Skip to main content

A Self-organizing State Space Approach to Inferring Time-Varying Causalities between Regulatory Proteins

  • Conference paper
Information Technology in Bio- and Medical Informatics, ITBAM 2010 (ITBAM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6266))

  • 783 Accesses

Abstract

A number of methods based on time-dependent state space models have been proposed for inferring time-varying gene regulatory networks. These methods are capable of detecting a relatively small number of topological changes in gene regulatory networks. However, they are insufficient since there is a greater number of changes in the gene regulatory mechanisms; the function of a regulatory protein frequently changes due to post-translational modification, such as protein phosphorylation and ATP-binding. We propose a self-organizing state space approach to inferring consecutive changes in causalities between regulatory proteins from gene expression data. Hidden regulatory proteins are identified using a test-based method from genome-wide protein-DNA binding data. Application of this approach to cell cycle data demonstrated its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using ayesian networks to analyze expression data. J. Comput. Biol. 7, 601–620 (2000)

    Article  Google Scholar 

  2. Friedman, N.: Inferring cellular networks using probabilistic graphical models. Science 303, 799–805 (2004)

    Article  Google Scholar 

  3. Imoto, S., Goto, T., Miyano, S.: Estimation of genetic networks and functional structures between genes by using bayesian networks and nonparametric regression. In: Proceedings of Pacific Symposium of Biocomputing, pp. 175–186 (2002)

    Google Scholar 

  4. Tamada, Y., Imoto, S., Tashiro, K., Kuhara, S., Miyano, S.: Identifying drug active pathways from gene networks estimated by gene expression data. Genome Inform. 16, 182–191 (2005)

    Google Scholar 

  5. Fujita, A., Sato, J.R., Garay-Malpartida, H.M., Morettin, P.A., Sogayar, M.C., Ferreira, C.E.: Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method. Bioinformatics 23, 1623–1630 (2007)

    Article  Google Scholar 

  6. Shimamura, T., Imoto, S., Yamaguchi, R., Fujita, A., Nagasaki, M., Miyano, S.: Recursive regularization for inferring gene networks from time-course gene expression profiles. BMC Syst. Biol. 3, 41 (2009)

    Article  Google Scholar 

  7. Kojima, K., Fujita, A., Shimamura, T., Imoto, S., Miyano, S.: Estimation of nonlinear gene regulatory networks via L1 regularized NVAR from time series gene expression data. Genome Inform. 20, 37–51 (2008)

    Google Scholar 

  8. Beal, M.J., Falciani, F., Ghahramani, Z., Rangel, C., Wild, D.L.: A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21, 349–356 (2005)

    Article  Google Scholar 

  9. Rangel, C., Angus, J., Ghahramani, Z., Lioumi, M., Sotheran, E., Gaiba, A., Wild, D.L., Falciani, F.: Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics 20, 1361–1372 (2004)

    Article  Google Scholar 

  10. Wu, F.X., Zhang, W.J., Kusalik, A.J.: Modeling gene expression from microarray expression data with state-space equations. In: Proceedings of Pacific Symposium on Biocomputing, pp. 581–592 (2004)

    Google Scholar 

  11. Yamaguchi, R., Yoshida, R., Imoto, S., Higuchi, T., Miyano, S.: Finding module-based gene networks with state-space models. IEEE Signal Processing Magazine 24, 37–46 (2007)

    Article  Google Scholar 

  12. Yoshida, R., Imoto, S., Higuchi, T.: Estimating time-dependent gene networks from time series microarray data by dynamic linear models with markov switching. In: Proceedings of Computational Systems Bioinformatics, pp. 289–298 (2005)

    Google Scholar 

  13. Li, Z., Shaw, S.M., Yedwabnick, M.J., Chan, C.: Using a state-space model with hidden variables to infer transcription factor activities. Bioinformatics 22, 747–754 (2006)

    Article  Google Scholar 

  14. Rao, A., Hero, A.O., States, D.J., Engel, J.D.: Using directed information to build biologically relevant influence networks. In: Comput. Syst. Bioinformatics Conf., vol. 6, pp. 145–156 (2007)

    Google Scholar 

  15. Shumway, R.H., Stoffer, D.S.: An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis 3, 253–264 (1982)

    Article  MATH  Google Scholar 

  16. Kitagawa, G.: A self-organizing state-space model. Journal of the American Statistical Association 93, 1203–1215 (1998)

    Google Scholar 

  17. Higuchi, T., Kitagawa, G.: Knowledge discovery and self-organizing state space model. IEICE Transactions on Information and Systems E Series D 83, 36–43 (2000)

    Google Scholar 

  18. Yano, K.: A self-organizing state space model and simplex initial distribution search. Computational Statistics 23, 197–216 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., Zeitlinger, J., Jennings, E.G., Murray, H.L., Gordon, D.B., Ren, B., Wyrick, J.J., Tagne, J.B., Volkert, T.L., Fraenkel, E., Gifford, D.K., Young, R.A.: Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002)

    Article  Google Scholar 

  20. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell. 9, 3273–3297 (1998)

    Article  Google Scholar 

  21. Costanzo, M., Schub, O., Andrews, B.: G1 transcription factors are differentially regulated in Saccharomyces cerevisiae by the Swi6-binding protein Stb1. Mol. Cell. Biol. 23, 5064–5077 (2003)

    Article  Google Scholar 

  22. de Bruin, R.A.M., Kalashnikova, T.I., Wittenberg, C.: Stb1 collaborates with other regulators to modulate the G1-specific transcriptional circuit. Mol. Cell. Biol. 28, 6919–6928 (2008)

    Article  Google Scholar 

  23. Simon, I., Barnett, J., Hannett, N., Harbison, C.T., Rinaldi, N.J., Volkert, T.L., Wyrick, J.J., Zeitlinger, J., Gifford, D.K., Jaakkola, T.S., Young, R.A.: Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106, 697–708 (2001)

    Article  Google Scholar 

  24. Koranda, M., Schleiffer, A., Endler, L., Ammerer, G.: Forkhead-like transcription factors recruit Ndd1 to the chromatin of G2/M-specific promoters. Nature 406, 94–98 (2000)

    Article  Google Scholar 

  25. Amar, N., Messenguy, F., Bakkoury, M.E., Dubois, E.: ArgRII, a component of the argr-mcm1 complex involved in the control of arginine metabolism in saccharomyces cerevisiae, is the sensor of arginine. Mol. Cell. Biol. 20, 2087–2097 (2000)

    Article  Google Scholar 

  26. Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., Yang, L., Wolting, C., Donaldson, I., Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B., Alfarano, C., Dewar, D., Lin, Z., Michalickova, K., Willems, A.R., Sassi, H., Nielsen, P.A., Rasmussen, K.J., Andersen, J.R., Johansen, L.E., Hansen, L.H., Jespersen, H., Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V., Srensen, B.D., Matthiesen, J., Hendrickson, R.C., Gleeson, F., Pawson, T., Moran, M.F., Durocher, D., Mann, M., Hogue, C.W.V., Figeys, D., Tyers, M.: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hirose, O., Shimizu, K. (2010). A Self-organizing State Space Approach to Inferring Time-Varying Causalities between Regulatory Proteins. In: Khuri, S., Lhotská, L., Pisanti, N. (eds) Information Technology in Bio- and Medical Informatics, ITBAM 2010. ITBAM 2010. Lecture Notes in Computer Science, vol 6266. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15020-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15020-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15019-7

  • Online ISBN: 978-3-642-15020-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics