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Inferring Loop Invariants using Postconditions

Carlo A. Furia and Bertrand Meyer

Abstract

One of the obstacles in automatic program proving is to obtain suit-
able loop invariants. The invariant of a loop is a weakened form of its
postcondition (the loop’s goal, also known as its contract); the present
work takes advantage of this observation by using the postcondition as
the basis for invariant inference, using various heuristics such as “uncou-
pling” which prove useful in many important algorithms. Thanks to these
heuristics, the technique is able to infer invariants for a large variety of
loop examples. We present the theory behind the technique, its implemen-
tation (freely available for download and currently relying on Microsoft
Research’s Boogie tool), and the results obtained.

1 Overview

Many of the important contributions to the advancement of program proving
have been, rather than grand new concepts, specific developments and simplifi-
cations; they have removed one obstacle after another preventing the large-scale
application of proof techniques to realistic programs built by ordinary program-
mers in ordinary projects. The work described here seeks to achieve such a
practical advance by automatically generating an essential ingredient of proof
techniques: loop invariants. The key idea is that invariant generation should use
not just the text of a loop but its postcondition. Using this insight, the gin-pink
tool presented here is able to infer loop invariants for non-trivial algorithms in-
cluding array partitioning (for Quicksort), sequential search, coincidence count,
and many others. The tool is available for free download.1

1.1 Taking advantage of postconditions

In the standard Floyd-Hoare approach to program proving, loop invariants are
arguably the biggest practical obstacle to full automation of the proof process.
Given a routine’s specification (contract), in particular its postcondition, the
proof process consists of deriving intermediate properties, or verification con-
ditions, at every point in the program text. Straightforward techniques yield
verification conditions for basic instructions, such as assignment, and basic con-
trol structures, such as sequence and conditional. The main difficulty is the
loop control structure, where the needed verification condition is a loop invari-
ant, which unlike the other cases cannot be computed through simple rules;
finding the appropriate loop invariant usually requires human invention.

Experience shows, however, that many programmers find it hard to come
up with invariants. This raises the question of devising automatic techniques

1http://se.inf.ethz.ch/people/furia/
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to infer invariants from the loop’s text, in effect extending to loops the mech-
anisms that successfully compute verification conditions for other constructs.
Loops, however, are intrinsically more difficult constructs than (for example)
assignments and conditionals, so that in the current state of the art we can only
hope for heuristics applicable to specific cases, rather than general algorithms
guaranteed to yield a correct result in all cases.

While there has been considerable research on loop invariant generation and
many interesting results (reviewed in the literature survey of Section 6), most
existing approaches are constrained by a fundamental limitation: to obtain
the invariant they only consider the implementation of a loop. In addition to
raising epistemological problems explained next, such techniques can only try
to discover relationships between successive loop iterations; this prevents them
from discovering many important classes of invariants.

The distinctive feature of the present work is that it uses the postcondition
of a loop for inferring its invariant. The postcondition is a higher-level view of
the loop, describing its goal, and hence allows inferring the correct invariant in
many more cases. As will be explained in Section 3.1, this result follows from
the observation that a loop invariant is always a weakened form of the loop’s
postcondition. Invariant inference as achieved in the present work then relies on
implementing a number of heuristics for weakening postconditions into invari-
ants ; Section 2 presents four such heuristics, such as uncoupling and constant
relaxation, which turn out to cover many practical cases.

1.2 Inferring assertions: the Assertion Inference Paradox

Any program-proving technique that attempts to infer specification elements
(such as loop invariants) from program texts faces a serious epistemological
objection, which we may call the Assertion Inference Paradox.

The Assertion Inference Paradox is a risk of vicious circle. The goal of
program proving is to establish program correctness. A program is correct if
its implementation satisfies its specification; for example a square root routine
implements a certain algorithm, intended to reach a final state satisfying the
specification that the square of the result is, within numerical tolerance, equal
to the input. To talk about correctness requires having both elements, the
implementation and the specification, and assessing one against the other. But if
we infer the specification from the implementation, does the exercise not become
vacuous? Surely, the proof will succeed, but it will not teach us anything since
it loses the fundamental property of independence between the mathematical
property to be achieved and the software artifact that attempts to achieve it —
the problem and the solution.

To mitigate the Assertion Inference Paradox objection, one may invoke the
following arguments:

• The Paradox only arises if the goal is to prove correctness. Specification
inference can have other applications, such as reverse-engineering legacy
software.

• Another possible goal of inferring a specification may be to present it
to a programmer, who will examine it for consistency with an intuitive
understanding of its intended behavior.
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• Specification inference may produce an inconsistent specification, reveal-
ing a flaw in the implementation.

For applications to program proving, however, the contradiction remains; an
inferred specification not exhibiting any inconsistencies cannot provide a sound
basis for a proof process.

For that reason, the present work refrains from attempting specification in-
ference for the principal units of a software system: routines (functions, meth-
ods) and those at an even higher level of granularity (such as classes). It assumes
that these routine specifications are available. Most likely they will have been
written explicitly by humans, although their origin does not matter for the rest
of the discussion.

What does matter is that once we have routine specifications, it becomes
desirable to infer the specifications of all lower-level constructs (elementary in-
structions and control structures such as conditionals and loops) automatically.
At those lower levels, the methodological objection expressed by the Assertion
Inference Paradox vanishes: the specifications are only useful to express the
semantics of implementation constructs, not to guess the software’s intent. The
task then becomes: given a routine specification — typically, a precondition and
postcondition — derive the proof automatically by inferring verification condi-
tions for the constructs used in the routine and proving that the constructs
satisfy these conditions. No vicious circle is created.

For basic constructs such as assignments and conditional instructions, the
machinery of Floyd-Hoare logic makes this task straightforward. The principal
remaining difficulty is for loops, since the approach requires exhibiting a loop
invariant, also known as an inductive assertion, and proving that the loop’s
initialization establishes the invariant and that every execution of the body
(when the exit condition is not satisfied) preserves it.

A loop invariant captures the essence of the loop. Methodologically, it is
desirable that programmers devise the invariant while or before devising the
loop. As noted, however, many programmers have difficulty coming up with loop
invariants. This makes invariants an attractive target for automatic inference.

In the present work, then, postconditions are known and loop invariants
inferred. The approach has two complementary benefits:

• It does not raise the risk of circular reasoning since the specification of
every program unit is given from the outside, not inferred.

• Having this specification of a loop’s context available gives a considerable
boost to loop invariant inference techniques. While there is a considerable
literature on invariant inference, it is surprising that none of the references
with which we are familiar use postconditions. Taking advantage of post-
conditions makes it possible — as described in the rest of this paper —
to derive the invariants of many important and sometimes sophisticated
loop algorithms that had so far eluded other techniques.

2 Illustrative examples

This section presents the fundamental ideas behind the loop-invariant generation
technique detailed in Section 4 and demonstrates them on a few examples. It
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uses an Eiffel-like [30] pseudocode, which facilitates the presentation thanks to
the native syntax for contracts and loop invariants.

As already previewed, the core idea is to generate candidate invariants by
weakening postconditions according to a few commonly recurring patterns. The
patterns capture some basic ways in which loop iterations modify the program
state towards achieving the postcondition. Drawing both from classic litera-
ture [19, 29] and our own more recent investigations we consider the following
fundamental patterns.

Constant relaxation [29, 19]: replace one or more constants by variables.

Uncoupling [29]: replace two occurrences of the same variable each by a dif-
ferent variable.

Term dropping [19]: remove a term, usually a conjunct.

Variable aging: replace a variable by an expression that represents the value
the variable had at previous iterations of the loop.

These patterns are then usually used in combination, yielding a number of
weakened postconditions. Each of these candidate invariants is then tested
for initiation and consecution (see Section 3.1) over any loop, and all verified
invariants are retained.

The following examples show each of these patterns in action. The tool
described in Sections 4 and 5 can correctly infer invariants of these (and more
complex) examples.

2.1 Constant relaxation

Consider the following routine to compute the maximum value in an array.

1 max (A: ARRAY [T]; n: INTEGER): T
2 require A.length = n ≥ 1
3 local i : INTEGER
4 do
5 from i := 0; Result := A[1];
6 until i ≥n
7 loop
8 i := i + 1
9 if Result≤A[i] then Result := A[i] end

10 end
11 ensure ∀j • 1 ≤ j ∧ j ≤ n =⇒ A[j ] ≤ Result

Lines 5–10 may modify variables i and Result but they do not affect in-
put argument n, which is therefore a constant with respect to the loop body.
The constant relaxation technique replaces every occurrence of the constant n
by a variable i. The weakened postcondition, ∀ j • 1 ≤ j ∧ j ≤ i =⇒A[j ] ≤
Result, is indeed an invariant of the loop: after every iteration the value of
Result is the maximum value of array A over range [1..i].
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2.2 Variable aging

Sometimes substituting a constant by a variable in the postcondition does not
yield any loop invariant because of how the loop body updates the variable. It
may happen that the loop body does not “use” the latest value of the substituted
variable until the next iteration. Consider for example another implementation
of computing the maximum of an array, which increments variable i after using
it, so that only the range [1..i − 1] of array A has been inspected after every
iteration.

1 max v2 (A: ARRAY [T], n: INTEGER): T
2 require A.length = n ≥ 1
3 local i : INTEGER
4 do
5 from i := 1; Result := A[1];
6 until i >n
7 loop
8 if Result≤A[i] then Result := A[i] end
9 i := i + 1

10 end
11 ensure ∀ j • 1 ≤ j ∧ j ≤ n =⇒ A[j ] ≤ Result

The variable aging heuristics handles these cases by introducing an expression
that represents the value of the variable at the previous iteration in terms of
its current value. In the case of routine max v2 it is straightforward that such
an expression for variable i is i−1. The postcondition can be weakened by first
replacing variable n by variable i and then by “aging” variable i into i−1. The
resulting formula ∀ j • 1 ≤ j ∧ j ≤ i−1 =⇒A[j] ≤ Result correctly captures
the semantics of the loop.

Computing the symbolic value of a variable at the “previous” iteration can
be quite complex in the general case. In practice, however, a simple (e.g.,
flow-insensitive) approximation is often enough to get significant results. The
experiments of Section 5 provide a partial evidence to support this conjecture.

2.3 Uncoupling

Consider the task (used as part of the Quicksort algorithm) of partitioning an
array A of length n into two parts such that every element of the first part is
less than or equal to a given pivot value and every element of the second part
is greater than or equal to it. The following contracted routine specifies and
implements such task.

1 partition (A: ARRAY [T]; n: INTEGER; pivot: T): INTEGER
2 require A.length = n ≥ 1
3 local low index, high index : INTEGER
4 do
5 from low index := 1; high index := n
6 until low index = high index
7 loop
8 from −− no loop initialization
9 until low index = high index ∨A[low index] > pivot

10 loop low index := low index + 1 end
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11 from −− no loop initialization
12 until low index = high index ∨ pivot> A[high index]
13 loop high index := high index − 1 end
14 A.swap (A, low index, high index)
15 end
16 if pivot ≤ A[low index] then
17 low index := low index − 1
18 high index := low index
19 end
20 Result := low index
21 ensure ( ∀ k • 1≤ k ∧ k <Result + 1 =⇒A[k]≤pivot )
22 ∧ ( ∀ k • Result <k ∧k ≤ n =⇒A[k] ≥ pivot )

The postcondition consists of the conjunction of two formulas (lines 21 and
22). If we try to weaken it by replacing constant Result by variable low index
or by variable high index we obtain no valid loop invariant. This is because
the two clauses of the postcondition should refer, respectively, to portion [1..
low index−1] and [high index+1..n] of the array. We achieve this by first uncou-
pling Result, which means replacing its first occurrence (in line 21) by variable
low index and its second occurrence (in line 22) by variable high index. After
“aging” variable low index we get the formula:

( ∀ k • 1 ≤ k ∧ k < low index =⇒A[k] ≤ pivot )
∧ ( ∀ k • high index <k ∧ k ≤ n =⇒A[k] ≥ pivot )

The reader can check that this indeed a loop invariant of all loops in routine
partition and that it allows a straightforward partial correctness proof of the
implementation.

2.4 Term dropping

The last weakening pattern that we consider consists simply of removing a part
of the postcondition. The formula to be weakened is usually assumed to be in
conjunctive normal form, that is, expressed as the conjunction of a few clauses:
then term dropping amounts to removing one or more conjuncts. Going back
to the example of partition, let us drop the first conjunct in the postcondition.
The resulting formula

∀ k • Result < k ∧ k ≤ n =⇒ A[k] ≥ pivot

can be further transformed through constant relaxation, so that we end up with
a conjunct of the invariant previously obtained by uncoupling: ∀ k • high index
<k ∧ k ≤ n =⇒A[k]≥ pivot . This conjunct is also by itself an invariant. In
this example term dropping achieved by different means the same result as
uncoupling.

3 Foundations

Having seen typical examples we now look at the technical choices that support
the invariant inference tools. To decouple the loop-invariant generation tech-
nique as much as possible from the specifics of any one programming language,

6



we adopt Boogie from Microsoft Research [26] as our concrete programming lan-
guage; Section 3.2 is then devoted to a concise introduction to the features of
Boogie that are essential for the remainder. Sections 3.1 and 3.3 introduce defi-
nitions of basic concepts and some notational conventions that will be used. We
assume the reader is familiar with standard formal definitions of the axiomatic
semantics of imperative programs.

3.1 Invariants

Proving a procedure correct amounts to verifying that:

1. Every computation terminates.

2. Every call of another procedure is issued only when the preconditions of
the callee hold.

3. The postconditions hold upon termination.

It is impossible to establish these facts automatically for all programs but
the most trivial ones without additional information provided by the user in the
form of annotations. The most crucial aspect is the characterization of loops,
where the expressive power of universal computation lies. A standard technique
to abstract the semantics of any number of iterations of a loop is by means of
loop invariants.

Definition 1 (Inductive loop invariant). Formula φ is an inductive invariant of
loop

from Init until Exit loop Body end

iff:

• Initiation: φ holds after the execution of Init

• Consecution: the truth of φ is preserved by every execution of Body where
Exit does not hold

In the rest of the discussion, inductive invariants will be called just invariants
for short. Note, however, that an invariant in the weaker sense of a property
that stays true throughout the loop’s execution is not necessarily an inductive
invariant: in

from x := 1 until False loop x := − x end

formula x ≥ −1 will remain true throughout, but is not considered an inductive
invariant because {x ≥ −1} x := −x {x ≥ −1} is not a correct Hoare triple. In
the remainder we will deal solely with inductive loop invariants, as is customary
in the program proving literature.

From a design methodology perspective, the invariant expresses a weakened
form of the postcondition. More precisely [31, 19], the invariant is a form of the
postcondition that applies to a subset of the data, and satisfies the following
three properties:

1. It is strong enough to yield the postcondition when combined with the
exit condition (which states that the loop has covered the entire data).
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2. It is weak enough to make it easy to write an algorithm (the loop initial-
ization Init) that will satisfy the invariant on a subset (usually empty or
trivial) of the data.

3. It is weak enough to make it easy to write an algorithm (the loop body
Body) that, given that the invariant holds on a subset of the data that is
not the entire data, extends it to cover a slightly larger subset.

“Easy”, in the last two conditions, means “much easier than solving the
entire original problem”. The loop consists of an approximation strategy that
starts with the initialization, establishing the invariant, then retains the invari-
ant while extending the scope by successive approximations to an ever larger
set of the input through repeated executions of the loop body, until it hits the
exit condition, signaling that it now covers the entire data and hence satis-
fies the postcondition. This explains that the various strategies of Section 2,
such as constant relaxation and uncoupling, are heuristics for weakening the
postcondition.

3.2 Boogie

Boogie, now in its second version, is both an intermediate verification language
and a verification tool.

The Boogie language combines a typed logical specification language with
an in-the-small imperative programming language with variables, procedures,
contracts, and annotations. The type system comprises a few basic primitive
types as well as type constructors such as one- and two-dimensional arrays.
It supports a relatively straightforward encoding of object-oriented language
constructs. Indeed, Boogie is part of the Spec# programming environment;
mappings have been defined for other programming languages, including Eiffel
[40] and C [39]. This suggests that the results described here can be generalized
to many other contexts.

The Boogie tool verifies conformance of a procedure to its specification by
generating verification conditions (VC) and feeding them to an automated theo-
rem prover (the standard one being Z3). The outcome of a verification attempt
can be successful or unsuccessful. In the latter case the tool provides some feed-
back on what might be wrong in the procedure, in particular by pointing out
what contracts or annotations it could not verify. Verification with Boogie is
sound but incomplete: a verified procedure is always guaranteed to be correct,
while an unsuccessful verification attempt might simply be due to limitations
of the technology.

3.2.1 The Boogie specification language

The Boogie specification language is essentially a typed predicate calculus with
equality and arithmetic. Correspondingly, formulas — that is, logic expres-
sions — are built by combining atomic constants, logic variables, and program
variables with relational and arithmetic operators, as well as with Boolean con-
nectives and quantifiers. For example, the following formula (from Section 2.1)
states that no element in array X within positions 1 and n is larger than v: in
other words, the array has maximum v.

∀ j : int • 1 ≤ j ∧ j ≤ n =⇒ X[j ] ≤ v
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The syntactic classes Id, Number, and Map represent constant and variable
identifiers, numbers, and mappings, respectively.

Complex formulas and expressions can be postulated in axioms and param-
eterized by means of logic functions. Functions are a means of introducing
encapsulation and genericity for formulas and complex expressions. For exam-
ple, the previous formula can be parameterized into function is max with the
following signature and definition:

function is max (m: int, A: array int, low: int, high : int)
returns ( bool )
{ ∀ j : int • low≤ j ∧ j ≤ high =⇒ A[j ] ≤ m }

Axioms constrain global constants, variables, and functions; they are useful
to supply Boogie with domain knowledge to facilitate inference and guide the
automated reasoning over non-trivial programs. In certain situations it might
for example be helpful to introduce the property that if an array has maximum
m over range [low..high] and the element in position high+1 is smaller than m

then m is also the maximum over range [low..high+ 1]. The following Boogie
axiom will express this:

axiom ( ∀m: int, A: array int, low: int, high : int •
is max(m, A, low, high) ∧ A[high + 1] <m

=⇒ is max (m, A, low, high+1) )

3.2.2 The Boogie programming language

A Boogie program is a collection of procedures. Each procedure consists of
a signature, a specification and (optionally) an implementation or body. The
signature gives the procedure a name and declares its formal input and output
arguments. The specification is a collection of contract clauses of three types:
frame conditions, preconditions, and postconditions.

A frame condition, introduced by keyword modifies, consists of a list of
global variables that can be modified by the procedure; it is useful in evaluating
the side-effects of procedure call within any context. A precondition, introduced
by the keyword requires, is a formula that is required to hold upon procedure
invocation. A postcondition, introduced by the keyword ensures, is a formula
that is guaranteed to hold upon successful termination of the procedure. For
example, procedure max v2, computing the maximum value in an array A given
its size n, has the following specification.

procedure max v2 (A: array int, n: int) returns (m: int)
requires n ≥ 1;
ensures is max (m, A, 1, n);

The implementation of a procedure consists of a declaration of local vari-
ables, followed by a sequence of (possibly labeled) program statements. Figure
1 shows a simplified syntax for Boogie statements. Statements of class Anno-
tation introduce checks at any program point: an assertion is a formula that
must hold of every execution that reaches it for the program to be correct and
an assumption is a formula whose validity at the program point is postulated.
Statements of classModification affect the value of program variables, by nonde-
terministically drawing a value for them (havoc), assigning them the value of an
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Statement ::= Assertion | Modification
| ConditionalBranch | Loop

Annotation ::= assert Formula | assume Formula
Modification ::= havoc VariableId | VariableId := Expression

| call [ VariableId+ := ] ProcedureId ( Expression* )
ConditionalBranch ::= if ( Formula ) Statement* [ else Statement* ]

Loop ::= while ( Formula ) Invariant* Statement*
Invariant ::= invariant Formula

Figure 1: Simplified abstract syntax of Boogie statements

expression (:=), or calling a procedure with actual arguments (call). The usual
conditional if statement controls the execution flow. Finally, the while state-
ment supports loop iteration, where any loop can be optionally annotated with
a number of Invariants (see Section 3.1). Boogie can check whether Definition
1 holds for any user-provided loop invariant.

The implementation of procedure max v2 is:

var i : int;
i := 1; m := A[1];
while (i≤ n)
{

if (m≤A[i ]) { m := A[i]; }
i := i + 1;

}

While the full Boogie language includes more types of statement, any Boogie
statement can be desugared into one of those in Figure 1. In particular, the only
looping construct we consider is the structured while; this choice simplifies the
presentation of our loop invariant inference technique and makes it closer as
if it was defined directly on a mainstream high-level programming language.
Also, there is a direct correspondence between Boogie’s while loop and Eiffel’s
from ... until loop, used in the examples of Section 2 and the definitions in
Section 3.1.

3.3 Notational conventions

subExp(φ, SubType) denotes the set of sub-expressions of formula φ that are of
syntactic type SubType. For example, subExp(is max(v,X,1,n),Map) denotes
all mapping sub-expressions in is max(v,X,1,n), that is only X[j ] .

replace(φ, old, new, ∗) denotes the formula obtained from φ by replacing ev-
ery occurrence of sub-expression old by expression new. Similarly, replace(φ, old,
new, n) denotes the formula obtained from φ by replacing only the n-th oc-
currence of sub-expression old by expression new, where the total ordering of
sub-expressions is given by a pre-order traversal of the expression parse tree.
For example, replace(is max(v,X,1,n), j, h, ∗) is:

∀ h : int • low≤ h ∧ h≤ high =⇒ A[h] ≤ m

while replace(is max(v,X,1,n), j, h, 4) is:

∀ j : int • low≤ j ∧ j ≤ high =⇒ A[h] ≤ m
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1 find invariants ( a procedure: PROCEDURE )
2 : SET OF [FORMULA]
3 do
4 Result := ∅
5 for each post in postconditions(a procedure) do
6 for each loop in outer loops(a procedure) do
7 −− compute all weakenings of post
8 −− according to chosen strategies
9 weakenings := build weakenings(post, loop)

10 for each formula in weakenings do
11 for each any loop in loops(a procedure) do
12 if is invariant(formula, any loop) then
13 Result := Result ∪ {formula}

Figure 2: Procedure find invariants

Given a while loop ℓ: while ( ... ) { Body }, targets(ℓ) denotes the set of its
targets : variables (including mappings) that can be modified by its Body; this
includes global variables that appear in themodifies clause of called procedures.

Given a procedure foo, variables(foo) denotes the set of all variables that
are visible within foo, that is its locals and any global variable.

A loop ℓ′ is nested within another loop ℓ, and we write ℓ′ ≺ ℓ, iff ℓ′ belongs
to the Body of ℓ. Notice that if ℓ′ ≺ ℓ then targets(ℓ′) ⊆ targets(ℓ). Given a
procedure foo, its outer while loops are those in its body that are not nested
within any other loop.

4 Generating loop invariants from postconditions

This section presents the loop invariant generation algorithm in some detail.

4.1 Main algorithm

The pseudocode in Figure 2 describes the main algorithm for loop-invariant
generation. The algorithm operates on a given procedure and returns a set of
formulas that are invariant of some loop in the procedure. Every postcondition
post among all postconditions postconditions(a procedure) of the procedure is
considered separately (line 5). This is a coarse-grained yet effective way of im-
plementing the term-dropping strategy outlined in Section 2.4: the syntax of
the specification language supports splitting postconditions into a number of
conjuncts, each introduced by the ensures keyword, hence each of these con-
juncts is weakened in isolation. It is reasonable to assume that the splitting into
ensures clauses performed by the user separates logically separated portions
of the postcondition, hence it makes sense to analyze each of them separately.
This assumption might fail, of course, and in such cases the algorithm can be
enhanced to consider more complex combinations of portions of the postcondi-
tion. However, one should only move to this more complex analysis if the basic
strategy — which is often effective — fails. This enhancement belongs to future
work.
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1 build weakenings ( post: FORMULA; loop: LOOP )
2 : SET OF [FORMULA]
3 do
4 Result := {post}
5 all subexpressions := subExp(post, Id) ∪
6 subExp(post,Number) ∪
7 subExp(post,Map)
8 for each constant in all subexpressions\targets(loop) do
9 for each variable in targets(loop) do

10 Result := Result ∪
11 coupled weakenings(post, constant, variable) ∪
12 uncoupled weakenings(post, constant, variable)

Figure 3: Procedure build weakenings

The algorithm of Figure 2 then considers every outer while loop (line 6).
For each of them, it computes a set of weakenings of postcondition post (line
9) according to the heuristics of Section 2. It then examines each weakening to
determine if it is invariant to any loop in the procedure under analysis (lines
10–13), and finally it returns the set Result of weakened postconditions that
are invariants to some loop. For is invariant(formula, loop), the check consists
of verifying whether initiation and consecution hold for formula with respect to
loop, according to Definition 1. How to do this in practice is non-trivial, because
loop invariants of different loops within the same procedure may interact in a
circular way: the validity of one of them can be established only if the validity
of the others is known already and vice versa.

This was the case of partition presented in Section 2.3. Establishing conse-
cution for the weakened postcondition in the outer loop requires knowing that
the same weakened postcondition is invariant to each of the two internal while
loops (lines 8–13) because they belong to the body of the outer while loop. At
the same time, establishing initiation for the first internal loop requires that
consecution holds for the outer while loop, as every new iteration of the exter-
nal loop initializes the first internal loop. Section 5 discusses a straightforward,
yet effective, solution to this problem.

4.2 Building weakened postconditions

Algorithm build weakenings(post, loop), described in Figure 3, computes a set
of weakened versions of postcondition formula post with respect to outer while
loop loop. It first includes the unchanged postcondition among the weakenings
(line 4). Then, it computes (lines 5–7) a list of sub-expressions of post made
of atomic variable identifiers (syntactic class Id), numeric constants (syntac-
tic class Number) and references to elements in arrays (syntactic class Map).
Each of these sub-expressions that loop does not modify (i.e., it is not one of
its targets) is a constant with respect to the loop. The algorithm then ap-
plies the constant relaxation heuristics of Section 2.1 by relaxing constant into
any variable among the loop’s targets (lines 8–9). More precisely, it computes
two sets of weakenings for each pair 〈constant, variable〉: in one uncoupling,
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1 coupled weakenings

2 ( post : FORMULA; constant, variable: EXPRESSION )
3 : SET OF [FORMULA]
4 do
5 Result := replace(post, constant, variable, ∗)
6 aged variable := aging(variable, loop)
7 Result := Result ∪
8 replace(post, constant, aged variable, ∗)

Figure 4: Procedure coupled weakenings

described in Section 2.3, is also applied (lines 12 and 11, respectively).
The fact that any target of the loop is a candidate for substitution justifies

our choice of considering only outer while loops: if a loop ℓ′ is nested within
another loop ℓ then targets(ℓ′) ⊆ targets(ℓ), so considering outer while loops is
a conservative approximation that does not overlook any possible substitution.

4.3 Coupled weakenings

The algorithm in Figure 4 applies the constant relaxation heuristics to postcon-
dition post without uncoupling. Hence, relaxing constant into variable simply
amounts to replacing every occurrence of constant by variable in post (line
5); i.e., replace(post, constant, variable, ∗) using the notation introduced in Sec-
tion 3.3. Afterward, the algorithm applies the other aging heuristics (introduced
in Section 2.2): it computes the “previous” value of variable in an execution
of loop (line 6) and it substitutes the resulting expression for constant in post

(lines 7–8).
While the implementation of function aging could be very complex we adopt

the following unsophisticated approach. For every possible acyclic execution
path in loop, we compute the symbolic value of variable with initial value v0
as a symbolic expression ǫ(v0). Then we obtain aging(variable, loop) by solving
the equation ǫ(v0) = variable for v0, for every execution path.2 For example, if
the loop simply increments variable by one, then ǫ(v0) = v0 + 1 and therefore
aging(variable, loop) = variable − 1. Again, while the example is unsophisti-
cated it is quite effective in practice; indeed, most of the times it is enough to
consider simple increments or decrements of variable to get a “good enough”
aged expression.

4.4 Uncoupled weakenings

The algorithm of Figure 5 is a variation of the algorithm of Figure 4 applying the
uncoupling heuristics outlined in Section 2.3. It achieves this by considering ev-
ery occurrence of constant in post separately when performing the substitution
of constant into variable (line 6). Everything else is as in the non-uncoupled
case; in particular, aging is applied to every candidate for substitution.

2Note that aging(variable, loop) is in general a set of expressions, so the notation at lines
6–8 in Figure 4 is a convenient shorthand.
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1 uncoupled weakenings

2 (post : FORMULA; constant, variable: EXPRESSION)
3 : SET OF [FORMULA]
4 do
5 Result := ∅; index := 1
6 for each occurrence of constant in post do
7 Result := Result ∪
8 {replace(post, constant, variable, index)}
9 aged variable := aging(variable, loop)

10 Result := Result ∪
11 {replace(post, constant, aged variable, index)}
12 index := index + 1

Figure 5: Procedure uncoupled weakenings

This implementation of uncoupling relaxes one occurrence of a constant at
a time. This is not the most general implementation of uncoupling, as in some
cases it might be useful to substitute different occurrences of the same constant
by different variables. This was the case of partition discussed in Section 2.3,
where relaxing two occurrences of the same constant Result into two differ-
ent variables was needed in order to get a valid invariant. Section 2.4 showed,
however, that the term-dropping heuristics would have made this “double” re-
laxation unnecessary for the procedure.

5 Implementation and experiments

We developed a command-line tool code-named gin-pink (Generation of INvari-
ants by PostcondItioN weaKening) implementing in Eiffel the loop-invariant
inference technique described in Section 4. While we plan to integrate gin-pink
into EVE (the Eiffel Verification Environment3) where it will analyze the code
resulting from the translation of Eiffel into Boogie [40], its availability as a stand-
alone tool makes it possible to use it for languages other than Eiffel provided a
Boogie translator is available.

gin-pink applies the algorithm of Figure 2 to some selected procedure in a
Boogie file provided by the user. After generating all weakened postconditions
it invokes the Boogie tool to determine which of them is indeed an invariant: for
every candidate invariant I, a new copy of the original Boogie file is generated
with I declared as invariant of all loops in the procedure under analysis. It then
repeats the following until either Boogie has verified all current declarations of
I in the file or no more instances of I exist in the procedure:

1. Use Boogie to check whether the current instances of I are verified invari-
ants, that is they satisfy initiation and consecution.

2. If any candidate fails this check, comment it out of the file.

In the end, the file contains all invariants that survive the check, as well as a
number of invariants that could not be checked in the form of comments. If

3http://eve.origo.ethz.ch
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no invariant survives or the verified invariants are unsatisfactory, the user can
still manually inspect the generated files to see if verification failed due to the
limited reasoning capabilities of Boogie.

When generating candidate invariants, gin-pink does not apply all heuris-
tics at once but it tries them incrementally, according to user-supplied options.
Typically, the user starts out with just constant relaxation and checks if some
non-trivial invariant is found. If not, the analysis is refined by gradually in-
troducing the other heuristics — and thus increasing the number of candidate
invariants as well. In the experiments below we briefly discuss how often and
to what extent this is necessary in practice.

Experiments Table 1 summarizes the results of a number of experiments
with gin-pink with a number of Boogie procedures obtained from Eiffel code.
We carried out the experimental evaluation as follows. First, we collected ex-
amples from various sources [29, 19, 33, 27, 3] and we manually completed the
annotations of every algorithm with full pre and postconditions as well as with
any loop invariant or intermediate assertion needed in the correctness proof.
Then, we coded and tried to verify the annotated programs in Boogie, sup-
plying some background theory to support the reasoning whenever necessary.
The latest Boogie technology cannot verify certain classes of properties with-
out a very sophisticated ad hoc background theory or without abstracting away
certain aspects of the implementation under verification. For example, in our
implementation of Bubblesort, Boogie had difficulties proving that the output
is a permutation of the input. Correspondingly, we omitted the (few) parts of
the specification that Boogie could not prove even with a detailedly annotated
program. Indeed, “completeness” (full functional correctness) should not be a
primary concern, because its significance depends on properties of the prover
(here Boogie), orthogonal to the task of inferring invariants. Finally, we ran
gin-pink on each of the examples after commenting out all annotations except
for pre and postconditions (but leaving the simple background theories in); in a
few difficult cases (discussed next) we ran additional experiments with some of
the annotations left in. After running the tests, we measured the relevance of
every automatically inferred invariant: we call an inferred invariant relevant if
the correctness proof needs it. Notice that our choice of omitting postcondition
clauses that Boogie cannot prove does not influence relevance, which only mea-
sures the fraction of inferred invariants that are useful for proving correctness.

For each experiment, Table 1 reports: the name of the procedure under
analysis; the length in lines of codes (the whole file including annotations and
auxiliary procedures and, in parentheses, just the main procedure); the total
number of loops (and the maximum number of nested loops, in parentheses); the
total number of variables modified by the loops (scalar variables/array or map
variables); the number of weakened postconditions (i.e., candidate invariants)
generated by the tool; how many invariants it finds; the number and percentage
of verified invariants that are relevant; the total run-time of gin-pink in seconds;
the source (if any) of the implementation and the annotations. The experiments
where performed on a PC equipped with an Intel Quad-Core 2.40 GHz CPU and
4 Gb of RAM, running Windows XP as guest operating system on a VirtualBox
virtual machine hosted by Ubuntu GNU/Linux 9.04 with kernel 2.6.28.

Most of the experiments already succeeded with the application of the most
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Procedure LOC # lp. m.v. cnd. inv. rel. T. Src.

Array Partitioning (v1) 58 (22) 1 (1) 2/1 38 9 3 ( 33%) 93
Array Partitioning (v2) 68 (40) 3(2) 2/1 45 2 2 (100%) 205 [29]
Array Stack Reversal 147 (34) 2 (1) 1/2 134 4 2 ( 50%) 529

Array Stack Reversal (ann.) 147 (34) 2 (1) 1/2 134 6 4 ( 67%) 516
Bubblesort 69 (29) 2(2) 2/1 14 2 2 (100%) 65 [33]

Coincidence Count 59 (29) 1 (1) 3/0 1351 1 1 (100%) 4304 [27]
Dutch National Flag 77 (43) 1 (1) 3/1 42 10 2 ( 20%) 117 [16]

Dutch National Flag (ann.) 77 (43) 1 (1) 3/1 42 12 4 ( 33%) 122 [16]
Majority Count 48 (37) 1 (1) 3/0 23 5 2 (40%) 62 [4, 32]

Max of Array (v1) 27 (17) 1 (1) 2/0 13 1 1 (100%) 30
Max of Array (v2) 27 (17) 1 (1) 2/0 7 1 1 (100%) 16

Plateau 53 (29) 1 (1) 3/0 31 6 3 ( 50%) 666 [19]
Sequential Search (v1) 34 (26) 1 (1) 3/0 45 9 5 ( 56%) 120
Sequential Search (v2) 29 (21) 1 (1) 3/0 24 6 6 (100%) 58
Shortest Path (ann.) 57 (44) 1 (1) 1/4 23 2 2 (100%) 53 [3]

Stack Search 196 (49) 2 (1) 1/3 102 3 3 (100%) 300
Sum of Array 26 (15) 1 (1) 2/0 13 1 1 (100%) 44

Topological Sort (ann.) 65 (48) 1 (1) 2/4 21 3 2 (67%) 101 [31]
Welfare Crook 53 (21) 1 (1) 3/0 20 2 2 (100%) 586 [19]

Table 1: Experiments with gin-pink.

basic weakening techniques. Procedure Coincidence Count is the only case that
required a more sophisticated uncoupling strategy where two occurrences of the
same constant within the same formula were weakened to two different aged
variables. This resulted in an explosion of the number of candidate invariants
and consequently in an experiment running for over an hour.

A few programs raised another difficulty, due to Boogie’s need for user-
supplied loop invariants to help automated deduction. Boogie cannot verify any
invariant in Shortest Path or Topological Sort without additional invariants ob-
tained by means other than the application of the algorithm itself. On the other
hand, the performance with programs Array Stack Reversal and Dutch National
Flag improves considerably if user-supplied loop invariants are included, but fair
results can be obtained even without any such annotation. Table 1 reports both
experiments, with and without user-supplied annotations.

More generally, Boogie’s reasoning abilities are limited by the amount of
information provided in the input file in the form of axioms and functions that
postulate sound inference rules for the program at hand. We tried to limit
this amount as much as possible by developing the necessary theories before
tackling invariant generation. In other words, the axiomatizations provided are
enough for Boogie to prove functional correctness with a properly annotated
program, but we did not strengthen them only to ameliorate the inference of
invariants. We believe that a richer axiomatization could have removed the need
for user-supplied invariants in the programs considered.

6 Discussion and related work

6.1 Discussion

The experiments in Section 5 provide a partial, yet significant, assessment of
the practicality and effectiveness of our technique for loop invariant inference.
Two important factors to evaluate any inference technique deserve comment:
relevance of the inferred invariants and scalability to larger programs.

A large portion of the invariants retrieved by gin-pink are relevant — i.e.,
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required for a functional correctness proof — and complex — i.e., involving
first-order quantification over several program elements. To some extent, this
is unsurprising because deriving invariants from postconditions ensures by con-
struction that they play a central role in the correctness proof and that they
are at least as complex as the postcondition.

As for scalability to larger programs, the main problem is the combinatorial
explosion of the candidate invariants to be checked as the number of variables
that are modified by the loop increases. In properly engineered code, each
routine should not be too large or call too many other routines. The empirical
observations mentioned in [24, Sec. 9] seem to support this assumption, which
ensures that the candidate invariants do not proliferate and hence the inference
technique can scale within reasonable limits. The examples of Section 5 are
not trivial in terms of length and complexity of loops and procedures, if the
yardstick is well-modularized code. On the other hand, there is plenty of room
for finessing the application order of the various weakening heuristics in order
to analyze the most “promising” candidates first; the Houdini approach [17]
might also be useful in this context. The investigation of these aspects belongs
to future work.

6.2 Limitations

Relevant invariants obtained by postcondition weakening are most of the times
significant, practically useful, and complementary to a large extent to the cate-
gories that are better tackled by other methods (see next sub-section). Still, the
postcondition weakening technique cannot obtain every relevant invariant. Fail-
ures have two main different origins: conceptual limitations and shortcomings
of the currently used technology.

The first category covers invariants that are not expressible as weakening of
the postcondition. This is the case, in particular, whenever an invariant refers
to a local variable whose final state is not mentioned in the postcondition. For
example, the postcondition of procedure max in Section 2.1 does not mention
variable i because its final value n is not relevant for the correctness. Corre-
spondingly, invariant i ≤ n — which is involved in the partial correctness proof
— cannot be obtained by postcondition weakening. A potential solution to
these conceptual limitations is two-fold: on the one hand, many of these invari-
ants that escape postcondition weakening can be obtained reliably with other
inference techniques that do not require postconditions — this is the case of
invariant i ≤ n in procedure max which is retrieved automatically by Boogie.
On the other hand, if we can augment postconditions with complete information
about local variables, the weakening approach can have a chance to work. In
the case of max, a dynamic technique could suggest the supplementary post-
condition i ≤ n ∧ i ≥n which would give the sought invariant by dropping the
second conjunct.

Shortcomings of the second category follow from limitations of state-of-the-
art automated theorem provers, which prevent reasoning about certain inter-
esting classes of algorithms. As a simple example, consider the following im-
plementation of Newton’s algorithm for the square root of a real number, more
precisely the variant known as the Babylonian algorithm (we ignore numerical
precision issues) [29]:

17



square root (a: REAL): REAL
require a ≥ 0
local y: REAL
do

from Result := 1; y := a
until Result = y
loop

Result := (Result + y)/2
y := a / Result

end
ensure Result ≥ 0 ∧ Result ∗ Result = a

Postcondition weakening would correctly find invariantResult ∗ y = a (by term
dropping and uncoupling), but Boogie cannot verify that it is an invariant be-
cause the embedded theorem prover Z3 does not handle reasoning about prop-
erties of products of numeric variables [27]. If we can verify by other means
that a candidate is indeed an invariant, the postcondition weakening technique
of this paper would be effective over additional classes of programs.

6.3 Related work

The amount of research work on the automated inference of invariants is formi-
dable and spread over more than three decades; this reflects the cardinal role
that invariants play in the formal analysis and verification of programs. This
section outlines a few fundamental approaches and provides some evidence that
this paper’s technique is complementary, in terms of kinds of invariants inferred,
to previously published approaches. For more references, in particular regarding
software engineering applications, see the “related work” section of [15].

Static methods Historically, the earliest methods for invariant inference where
static as in the pioneering work of Karr [23]. Abstract interpretation and the
constraint-based approach are the two most widespread frameworks for static
invariant inference (see also [6, Chap. 12]).

Abstract interpretation is, roughly, a symbolic execution of programs over
abstract domains that over-approximates the semantics of loop iteration. Since
the seminal work by Cousot and Cousot [10], the technique has been updated
and extended to deal with features of modern programming languages such as
object-orientation and heap memory-management (e.g., [28, 8]).

Constraint-based techniques rely on sophisticated decision procedures over
non-trivial mathematical domains (such as polynomials or convex polyhedra)
to represent concisely the semantics of loops with respect to certain template
properties.

Static methods are sound — as is the technique introduced in this paper
— and often complete with respect to the class of invariants that they can
infer. Soundness and completeness are achieved by leveraging the decidabil-
ity of the underlying mathematical domains they represent; this implies that
the extension of these techniques to new classes of properties is often limited
by undecidability. In fact, state-of-the-art static techniques can mostly infer
invariants in the form of “well-behaving” mathematical domains such as linear
inequalities [11, 9], polynomials [38, 37], restricted properties of arrays [7, 5, 20],
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and linear arithmetic with uninterpreted functions [1]. Loop invariants in these
forms are extremely useful but rarely sufficient to prove full functional correct-
ness of programs. In fact, one of the main successes of abstract interpretation
has been the development of sound but incomplete tools [2] that can verify the
absence of simple and common programming errors such as division by zero or
void dereferencing. Static techniques for invariant inference are now routinely
part of modern static checkers such as ESC/Java [18], Boogie/Spec# [26], and
Why/Krakatoa/Caduceus [22].

The technique of the present paper is complementary to most static tech-
niques in terms of the kinds of invariant that it can infer, because it derives
invariants directly from postconditions. In this respect “classic” static inference
and our inference by means of postcondition weakening can fruitfully work to-
gether to facilitate functional verification; to some extent this happens already
when complementing Boogie’s built-in facilities for invariant inference with our
own technique.

[34, 21, 13, 25, 24] are the approaches that, for different reasons, share more
similarities with ours. To our knowledge, [34, 21, 13, 25] are the only other works
applying a static approach to derive loop invariants from annotations. [21] re-
lies on user-provided assertions nested within loop bodies and essentially tries
to check whether they hold as invariants of the loop. This does not release the
burden of writing annotations nested within the code, which is quite complex
as opposed to providing only contracts in the form of pre and postconditions.
In practice, the method of [21] works only when the user-provided annotations
are very close to the actual invariant; in fact the few examples where the tech-
nique works are quite simple and the resulting invariants are usually obtainable
by other techniques that do not need annotations. [13] briefly discusses deriv-
ing the invariant of a for loop from its postcondition, within a framework for
reasoning about programs written in a specialized programming language. [25]
also leverages specifications to derive intermediate assertions, but focusing on
lower-level and type-like properties of pointers. On the other hand, [34] derives
candidate invariants from postconditions in a very different setting than ours,
with symbolic execution and model-checking techniques.

Finally, [24] derives complex loop invariants by first encoding the loop se-
mantics as recurring relations and then instructing a rewrite-based theorem
prover to try to remove the dependency on the iterator variable(s) in the rela-
tions. It shares with our work a practical attitude that favors powerful heuristics
over completeness and leverages state-of-the-art verification tools to boost the
inference of additional annotations.

Dynamic methods More recently, dynamic techniques have been applied
to invariant inference. The Daikon approach of Ernst et al. [15] showed that
dynamic inference is practical and sprung much derivative work (e.g., [35, 12, 36]
and many others). In a nutshell, the Daikon approach consists in testing a large
number of candidate properties against several program runs; the properties
that are not violated in any of the runs are retained as “likely” invariants.
This implies that the inference is not sound but only an “educated guess”:
dynamic invariant inference is to static inference what testing is to program
proofs. Nonetheless, just like testing is quite effective and useful in practice,
dynamic invariant inference is efficacious and many of the guessed invariants
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are indeed sound.
Our approach shares with the Daikon approach the idea of guessing a candi-

date invariant and testing it a posteriori. There is an obvious difference between
our approach, which retains only invariants that can be soundly verified, and
dynamic inference techniques, which rely on a finite set of tests. A deeper differ-
ence is that Daikon guesses candidate invariants almost blindly, by trying out a
pre-defined set of user-provided templates (including comparisons between vari-
ables, simple inequalities, and simple list comprehensions). On the contrary, our
technique assumes the availability of contracts (and postconditions in particular)
and leverages it to restrict quickly the state-space of search and get to good-
quality loop invariants in a short time. As it is the case for static techniques,
dynamic invariant inference methods can also be usefully combined with our
technique, in such a way that invariants discovered by dynamic methods boost
the application of the postcondition-weakening approach.

Program construction Classical formal methods for program construction
[14, 19, 29, 32] have first described the idea of deriving loop invariants from post-
conditions. Several of the heuristics that we discussed in Section 2 are indeed
a rigorous and detailed rendition of some ideas informally presented in [29, 19].
In addition, the focus of the seminal work on program construction is to derive
systematically an implementation from a complete functional specification. In
this paper the goal is instead to enrich the assertions of an already implemented
program and to exploit its contracts to annotate the code with useful invariants
that facilitate a functional correctness proof.

7 Conclusion and future work

As we hope to have shown, taking advantage of postconditions makes it possible
to obtain loop invariants through effective techniques — not as predictable as
the algorithms that yield verification conditions for basic constructs such as
assignments and conditionals, but sufficiently straightforward to be applied by
tools, and yielding satisfactory results in many practical cases.

The method appears general enough, covering most cases in which a pro-
grammer with a strong background in Hoare logic would be able at some effort
to derive the invariant, but a less experienced one would be befuddled. So it
does appear to fill what may be the biggest practical obstacle to automatic
program proving.

The method requires that the programmer (or a different person, the “proof
engineer”, complementing the programmer’s work, as testers traditionally do)
provide the postcondition for every routine. As has been discussed in Section 1,
we feel that this is a reasonable expectation for serious development, reflected
in the Design by Contract methodology. For some people, however, the very
idea of asking programmers or other members of a development team to come
up with contracts of any kind is unacceptable. With such an a priori assump-
tion, the results of this paper will be of little practical value; the only hope is
to rely on invariant inference techniques that require the program only (com-
plemented, in approaches such as Daikon, by test results and a repertoire of
invariant patterns).
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Some of the results that the present approach yields (sometimes trivially)
when it is applied manually, are not yet available through the tools used in the
current implementation of gin-pink. Although undecidability results indicate
that program proving will never succeed in all possible cases, it is fair to expect
that many of these limitations — such as those following from Z3’s current
inability to handle properties of products of variables — will go away as proof
technology continues to progress.

We believe that the results reported here can play a significant role in the
effort to make program proving painless and even matter-of-course. So in ad-
dition to the obvious extensions — making sure the method covers all effective
patterns of postcondition weakening, and taking advantage of progress in the-
orem prover technology — our most important task for the near future is to
integrate the results of this article, as unobtrusively as possible for the practic-
ing programmer, in the background of a verification environment for contracted
object-oriented software components.
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