HEREDITARY ZERO-ONE LAWS FOR GRAPHS

SAHARON SHELAH AND MOR DORON

Abstract

We consider the random graph $M_{\bar{p}}^{n}$ on the set [n], were the probability of $\{x, y\}$ being an edge is $p_{|x-y|}$, and $\bar{p}=\left(p_{1}, p_{2}, p_{3}, \ldots\right)$ is a series of probabilities. We consider the set of all \bar{q} derived from \bar{p} by inserting 0 probabilities to \bar{p}, or alternatively by decreasing some of the p_{i}. We say that \bar{p} hereditarily satisfies the 0-1 law if the 0-1 law (for first order logic) holds in $M_{\bar{q}}^{n}$ for any \bar{q} derived from \bar{p} in the relevant way described above. We give a necessary and sufficient condition on \bar{p} for it to hereditarily satisfy the 0-1 law.

1. Introduction

In this paper we will investigate the random graph on the set $[n]=\{1,2, \ldots, n\}$ were the probability of a pair $i \neq j \in[n]$ being connected by an edge depends only on their distance $|i-j|$. Let us define:

Definition 1.1. For a sequence $\bar{p}=\left(p_{1}, p_{2}, p_{3}, \ldots\right)$ where each p_{i} is a probability i.e. a real in $[0,1]$, let $M_{\bar{p}}^{n}$ be the random graph defined by:

- The set of vertices is $[n]=\{1,2, \ldots, n\}$.
- For $i, j \leq n, i \neq j$ the probability of $\{i, j\}$ being an edge is $p_{|i-j|}$.
- All the edges are drawn independently.

If \mathfrak{L} is some logic, we say that $M_{\bar{p}}^{n}$ satisfies the $0-1$ law for the logic \mathfrak{L} if for each sentence $\psi \in \mathfrak{L}$ the probability that ψ holds in $M_{\bar{p}}^{n}$ tends to 0 or 1 , as n approaches ∞. The relations between properties of \bar{p} and the asymptotic behavior of $M_{\bar{p}}^{n}$ were investigated in [1]. It was proved there that for L, the first order logic in the vocabulary with only the adjacency relation, we have:

Theorem 1.2. (1) Assume $\bar{p}=\left(p_{1}, p_{2}, \ldots\right)$ is such that $0 \leq p_{i}<1$ for all $i>0$ and let $f_{\bar{p}}(n):=\log \left(\prod_{i=1}^{n}\left(1-p_{i}\right)\right) / \log (n)$. If $\lim _{n \rightarrow \infty} f_{\bar{p}}(n)=0$ then $M_{\bar{p}}^{n}$ satisfies the 0-1 law for L.
(2) The demand above on $f_{\bar{p}}$ is the best possible. Formally for each $\epsilon>0$, there exists some \bar{p} with $0 \leq p_{i}<1$ for all $i>0$ such that $\left|f_{\bar{p}}(n)\right|<\epsilon$ but the $0-1$ law fails for $M_{\bar{p}}^{n}$.
Part (1) above gives a necessary condition on \bar{p} for the 0-1 law to hold in $M_{\bar{p}}^{n}$, but the condition is not sufficient and a full characterization of \bar{p} seems to be harder. However we give below a complete characterization of \bar{p} in terms of the 0-1 law in $M_{\bar{q}}^{n}$ for all \bar{q} "dominated by $\bar{p} "$, in the appropriate sense. Alternatively one may ask which of the asymptotic properties of $M_{\bar{p}}^{n}$ are kept under some operations on \bar{p}. The notion of "domination" or the "operations" are taken from examples of the failure of the 0-1 law, and specifically the construction for part (2) above. Those

[^0]are given in [1] by either adding zeros to a given sequence or decreasing some of the members of a given sequence. Formally define:

Definition 1.3. For a sequence $\bar{p}=\left(p_{1}, p_{2}, \ldots\right)$:
(1) $\operatorname{Gen}_{1}(\bar{p})$ is the set of all sequences $\bar{q}=\left(q_{1}, q_{2}, \ldots\right)$ obtained from \bar{p} by adding zeros to \bar{p}. Formally $\bar{q} \in \operatorname{Gen}_{1}(\bar{p})$ iff for some increasing $f: \mathbb{N} \rightarrow \mathbb{N}$ we have for all $l>0$

$$
q_{l}= \begin{cases}p_{i} & F(i)=l \\ 0 & l \notin \operatorname{Im}(f)\end{cases}
$$

(2) $\operatorname{Gen}_{2}(\bar{p}):=\left\{\bar{q}=\left(q_{1}, q_{2}, \ldots\right): l>0 \Rightarrow q_{l} \in\left[0, p_{l}\right]\right\}$.
(3) $\operatorname{Gen}_{3}(\bar{p}):=\left\{\bar{q}=\left(q_{1}, q_{2}, \ldots\right): l>0 \Rightarrow q_{l} \in\left\{0, p_{l}\right\}\right\}$.

Definition 1.4. Let $\bar{p}=\left(p_{1}, p_{2}, \ldots\right)$ be a sequence of probabilities and \mathfrak{L} be some logic. For a sentence $\psi \in \mathfrak{L}$ denote by $\operatorname{Pr}\left[M_{\bar{p}}^{n} \models \psi\right]$ the probability that ψ holds in $M_{\bar{p}}^{n}$.
(1) We say that $M_{\bar{p}}^{n}$ satisfies the $0-1$ law for \mathfrak{L}, if for all $\psi \in \mathfrak{L}$ the limit $\lim _{n \rightarrow \infty} \operatorname{Pr}\left[M_{\bar{p}}^{n} \models \psi\right]$ exists and belongs to $\{0,1\}$.
(2) We say that $M_{\bar{p}}^{n}$ satisfies the convergence law for \mathfrak{L}, if for all $\psi \in \mathfrak{L}$ the limit $\lim _{n \rightarrow \infty} \operatorname{Pr}\left[M_{\bar{p}}^{n} \models \psi\right]$ exists.
(3) We say that $M_{\bar{p}}^{n}$ satisfies the weak convergence law for \mathfrak{L}, if for all $\psi \in \mathfrak{L}$, $\limsup _{n \rightarrow \infty} \operatorname{Pr}\left[M_{\bar{p}}^{n} \models \psi\right]-\liminf _{n \rightarrow \infty} \operatorname{Pr}\left[M_{\bar{p}}^{n} \models \psi\right]<1$.
(4) For $i \in\{1,2,3\}$ we say that $\bar{p} i$-hereditarily satisfies the 0 - 1 law for \mathfrak{L}, if for all $\bar{q} \in \operatorname{Gen}_{i}(\bar{p}), M_{\bar{q}}^{n}$ satisfies the 0-1 law for \mathfrak{L}.
(5) Similarly to (4) for the convergence and weak convergence law.

The main theorem of this paper is the following strengthening of theorem 1.2 ,
Theorem 1.5. Let $\bar{p}=\left(p_{1}, p_{2}, \ldots\right)$ be such that $0 \leq p_{i}<1$ for all $i>0$, and $j \in\{1,2,3\}$. Then $\bar{p} j$-hereditarily satisfies the $0-1$ law for L iff

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \log \left(\prod_{i=1}^{n}\left(1-p_{i}\right)\right) / \log n=0 \tag{*}
\end{equation*}
$$

Moreover we may replace above the "0-1 law" by the "convergence law" or "weak convergence law".

