Monotonic Knowledge Bases, J. of Logic Programming 45(1-3):43-70 (2000)

2. Bonner and M. Kifer.: Transaction logic programming. In Warren D. S., (ed.), Logic

Programming: Proc. of the 10th International Conf., 257-279 (1993)

3. Costantini, S. and Tocchio, A.: About Declarative Semantics of Logic-Based Agent

Languages, Dalt 2005, LNAI 3904, Baldoni, M. et al (eds.), 106-123 (2006)

4. Dennis, L.A., Farwer, B., Bordini, R.H., Fisher, M., Wooldridge, M.: A Common Semantics

Basis for BDI Languages, ProMAS, LNAI 4908, Dastani, M. et al (eds.) Springer-Verlag

Berlin Heidelberg, 124-139 (2008)

5. van Emden, M. and Kowalski, R.: The Semantics of Predicate Logic as a Programming

 Language, in JACM, Vol. 23, No. 4, 733-742 (1976)

6. Fisher, M.: A Survey of Concurrent METATEM - The Language and its Applications.

Lecture notes in computer science, 827, Springer Verlag (1994)

7. Flesca, S. and Greco, S. Declarative Semantics for Active Rules. Theory and Practice of Logic

Programming 1 (1): 43-69, (2001)

8. Fung, T.H. and Kowalski, R. : The IFF Proof Procedure for Abductive Logic Programming.

J. of Logic Programming (1997)

9. Kakas,T., Kowalski, R., Toni, F.:The Role of Logic Programming in Abduction, Handbook of

Logic in Artificial Intelligence and Programming 5, Oxford University Press, 235-324 (1998)

10. Kakas, A., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: Computational Logic Foundations

of KGP Agents. Journal of Artificial Intelligence Research. 33, 285-348 (2008)

11. Kowalski, R.: Predicate Logic as Programming Language, in Proceedings IFIP Congress,

Stockholm, North Holland Publishing Co., 569-574 (1974)

12. Kowalski, R. and Sadri, F.: From Logic Programming Towards Multi-agent Systems, Annals

 of Mathematics and Artificial Intelligence, Volume 25, 391-419 (1999)

13. Kowalski, R. and Sadri, F.: Integrating Logic Programming and Production Systems in

Abductive Logic Programming Agents. In Proceedings of The Third International

Conference on Web Reasoning and Rule Systems, Chantilly, Virginia, USA (2009)

14. Reiter, R.: Knowledge in Action. MIT Press (2001)

15. Thielscher, M.: FLUX: A Logic Programming Method for Reasoning Agents, Theory and

Practice of Logic Programming, 5(4-5), 533-565 (2005)

16. Zaniolo, C. A Unified Semantics for Active and Deductive Databases, Procs. 1993

Workshop on Rules In Database Systems, RIDS'93, Springer-Verlag, 271-287 (1993)

17. Thielscher, M., Integrating Action Calculi and AgentSpeak. In Proceedings of the

International Conference on Principles of Knowledge Representation and Reasoning (KR),

Lin, F and Sattler, U. (eds.), Toronto (2010)

18. Hayashi, H., Tokura, S., Ozaki, F., Doi. M.: Background Sensing Control for Planning

Agents Working in the Real World. International Journal of Intelligent Information and

Database Systems, Inderscience Publishers, 3(4): 483-501 (2009)