Note that the 0-1 law implies the convergence law which in turn implies the weak convergence law. Hence it is enough to prove the "if" direction for the 0-1 law and the "only if" direction for the weak convergence law. Also note that the "if" direction is an immediate conclusion of Theorem 1.2 (in the case $j=1$ it is stated in [1] as a corollary at the end of section 3). The case $j=1$ is proved in section 2 , and the case $j \in\{2,3\}$ is proved in section 3 . In section 4 we deal with the case $U^{*}(\bar{p}):=\left\{i: p_{i}=1\right\}$ is not empty. We give an almost full analysis of the hereditary $0-1$ law in this case as well. The only case which is not fully characterized is the case $j=1$ and $\left|U^{*}(\bar{p})\right|=1$. We give some results regarding this case in section 5 . The case $j=1$ and $\left|U^{*}(\bar{p})\right|=1$ and the case that the successor relation belongs to the dictionary, will be dealt with in [2]. The following table summarizes the results in this article regarding the j-hereditary laws.

	$\left\|U^{*}\right\|=\infty$	$2 \leq\left\|U^{*}\right\|<\infty \quad\| \| U^{*} \mid=1$	$\left\|U^{*}\right\|=0$	
$j=1$	The weak convergence law fails	The $0-1$ law holds See $\hat{\mathbb{1}}$ section $\left\{l: 0<p_{l}<1\right\}=\emptyset$ 5	$\lim _{n \rightarrow \infty} \frac{\log \left(\prod_{i=1}^{n}\left(1-p_{i}\right)\right)}{\mathbb{1}}=0$	
$j=2$		$\begin{aligned} & \text { The } 0-1 \text { law holds } \\ & \begin{array}{l} \\| \\ \left\|\left\{l: p_{l}>0\right\}\right\| \leq 1 \end{array} \end{aligned}$	The 0-1 law holds I The convergence law holds	
$j=3$		$\begin{aligned} & \text { The } 0-1 \text { law holds } \\ & \left\{\begin{array}{l} \mathbb{1} \end{array}\right. \\ & \left\{l: 0<p_{l}<1\right\}=\emptyset \end{aligned}$	The weak convergence law holds	

Convention 1.6. Formally speaking Definition 1.1 defines a probability on the space of subsets of $G^{n}:=\{G: G$ is a graph with vertex set $[n]\}$. If H is a subset of G^{n} we denote its probability by $\operatorname{Pr}\left[M_{\bar{p}}^{n} \in H\right]$. If ϕ is a sentence in some logic we write $\operatorname{Pr}\left[M_{\bar{p}}^{n} \models \phi\right]$ for the probability of $\left\{G \in G^{n}: G \models \phi\right\}$. Similarly if A_{n} is some property of graphs on the set of vertexes $[n]$, then we write $\operatorname{Pr}\left[A_{n}\right]$ or $\operatorname{Pr}\left[A_{n}\right.$ holds in $\left.M_{\bar{p}}^{n}\right]$ for the probability of the set $\left\{G \in G^{n}: G\right.$ has the property $\left.A_{n}\right\}$.
Notation 1.7. (1) \mathbb{N} is the set of natural numbers (including 0).
(2) n, m, r, i, j and k will denote natural numbers. l will denote a member of \mathbb{N}^{*} (usually an index).
(3) p, q and similarly p_{l}, q_{l} will denote probabilities i.e. reals in $[0,1]$.
(4) ϵ, ζ and δ will denote positive reals.
(5) $L=\{\sim\}$ is the vocabulary of graphs i.e \sim is a binary relation symbol. All L-structures are assumed to be graphs i.e. \sim is interpreted by a symmetric non-reflexive binary relation.
(6) If $x \sim y$ holds in some graph G, we say that $\{x, y\}$ is an edge of G or that x and y are "connected" or "neighbors" in G.

2. Adding zeros

In this section we prove theorem 1.5 for $j=1$. As the " if " direction is immediate from Theorem 1.2 it remains to prove that if $(*)$ of 1.5 fails then the $0-1$ law for L fails for some $\bar{q} \in \operatorname{Gen}_{1}(\bar{p})$. In fact we will show that it fails "badly" i.e. for some $\psi \in L, \operatorname{Pr}\left[M_{\bar{q}}^{n} \models \psi\right]$ approaches both 0 and 1 simultaneously. Formally:
Definition 2.1. (1) Let ψ be a sentence in some logic \mathfrak{L}, and $\bar{q}=\left(q_{1}, q_{2}, \ldots\right)$ be a series of probabilities. We say that ψ holds infinitely often in $M_{\bar{q}}^{n}$ if $\lim \sup _{n \rightarrow \infty} \operatorname{Prob}\left[M_{\bar{q}}^{n} \models \psi\right]=1$.
(2) We say that the 0-1 law for \mathfrak{L} strongly fails in $M_{\bar{q}}^{n}$, if for some $\psi \in \mathfrak{L}$ both ψ and $\neg \psi$ hold infinitely often in $M_{\bar{q}}^{n}$.
Obviously the $0-1$ law strongly fails in some $M_{\bar{q}}^{n}$ iff $M_{\bar{q}}^{n}$ does not satisfy the weak semi $0-1$ law. Hence in order to prove Theorem 1.5 for $j=1$ it is enough if we prove:
Lemma 2.2. Let $\bar{p}=\left(p_{1}, p_{2}, \ldots\right)$ be such that $0 \leq p_{i}<1$ for all $i>0$, and assume that (*) of $\overline{1.5}$ fails. Then for some $\bar{q} \in \operatorname{Gen}_{1}(\bar{p})$ the $0-1$ law for L strongly fails in $M_{\bar{q}}^{n}$.

In the remainder of this section we prove Lemma 2.2] We do so by inductively constructing \bar{q}, as the limit of a series of finite sequences. Let us start with some basic definitions:

Definition 2.3. (1) Let \mathfrak{P} be the set of all, finite or infinite, sequences of probabilities. Formally each $\bar{p} \in \mathfrak{P}$ has the form $\left\langle p_{l}: 0<l<n_{\bar{p}}\right\rangle$ where each $p_{l} \in[0,1]$ and $n_{\bar{p}}$ is either ω (the first infinite ordinal) or a member of $\mathbb{N} \backslash\{0,1\}$. Let $\mathfrak{P}^{\text {inf }}=\left\{\bar{p} \in \mathfrak{P}: n_{\bar{p}}=\omega\right\}$, and $\mathfrak{P}^{\text {fin }}:=\mathfrak{P} \backslash \mathfrak{P}^{\text {inf }}$.
(2) For $\bar{q} \in \mathfrak{P}^{\text {fin }}$ and increasing $f:\left[n_{\bar{q}}\right] \rightarrow \mathbb{N}$, define $\bar{q}^{f} \in \mathfrak{P}^{\text {fin }}$ by $n_{\bar{q}^{f}}=f\left(n_{\bar{q}}\right)$, $\left(\bar{q}^{f}\right)_{l}=q_{i}$ if $f(i)=l$ and $\left(\bar{q}^{f}\right)_{l}=0$ if $l \notin \operatorname{Im}(f)$.
(3) For $\bar{p} \in \mathfrak{P}^{\text {inf }}$ and $r>0$, let $\operatorname{Gen}_{1}^{r}(\bar{p}):=\left\{\bar{q} \in \mathfrak{P}^{\text {fin }}\right.$: for some increasing f : $\left.[r+1] \rightarrow \mathbb{N},\left(\left.\bar{p}\right|_{[r]}\right)^{f}=\bar{q}\right\}$.
(4) For $\bar{p}, \bar{p}^{\prime} \in \mathfrak{P}$ denote $\bar{p} \triangleleft \bar{p}^{\prime}$ if $n_{\bar{p}}<n_{\bar{p}^{\prime}}$ and for each $l<n_{\bar{p}}, p_{l}=p_{l}^{\prime}$.
(5) If $\bar{p} \in \mathfrak{P}^{\text {fin }}$ and $n>n_{\bar{p}}$, we can still consider $M_{\bar{p}}^{n}$ by putting $p_{l}=0$ for all $l \geq n_{\bar{p}}$.
Observation 2.4. (1) Let $\left\langle\bar{p}_{i}: i \in \mathbb{N}\right\rangle$ be such that each $\bar{p}_{i} \in \mathfrak{P}^{\text {fin }}$, and assume that $i<j \in \mathbb{N} \Rightarrow \bar{p}_{i} \triangleleft \bar{p}_{j}$. Then $\bar{p}=\cup_{i \in \mathbb{N}} \bar{p}_{i}$ (i.e. $p_{l}=\left(p_{i}\right)_{l}$ for some \bar{p}_{i} with $n_{\bar{p}_{i}}>l$) is well defined and $\bar{p} \in \mathfrak{P}^{\text {inf }}$.
(2) Assume further that $\left\langle r_{i}: i \in \mathbb{N}\right\rangle$ is non-decreasing and unbounded, and that $\bar{p}_{i} \in G e n_{1}^{r_{i}}\left(\bar{p}^{\prime}\right)$ for some fixed $\bar{p}^{\prime} \in \mathfrak{P}^{i n f}$, then $\cup_{i \in \mathbb{N}} \bar{p}_{i} \in \operatorname{Gen}_{1}\left(\bar{p}^{\prime}\right)$.
We would like our graphs $M_{\bar{q}}^{n}$ to have a certain structure, namely that the number of triangles in $M_{\bar{q}}^{n}$ is $o(n)$ rather then say $o\left(n^{3}\right)$. we can impose this structure by making demands on \bar{q}. This is made precise by the following:
Definition 2.5. A sequence $\bar{q} \in \mathfrak{P}$ is called proper (for l^{*}), if:
(1) l^{*} and $2 l^{*}$ are the first and second members of $\left\{0<l<n_{\bar{q}}: q_{l}>0\right\}$.
(2) Let $l^{* *}=3 l^{*}+2$. If $l<n_{\bar{q}}, l \notin\left\{l^{*}, 2 l^{*}\right\}$ and $q_{l}>0$, then $l \equiv 1(\bmod l)^{* *}$.

For $\bar{q}, \bar{q}^{\prime} \in \mathfrak{P}$ we write $\bar{q} \triangleleft^{\text {prop }} \bar{q}^{\prime}$ if $\bar{q} \triangleleft \bar{q}^{\prime}$, and both \bar{q} and \bar{q}^{\prime} are proper.
Observation 2.6. (1) If $\left\langle\bar{p}_{i}: i \in \mathbb{N}\right\rangle$ is such that each $\bar{p}_{i} \in \mathfrak{P}$, and $i<j \in$ $\mathbb{N} \Rightarrow \bar{p}_{i} \triangleleft^{\text {prop }} \bar{p}_{j}$, then $\bar{p}=\cup_{i \in \mathbb{N}} \bar{p}_{i}$ is proper.
(2) Assume that $\bar{q} \in \mathfrak{P}$ is proper for l^{*} and $n \in \mathbb{N}$. Then the following event holds in $M_{\bar{q}}^{n}$ with probability 1:
$(*)_{\bar{q}, l^{*}}$ If $m_{1}, m_{2}, m_{3} \in[n]$ and $\left\{m_{1}, m_{2}, m_{3}\right\}$ is a triangle in $M_{\bar{q}}^{n}$, then $\left\{m_{1}, m_{2}, m_{3}\right\}=$ $\left\{l, l+l^{*}, l+2 l^{*}\right\}$ for some $l>0$.

We can now define the sentence ψ for which we have failure of the 0-1 law.
Definition 2.7. Let k be an even natural number. Let ψ_{k} be the L sentence "saying": There exists $x_{0}, x_{1}, \ldots, x_{k}$ such that:

- $\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ is without repetitions.
- For each even $0 \leq i<k,\left\{x_{i}, x_{i+1}, x_{i+2}\right\}$ is a triangle.
- The valency of x_{0} and x_{k} is 2 .
- For each even $0<i<k$ the valency of x_{i} is 4 .
- For each odd $0<i<k$ the valency of x_{i} is 2.

If the above holds (in a graph G) we say that $\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ is a chain of triangles (in G).
Definition 2.8. Let $n \in \mathbb{N}, k \in \mathbb{N}$ be even and $l^{*} \in[n]$. For $1 \leq m<n-k \cdot l^{*}$ a sequence $\left(m_{0}, m_{1}, \ldots, m_{k}\right)$ is called a candidate of type $\left(n, l^{*}, k, m\right)$ if it is without repetitions, $m_{0}=m$ and for each even $0 \leq i<k,\left\{m_{i}, m_{i+1}, m_{i+2}\right\}=\left\{l, l+l^{*}, l+\right.$ $\left.2 l^{*}\right\}$ for some $l>0$. Note that for given $\left(n, l^{*}, k, m\right)$, there are at most 4 candidates of type $\left(n, l^{*}, k, m\right)$ (and at most 2 if $k>2$).

Claim 2.9. Let $n \in \mathbb{N}, k \in \mathbb{N}$ be even, and $\bar{q} \in \mathfrak{P}$ be proper for l^{*}. For $1 \leq$ $m<n-k \cdot l^{*}$ let $E_{\bar{q}, m}^{n}$ be the following event (on the probability space $M_{\bar{q}}^{n}$): "No candidate of of type $\left(n, l^{*}, k, m\right)$ is a chain of triangles." Then $M_{\bar{q}}^{n}$ satisfies with probability 1: $M_{\bar{q}}^{n} \models \neg \psi_{k}$ iff $M_{\bar{q}}^{n} \models \bigwedge_{1 \leq m<n-k \cdot l^{*}} E_{\bar{q}, m}^{n}$
Proof. The "only if" direction is immediate. For the "if" direction note that by 2.6(2), with probability 1, only a candidate can be a chain of triangles, and the claim follows immediately.

The following claim shows that by adding enough zeros at the end of \bar{q} we can make sure that ψ_{k} holds in $M_{\bar{q}}^{n}$ with probability close to 1 . Note that we do not make a "strong" use of the properness of \bar{q}, i.e we do not use item (2) of Definition 2.5 .

Claim 2.10. Let $\bar{q} \in \mathfrak{P}^{\text {fin }}$ be proper for $l^{*}, k \in \mathbb{N}$ be even, and $\zeta>0$ be some rational. Then there exists $\bar{q}^{\prime} \in \mathfrak{P}^{\text {fin }}$ such that $\bar{q} \triangleleft^{\text {prop }} \bar{q}^{\prime}$ and $\operatorname{Pr}\left[M_{\bar{q}^{\prime}}^{n} \models \psi_{k}\right] \geq$ $1-\zeta$.

Proof. For $n>n_{\bar{q}}$ denote by \bar{q}^{n} the member of \mathfrak{P} with $n_{\bar{q}^{n}}=n$ and $\left(q^{n}\right)_{l}$ is q_{l} if $l<n_{\bar{q}}$ and 0 otherwise. Note that $\bar{q} \triangleleft^{\text {prop }} \bar{q}^{n}$, hence if we show that for n large enough we have $\operatorname{Pr}\left[M_{\bar{q}^{n}}^{n} \models \psi_{k}\right] \geq 1-\zeta$ then we will be done by putting $\bar{q}^{\prime}=\bar{q}^{n}$. Note that (recalling Definition [2.3(5)) $M_{\bar{q}}^{n}=M_{\bar{q}^{n}}^{n}$ so below we may confuse between them. Now set $n^{*}=\max \left\{n_{\bar{q}}, k \cdot l^{*}\right\}$. For any $n>n^{*}$ and $1 \leq m \leq n-n^{*}$ consider the sequence $s(m)=\left(m, m+l^{*}, m+2 l^{*}, \ldots, m+k \cdot l^{*}\right)$ (note that $s(m)$ is a candidate of type $\left(n, l^{*}, k, m\right)$). Denote by E_{m} the event that $s(m)$ is a chain of triangles (in $\left.M_{\bar{q}}^{n}\right)$. We then have:

$$
\operatorname{Pr}\left[M_{\bar{q}}^{n} \models E_{m}\right] \geq\left(q_{l^{*}}\right)^{k} \cdot\left(q_{2 l^{*}}\right)^{k / 2} \cdot\left(\prod_{l=1}^{n_{\bar{q}}-1}\left(1-p_{l}\right)\right)^{2(k+1)} .
$$

Denote the expression on the right by $p_{\bar{q}}^{*}$ and note that it is positive and depends only on k and \bar{q} (but not on n). Now assume that $n>6 \cdot n^{*}$ and that $1 \leq m<m^{\prime} \leq$ $n-n^{*}$ are such that $m^{\prime}-m>2 \cdot n^{*}$. Then the distance between the sequences $s(m)$ and $s\left(m^{\prime}\right)$ is larger than $n_{\bar{q}}$ and hence the events E_{m} and $E_{m^{\prime}}$ are independent. We conclude that $\operatorname{Pr}\left[M_{\bar{q}}^{n} \not \vDash \psi_{k}\right] \leq\left(1-p_{\bar{q}}^{*}\right)^{n /\left(2 \cdot n^{*}+1\right)} \rightarrow_{n \rightarrow \infty} 0$ and hence by choosing n large enough we are done.

The following claim shows that under our assumptions we can always find a long initial segment \bar{q} of some member of $\operatorname{Gen}_{1}(\bar{p})$ such that ψ_{k} holds in $M_{\bar{q}}^{n}$ with probability close to 0 . This is where we make use of our assumptions on \bar{p} and the properness of \bar{q}.
Claim 2.11. Let $\bar{p} \in \mathfrak{P}^{\text {inf }}, \epsilon>0$ and assume that for an unbounded set of $n \in \mathbb{N}$ we have $\prod_{l=1}^{n}\left(1-p_{l}\right) \leq n^{-\epsilon}$. Let $k \in \mathbb{N}$ be even such that $k \cdot \epsilon>2$. Let $\bar{q} \in \operatorname{Gen}_{1}^{r}(\bar{p})$ be proper for l^{*}, and $\zeta>0$ be some rational. Then there exists $r^{\prime}>r$ and $\bar{q}^{\prime} \in G e n_{1}^{r^{\prime}}(\bar{p})$ such that $\bar{q} \triangleleft^{\text {prop }} \bar{q}^{\prime}$ and $\operatorname{Pr}\left[M_{\bar{q}^{\prime}}^{n_{\bar{q}^{\prime}}} \models \neg \psi_{k}\right] \geq 1-\zeta$.
Proof. First recalling Definition 2.5 let $l^{* *}=3 l^{*}+2$, and for $l \geq n_{\bar{q}}$ define $r(l):=$ $\left\lceil\left(l-n_{\bar{q}}+1\right) / l^{* *}\right\rceil$. Now for each $n>n_{\bar{q}}+l^{* *}$ denote by \bar{q}_{n} the member of \mathfrak{P} defined by:

$$
\left(q_{n}\right)_{l}=\left\{\begin{array}{lll}
q_{l} & 0<l<n_{\bar{q}} \\
0 & n_{\bar{q}} \leq l<n \text { and } l \not \equiv 1 & \bmod l^{* *} \\
p_{r+r(l)} & n_{\bar{q}} \leq l<n \text { and } l \equiv 1 & \bmod l^{* *}
\end{array}\right.
$$

Note that $n_{\bar{q}_{n}}=n, \bar{q}_{n} \in \operatorname{Gen}_{1}^{r^{\prime}}(\bar{p})$ where $r^{\prime}=r+r(n-1)>r$ and $\bar{q} \triangleleft^{\text {prop }} \bar{q}_{n}$. Hence if we show that for some n large enough we have $\operatorname{Pr}\left[M_{\bar{q}_{n}}^{n} \models \neg \psi_{k}\right] \geq 1-\zeta$ then we will be done by putting $\bar{q}^{\prime}=\bar{q}_{n}$. As before let $n^{*}:=\max \left\{k l^{*}, n_{\bar{q}}+l^{*}\right\}$. Now fix some $n>n^{*}$ and for $1 \leq m<n-k \cdot l^{*}$ let $s(m)$ be some candidate of type $\left(n, l^{*}, k, m\right)$. Denote by $E=E(s(m))$ the event that $s(m)$ is a chain of triangles in $M_{\bar{q}_{n}}^{n}$. We then have:

$$
\operatorname{Pr}\left[M_{\bar{q}_{n}}^{n} \models E\right] \leq\left(q_{l^{*}}\right)^{k} \cdot\left(q_{2 l^{*}}\right)^{k / 2} \cdot\left(\prod_{n^{*}+1}^{\left\lfloor\left(n-n^{*}\right) / 2\right\rfloor}\left(1-\left(q_{i}\right)_{l}\right)\right)^{k} .
$$

Now denote:

$$
p_{\bar{q}}^{*}:=\left(q_{l^{*}}\right)^{k} \cdot\left(q_{2 l^{*}}\right)^{k / 2} \cdot\left(\prod_{l=1}^{n^{*}}\left(1-\left(q_{i}\right)_{l}\right)\right)^{-k}
$$

and note that it is positive and does not depend on n. Together we get:

$$
\operatorname{Pr}\left[M_{\bar{q}_{n}}^{n} \models E\right] \leq p^{*} \cdot\left(\prod_{l=1}^{\left\lfloor\left(n-n^{*}\right) / 2\right\rfloor}\left(1-\left(q_{i}\right)_{l}\right)\right)^{k} \leq p_{\bar{q}}^{*} \cdot\left(\prod_{l=1}^{\left\lfloor\left(n-n^{*}\right) /\left(2 l^{* *}\right)\right\rfloor}\left(1-p_{l}\right)\right)^{k} .
$$

For each $1 \leq m<n-k \cdot l^{*}$ the number of candidates of type $\left(n, l^{*}, k, m\right)$ is at most 4 , hence the total number of candidates is no more then $4 n$. We get that the expected number (in the probability space $M_{\bar{q}_{n}}^{n}$) of candidates which are a chain of triangles is at most $p_{\bar{q}}^{*} \cdot\left(\prod_{l=1}^{\left\llcorner\left(n-n^{*}\right) /\left(2 l^{* *}\right)\right\rfloor}\left(1-p_{l}\right)\right)^{k} \cdot 4 n$. Let E^{*} be the following event: "No candidate is a chain of triangles". Then using Claim 2.9 and Markov's inequality we get:

$$
\operatorname{Pr}\left[M_{\bar{q}}^{n} \models \psi_{k}\right]=\operatorname{Pr}\left[M_{\bar{q}}^{n} \not \models E^{*}\right] \leq p_{\bar{q}}^{*} \cdot\left(\prod_{l=1}^{\left\lfloor\left(n-n^{*}\right) /\left(2 l^{* *}\right)\right\rfloor}\left(1-p_{l}\right)\right)^{k} \cdot 4 n
$$

Finally by our assumptions, for an unbounded n we have $\prod_{l=1}^{\left\lfloor\left(n-n^{*}\right) /\left(2 l^{* *}\right)\right\rfloor}(1-$ $\left.p_{l}\right) \leq\left(\left\lfloor\left(n-n^{*}\right) /\left(2 l^{* *}\right)\right\rfloor\right)^{-\epsilon}$, and note that for n large enough we have $(\lfloor(n-$ $\left.\left.\left.n^{*}\right) /\left(2 l^{* *}\right)\right\rfloor\right)^{-\epsilon} \leq n^{-\epsilon / 2}$. Hence for unbounded $n \in \mathbb{N}$ we have $\operatorname{Pr}\left[M_{\bar{q}}^{n} \models \psi_{k}\right] \leq$ $p_{\bar{q}}^{*} \cdot 4 \cdot n^{1-\epsilon \cdot k / 2}$, and as $\epsilon \cdot k>2$ this tends to 0 as n tends to ∞, so we are done.

We are now ready to prove Lemma 2.2. First as $(*)$ of 1.5 does not hold we have some $\epsilon>0$ such that for an unbounded set of $n \in \mathbb{N}$, we have $\prod_{l=1}^{n}\left(1-p_{l}\right) \leq n^{-\epsilon}$. Let $k \in \mathbb{N}$ be even such that $k \cdot \epsilon>2$. Now for each $i \in \mathbb{N}$ we will construct a pair $\left(\bar{q}_{i}, r_{i}\right)$ such that the following holds:
(1) For $i \in \mathbb{N}, \bar{q}_{i} \in \operatorname{Gen}_{1}^{r_{i}}(\bar{p})$ and put $n_{i}:=n_{\bar{q}_{i}}$.
(2) For $i \in \mathbb{N}, \bar{q}_{i} \triangleleft^{\text {prop }} \bar{q}_{i+1}$.
(3) For each odd $i>0, \operatorname{Pr}\left[M_{\bar{q}_{i}}^{n_{i}} \models \psi_{k}\right] \geq 1-\frac{1}{i}$ and $r_{i}=r_{i-1}$.
(4) For each even $i>0, \operatorname{Pr}\left[M_{\bar{q}_{i}}^{n_{i}} \models \neg \psi_{k}\right] \geq 1-\frac{1}{i}$ and $r_{i}>r_{i-1}$.

Clearly if we construct such $\left\langle\left(\bar{q}_{i}, r_{i}\right): i \in \mathbb{N}\right\rangle$ then by taking $\bar{q}=\cup_{i \in \mathbb{N}} \bar{q}_{i}$ (recall observation (2.4), we have $\bar{q} \in \operatorname{Gen}_{1}(\bar{p})$ and both ψ_{k} and $\neg \psi_{k}$ holds infinitely often in $M_{\bar{q}}^{n}$, thus finishing the proof. We turn to the construction of $\left\langle\left(\bar{q}_{i}, r_{i}\right): i \in \mathbb{N}\right\rangle$, and naturally we use induction on $i \in \mathbb{N}$.

Case 1: $i=0$. Let $l_{1}<l_{2}$ be the first and second indexes such that $p_{l_{i}}>0$. Put $r_{0}:=l_{2}$. If $l_{2} \leq 2 l_{1}$ define \bar{q}_{0} by:

$$
\left(q_{0}\right)_{l}= \begin{cases}p_{l} & l \leq l_{1} \\ 0 & l_{1} \leq l \leq 2 l_{1} \\ p_{l_{2}} & l=2 l_{1}\end{cases}
$$

Otherwise if $l_{2}>2 l_{1}$ define \bar{q}_{0} by:

$$
\left(q_{0}\right)_{l}= \begin{cases}0 & l<\left\lceil l_{2} / 2\right\rceil \\ p_{l_{1}} & l=\left\lceil l_{2} / 2\right\rceil \\ 0 & \left\lceil l_{2} / 2\right\rceil<l<2\left\lceil l_{2} / 2\right\rceil \\ p_{l_{2}} & l=2\left\lceil l_{2} / 2\right\rceil\end{cases}
$$

clearly $\bar{q}_{0} \in \operatorname{Gen}_{1}^{r_{0}}(\bar{p})$ as desired, and note that \bar{q}_{0} is proper (for either l_{1} or $\left\lceil l_{2} / 2\right\rceil$).
Case 2: $i>0$ is odd. First set $r_{i}=r_{i-1}$. Next we use Claim 2.10 where we set: \bar{q}_{i-1} for $\bar{q}, \frac{1}{i}$ for ζ and \bar{q}_{i} is the one promised by the claim. Note that indeed $\bar{q}_{i-1} \triangleleft^{\text {prop }} \bar{q}_{i}, \bar{q}_{i} \in \operatorname{gen}^{r_{i}}(\bar{p})$ and $\operatorname{Pr}\left[M_{\bar{q}_{i}}^{n_{i}} \models \psi_{k}\right] \geq 1-\frac{1}{i}$.

Case 3: $i>0$ is even. We use Claim 2.11 where we set: \bar{q}_{i-1} for $\bar{q}, \frac{1}{i}$ for ζ and $\left(r_{i}, \bar{q}_{i}\right)$ are $\left(r^{\prime}, \bar{q}^{\prime}\right)$ promised by the claim. Note that indeed $\bar{q}_{i-1} \triangleleft^{\text {prop }} \bar{q}_{i}$, $\bar{q}_{i} \in \operatorname{Gen}_{1}^{r_{i}}(\bar{p})$ and $\operatorname{Pr}\left[M_{\bar{q}_{i}}^{n_{i}} \models \psi_{k}\right] \geq 1-\frac{1}{i}$. This completes the proof of Lemma 2.2,

3. Decreasing coordinates

In this section we prove Theorem 1.5 for $j \in\{2,3\}$. As before, the "if" direction is an immediate conclusion of Theorem [1.2. Moreover as $\operatorname{Gen}_{3}(\bar{p}) \subseteq \operatorname{Gen}_{2}(\bar{p})$ it remains to prove that if $(*)$ of 1.5 fails then the $0-1$ strongly fails for some $\bar{q} \in \operatorname{Gen}_{3}(\bar{p})$. We divide the proof into two cases according to the behavior of $\sum_{l=1}^{n} p_{i}$, which is an approximation of the expected number of neighbors of a given node in $M_{\bar{p}}^{n}$. Define:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \log \left(\sum_{i=1}^{n} p_{i}\right) / \log n=0 \tag{**}
\end{equation*}
$$

Assume that $(* *)$ above fails. Then for some $\epsilon>0$, the set $\left\{n \in \mathbb{N}: \sum_{i=1}^{n} p_{i} \geq n^{\epsilon}\right\}$ is unbounded, hence we finish by Lemma 3.1. On the other hand if $(* *)$ holds then $\sum_{i=1}^{n} p_{i}$ increases slower then any positive power of n, formally for all $\delta>0$ for some $n_{\delta} \in \mathbb{N}$ we have $n>n_{\delta}$ implies $\sum_{i=1}^{n} p_{i} \leq n^{\delta}$. As we assume that $(*)$ of Theorem 1.5 fails we have for some $\epsilon>0$ the set $\left\{n \in \mathbb{N}: \prod_{i=1}^{n}\left(1-p_{i}\right) \leq n^{-\epsilon}\right\}$ is unbounded. Together (with $-\epsilon / 6$ as δ) we have that the assumptions of Lemma 3.2 hold, hence we finish the proof.

Lemma 3.1. Let $\bar{p} \in \mathfrak{P}^{\text {inf }}$ be such that $p_{l}<1$ for $l>0$. Assume that for some $\epsilon>0$ we have for an unbounded set of $n \in \mathbb{N}: \sum_{l \leq n} p_{l} \geq n^{\epsilon}$. Then for some $\bar{q} \in \operatorname{Gen}_{3}(\bar{p})$ and $\psi=\psi_{\text {isolated }}:=\exists x \forall y \neg x \sim y$, both ψ and $\neg \psi$ holds infinitely often in $M_{\bar{q}}^{n}$.

Proof. We construct a series, $\left(\bar{q}_{1}, \bar{q}_{2}, \ldots\right)$ such that for $i>0: \bar{q}_{i} \in \mathfrak{P}^{f i n}, \bar{q}_{i} \triangleleft \bar{q}_{i+1}$ and $\cup_{i>0} \bar{q}_{i} \in \operatorname{Gen}_{3}(\bar{p})$. For $i \geq 1$ denote $n_{i}:=n_{\bar{q}_{i}}$. We will show that:

$$
\begin{aligned}
*_{\text {even }} & \text { For even } i>1: \operatorname{Pr}\left[M_{\bar{q}_{i}}^{n_{i}} \models \psi\right] \geq 1-\frac{1}{i} \\
*_{\text {odd }} & \text { For odd } i>1: \operatorname{Pr}\left[M_{\bar{q}_{i}}^{n_{i}} \models \neg \psi\right] \geq 1-\frac{1}{i}
\end{aligned}
$$

Taking $\bar{q}=\cup_{i>0} \bar{q}_{i}$ will then complete the proof. We construct \bar{q}_{i} by induction on $i>0$:

Case $1 i=1$: Let $n_{1}=2$ and $\left(q_{1}\right)_{1}=p_{1}$.
Case 2 even $i>1$: As $\left(\bar{q}_{i-1}, n_{i-1}\right)$ are given, let us define \bar{q}_{i} were $n_{i}>n_{i-1}$ is to be determined later: $\left(q_{i}\right)_{l}=\left(q_{i-1}\right)_{l}$ for $l<n_{i-1}$ and $\left(q_{i}\right)_{l}=0$ for $n_{i-1} \leq l<n_{i}$. For $x \in\left[n_{i}\right]$ let E_{x} be the event: " x is an isolated point". Denote $p^{\prime}:=\left(\prod_{0<l<n_{i-1}}(1-\right.$ $\left.\left(q_{i-1}\right)_{l}\right)^{2}$ and note that $p^{\prime}>0$ and does not depend on n_{i}. Now for $x \in\left[n_{i}\right]$, $\operatorname{Pr}\left[M_{\bar{q}_{i}}^{n_{i}} \models E_{x}\right] \geq p^{\prime}$, furthermore if $x, x^{\prime} \in\left[n_{i}\right]$ and $\left|x-x^{\prime}\right|>n_{i-1}$ then E_{x} and $E_{x^{\prime}}$ are independent in $M_{\bar{q}_{i}}^{n_{i}}$. We conclude that $\operatorname{Pr}\left[M_{\bar{q}_{i}}^{n_{i}} \models \neg \psi\right] \leq(1-p)^{\left\lfloor n_{i} /\left(n_{i-1}+1\right)\right\rfloor}$ which approaches 0 as $n_{i} \rightarrow \infty$. So by choosing n_{i} large enough we have $*_{\text {even }}$.

Case 3 odd $i>1$: As in case 2 let us define \bar{q}_{i} were $n_{i}>n_{i-1}$ is to be determined later: $\left(q_{i}\right)_{l}=\left(q_{i-1}\right)_{l}$ for $l<n_{i-1}$ and $\left(q_{i}\right)_{l}=p_{l}$ for $n_{i-1} \leq l<n_{i}$. Let $n^{\prime}=\max \left\{n<n_{i} / 2: n=2^{m}\right.$ for some $\left.m \in \mathbb{N}\right\}$, so $n_{i} / 4 \leq n^{\prime}<n_{i} / 2$. Denote $a=\sum_{0<l \leq n^{\prime}}\left(q_{i}\right)_{l}$ and $a^{\prime}=\sum_{0<l \leq\lfloor n / 4\rfloor}\left(q_{i}\right)_{l}$. Again let E_{x} be the event: $" x$ is isolated". Now as $n^{\prime}<n_{i} / 2, \operatorname{Pr}\left[M_{\bar{q}_{i}}^{n_{i}} \models E_{x}\right] \leq \prod_{0<l \leq n^{\prime}}\left(1-\left(q_{i}\right)_{l}\right)$. By a repeated use of: $(1-x)(1-y) \leq\left(1-\frac{x+y}{2}\right)^{2}$ we get $\operatorname{Pr}\left[M_{\bar{q}_{i}}^{n_{i}} \models E_{x}\right] \leq\left(1-\frac{a}{n^{\prime}}\right)^{n^{\prime}}$ which for n^{\prime} large enough is smaller then $2 \cdot e^{-a}$, and as $a^{\prime} \leq a$, we get $\operatorname{Pr}\left[M_{\bar{q}_{i}}^{n_{i}} \models E_{x}\right] \leq 2 \cdot e^{-a^{\prime}}$. By the definition of a^{\prime} and \bar{q}_{i} we have $a^{\prime}=\sum_{l=1}^{\left\lfloor n_{1} / 4\right\rfloor} p_{l}-\sum_{l<n_{i-1}}\left(p_{l}-\left(q_{i-1}\right)_{l}\right)$. By our assumption for an unbounded set of $n_{i} \in \mathbb{N}$ we have $a^{\prime} \geq\left(\left\lfloor n_{i} / 4\right\rfloor\right)^{\epsilon}-$ $\sum_{l<n_{i-1}}\left(p_{l}-\left(q_{i-1}\right)_{l}\right)$. But as the sum on the right is independent of n_{i} we have (again for n_{i} large enough): $a^{\prime} \geq\left(n_{i} / 5\right)^{\epsilon}$. Consider the expected number of isolated points in the probability space $M_{\bar{q}_{i}}^{n_{i}}$, denote this number by $X\left(n_{i}\right)$. By all the above we have:

$$
X\left(n_{i}\right) \leq n_{i} \cdot 2 \cdot e^{-a} \leq n_{i} \cdot 2 \cdot e^{-a^{\prime}} \leq 2 n_{i} \cdot e^{-\left(n_{i} / 5\right)^{\epsilon}}
$$

The last expression approaches 0 as $n_{i} \rightarrow \infty$. So by choosing n_{i} large enough (while keeping $a^{\prime} \geq\left(n_{i} / 5\right)^{\epsilon}$ we have $*_{o d d}$.

Finally notice that indeed $\cup_{i>0} \bar{q}_{i} \in \operatorname{Gen}_{3}(\bar{p})$, as the only change we made in the inductive process is decreasing p_{l} to 0 for $n_{i-1}<l \leq n_{i}$ and i is even.
Lemma 3.2. Let $\bar{p} \in \mathfrak{P}^{\text {inf }}$ be such that $p_{l}<1$ for $l>0$. Assume that for some $\epsilon>0$ we have for an unbounded set of $n \in \mathbb{N}$:
($\alpha) \sum_{l \leq n} p_{l} \leq n^{\epsilon / 6}$.
(β) $\prod_{l \leq n}\left(1-p_{l}\right) \leq n^{-\epsilon}$.
Let $k=\left\lceil\frac{6}{\epsilon}\right\rceil+1$ and $\psi=\psi_{k}$ be the sentence "saying" there exists a connected component which is a path of length k, formally:
$\psi_{k}:=\exists x_{1} \ldots \exists x_{k} \bigwedge_{1 \leq i \neq j \leq k} x_{i} \neq x_{j} \wedge \bigwedge_{1 \leq i<k} x_{i} \sim x_{i+1} \wedge \forall y\left(\bigwedge_{1 \leq i \leq k} x_{i} \neq y\right) \rightarrow\left(\bigwedge_{1 \leq i \leq k} \neg x_{i} \sim y\right)$.
Then for some $\bar{q} \in \operatorname{Gen}_{3}(\bar{p})$, both ψ and $\neg \psi$ holds infinitely often in $M_{\bar{q}}^{n}$.
Proof. The proof follows the same line as the proof of 3.1. We construct an increasing series, $\left(\bar{q}_{1}, \bar{q}_{2}, \ldots\right)$, and demand $*_{\text {even }}$ and $*_{o d d}$ as in 3.1. Taking $\bar{q}=\cup_{i>0} \bar{q}_{i}$ will then complete the proof. We construct \bar{q}_{i} by induction on $i>0$:

Case $1 i=1$: Let $l(*):=\min \left\{l>0: p_{l}>0\right\}$ and define $n_{1}=l(*)+1$ and $\left(q_{1}\right)_{l}=p_{l}$ for $l<n_{1}$.

Case 2 even $i>1$: As before, for $n_{i}>n_{i-1}$ define: $\left(q_{i}\right)_{l}=\left(q_{i-1}\right)_{l}$ for $l<n_{i-1}$ and $\left(q_{i}\right)_{l}=0$ for $n_{i-1} \leq l<n_{i}$. For $1 \leq x<n_{i}-k \cdot l(*)$ let E^{x} be the event: $"(x, x+l(*), \ldots, x+l(*)(k-1))$ exemplifies ψ." Formally E^{x} holds in $M_{\bar{q}_{i}}^{n_{i}}$ iff $\{(x, x+$
$l(*), \ldots, x+l(*)(k-1))\}$ is isolated and for $0 \leq j<k-1,\{x+j l(*), x+(j+1) l(*)\}$ is an edge of $M_{\bar{q}_{i}}^{n_{i}}$. The remainder of this case is similar to case 2 of Lemma 3.1 so we will not go into details. Note that $\operatorname{Pr}\left[M_{\bar{q}_{i}}^{n_{i}} \models E^{x}\right]>0$ and does not depend on n_{i}, and if $\left|x-x^{\prime}\right|$ is large enough (again not depending on n_{i}) then E^{x} and $E^{x^{\prime}}$ are independent in $M_{\bar{q}_{i}}^{n_{i}}$. We conclude that by choosing n_{i} large enough we have $*_{\text {even }}$.

Case 3 odd $i>1$: In this case we make use of the fact that almost always, no $x \in[n]$ have to many neighbors. Formally:

Claim 3.3. Let $\bar{q} \in \mathfrak{P}^{\text {inf }}$ be such that $q_{l}<1$ for $l>0$. Let $\delta>0$ and assume that for an unbounded set of $n \in \mathbb{N}$ we have, $\sum_{l=1}^{n} q_{l} \leq n^{\delta}$. Let E_{δ}^{n} be the event: "No $x \in[n]$ have more than $8 n^{2 \delta}$ neighbors". Then we have:

$$
\limsup _{n \rightarrow \infty} \operatorname{Pr}\left[E_{\delta}^{n} \text { holds in } M_{\bar{q}}^{n}\right]=1
$$

Proof. First note that the size of the set $\left\{l>0: q_{l}>n^{-\delta}\right\}$ is at most $n^{2 \delta}$. Hence by ignoring at most $2 n^{2 \delta}$ neighbors of each $x \in[n]$, and changing the number of neighbors in the definition of E_{δ}^{n} to $6 n^{2 \delta}$ we may assume that for all $l>0, q_{l} \leq n^{-\delta}$. The idea is that the number of neighbors of each $x \in[n]$ can be approximated (or in our case only bounded from above) by a Poisson random variable with parameter close to $\sum_{i=l}^{n} q_{l}$. Formally, for each $l>0$ let B_{l} be a Bernoulli random variable with $\operatorname{Pr}\left[B_{l}=1\right]=q_{l}$. For $n \in \mathbb{N}$ let X^{n} be the random variable defined by $X^{n}:=\sum_{l=1}^{n} B_{l}$. For $l>0$ let $P o_{l}$ be a Poisson random variable with parameter $\lambda_{l}:=-\log \left(1-q_{l}\right)$ that is for $i=0,1,2, \ldots \operatorname{Pr}\left[\operatorname{Po}_{l}=i\right]=e^{-\lambda_{l}} \frac{\left(\lambda_{l}\right)^{i}}{i!}$. Note that $\operatorname{Pr}\left[B_{l}=0\right]=\operatorname{Pr}\left[P o_{l}=0\right]$. Now define $P o^{n}:=\sum_{i=1}^{n} P o_{l}$. By the last sentence we have $P o^{n} \geq_{s t} X^{n}\left(P o^{n}\right.$ is stochastically larger than $\left.X^{n}\right)$ that is, for $i=0,1,2, \ldots$ $\operatorname{Pr}\left[\operatorname{Po}^{n} \geq i\right] \geq \operatorname{Pr}\left[X^{n} \geq i\right]$. Now $P o^{n}$ (as the sum of Poisson random variables) is a Poisson random variable with parameter $\lambda^{n}:=\sum_{l=1}^{n} \lambda_{l}$. Let $n \in \mathbb{N}$ be such that $\sum_{l=1}^{n} q_{l} \leq n^{\delta}$, and define $n^{\prime}=n^{\prime}(n):=\min \left\{n^{\prime} \geq n: n^{\prime}=2^{m}\right.$ for some $\left.m \in \mathbb{N}\right\}$, so $n \leq n^{\prime}<2 n$. For $0<l \leq n^{\prime}$ let q_{l}^{\prime} be q_{l} if $l \leq n$ and 0 otherwise, so we have: $\prod_{l=1}^{n} 1-q_{l}=\prod_{l=1}^{n^{\prime}} 1-q_{l}^{\prime}$ and $\sum_{l=1}^{n} q_{l}=\sum_{l=1}^{n^{\prime}} q_{l}^{\prime}$. Note that if $0 \leq p, q \leq 1 / 4$ then $(1-p)(1-q) \geq\left(1-\frac{p+q}{2}\right)^{2} \cdot \frac{1}{2}$. By a repeated use of the last inequality we get that $\prod_{i=l}^{n^{\prime}}\left(1-q_{l}^{\prime}\right) \geq\left(1-\frac{\sum_{i=l}^{n^{\prime}} q_{l}^{\prime}}{n^{\prime}}\right)^{n^{\prime}} \cdot \frac{1}{n^{\prime}}$. We can now evaluate λ^{n} :

$$
\begin{aligned}
\lambda^{n} & =\sum_{l=1}^{n} \lambda_{l}=\sum_{l=1}^{n}-\log \left(1-q_{l}\right)=-\log \left(\prod_{l=1}^{n}\left(1-q_{l}\right)\right)=-\log \left(\prod_{l=1}^{n^{\prime}}\left(1-q_{l}^{\prime}\right)\right) \\
& \leq-\log \left[\left(1-\frac{\sum_{l=1}^{n^{\prime}} q_{l}^{\prime}}{n^{\prime}}\right)^{n^{\prime}} \cdot \frac{1}{n^{\prime}}\right]=-\log \left[\left(1-\frac{\sum_{l=1}^{n} q_{l}}{n^{\prime}}\right)^{n^{\prime}} \cdot \frac{1}{n^{\prime}}\right] \\
& \approx-\log \left[e^{-\sum_{l=1}^{n} q_{l}} \cdot \frac{1}{n^{\prime}}\right] \leq-\log \left[e^{-n^{\delta}} \cdot \frac{1}{2 n}\right] \leq-\log \left[e^{-n^{2 \delta}}\right]=n^{2 \delta} .
\end{aligned}
$$

Hence by choosing $n \in \mathbb{N}$ large enough while keeping $\sum_{l=1}^{n} q_{l} \leq n^{\delta}$ (which is possible by our assumption) we have $\lambda^{n} \leq n^{2 \delta}$. We now use the Chernoff bound for Poisson random variable: If $P o$ is a Poisson random variable with parameter λ and $i>0$ we have $\operatorname{Pr}[P o \geq i] \leq e^{\lambda(i / \lambda-1)} \cdot\left(\frac{\lambda}{i}\right)^{i}$. Applying this bound to $P o^{n}$ (for n as above) we get:

$$
\operatorname{Pr}\left[P o^{n} \geq 3 n^{2 \delta}\right] \leq e^{\lambda^{n}\left(3 n^{2 \delta} / \lambda^{n}-1\right)} \cdot\left(\frac{\lambda^{n}}{3 n^{2 \delta}}\right)^{3 n^{2 \delta}} \leq e^{3 n^{2 \delta}} \cdot\left(\frac{\lambda^{n}}{3 n^{2 \delta}}\right)^{3 n^{2 \delta}} \leq\left(\frac{e}{3}\right)^{3 n^{2 \delta}}
$$

Now for $x \in[n]$ let X_{x}^{n} be the number of neighbors of x in $M_{\bar{q}}^{n}$ (so X_{x}^{n} is a random variable on the probability space $M_{\bar{q}}^{n}$). By the definition of $M_{\bar{q}}^{n}$ we have $X_{x}^{n} \leq_{s t} 2 \cdot X^{n} \leq_{s t} 2 \cdot P o^{n}$. So for unbounded $n \in \mathbb{N}$ we have for all $x \in[n]$, $\operatorname{Pr}\left[X_{x}^{n} \geq 6 n^{2 \delta}\right] \leq\left(\frac{e}{3}\right)^{3 n^{2 \delta}}$. Hence by the Markov inequality for unbounded $n \in \mathbb{N}$ we have,

$$
\operatorname{Pr}\left[E^{n} \text { does not hold in } M_{\bar{q}}^{n}\right]=\operatorname{Pr}\left[\text { for some } x \in[n], X_{x}^{n} \geq 3 n^{2 \delta}\right] \leq n \cdot\left(\frac{e}{3}\right)^{6 n^{2 \delta}}
$$

But the last expression approaches 0 as n approaches ∞, Hence we are done proving the claim.

We return to Case 3 of the proof of 3.2, and it remains to construct \bar{q}_{i}. As before for $n_{i}>n_{i-1}$ define: $\left(q_{i}\right)_{l}=\left(q_{i-1}\right)_{l}$ for $l<n_{i-1}$ and $\left(q_{i}\right)_{l}=p_{l}$ for $n_{i-1} \leq$ $l<n_{i}$. By the claim above and (α) is our assumptions, for n_{i} large enough we have $\operatorname{Pr}\left[E_{\epsilon / 6}^{n_{i}}\right.$ holds in $\left.M_{\bar{q}_{i}}^{n_{i}}\right] \geq 1 / 2 i$, so assume in the rest of the proof that n_{i} is indeed large enough, and assume that $E_{\epsilon / 6}^{n_{i}}$ holds in $M_{\bar{q}_{i}}^{n_{i}}$, and all the probabilities on the space $M_{\bar{q}_{i}}^{n_{i}}$ will be conditioned to $E_{\epsilon / 6}^{n_{i}}$ (even if not explicitly said so). A k-tuple $\bar{x}=\left(x_{1}, \ldots, x_{k}\right)$ of members of $\left[n_{i}\right]$ is called a k-path (in $\left.M_{\bar{q}_{i}}^{n_{i}}\right)$ if it is without repetitions and for $0<j<k$ we have $M_{\bar{q}_{i}}^{n_{i}} \models x_{j} \sim x_{j+1}$. A k-path is isolated if in addition no member of $\left\{x_{1}, \ldots, x_{k}\right\}$ is connected to a member of $\left[n_{i}\right] \backslash\left\{x_{1}, \ldots, x_{k}\right\}$. Now (recall we assume $E_{\epsilon / 6}^{n_{i}}$) with probability 1: the number of k-paths in $M_{\bar{q}_{i}}^{n_{i}}$ is at most $8^{k} \cdot n^{1+k \epsilon / 3}$. For each $\left(x_{1}, \ldots, x_{k}\right)$ without repetitions we have:

$$
\operatorname{Pr}\left[\left(x_{1}, \ldots, x_{k}\right) \text { is isolated in } M_{\bar{q}_{i}}^{n_{i}}\right]=\prod_{j=1}^{k} \prod_{y \neq x_{j}}\left(1-\left(q_{i}\right)_{\left|x_{j}-y\right|}\right) \leq\left(\prod_{l=1}^{\left\lfloor n_{i} / 2\right\rfloor}\left(1-\left(q_{i}\right)_{l}\right)\right)^{k}
$$

By assumption (β) we have for unbounded set of $n_{i} \in \mathbb{N}$:

$$
\prod_{l=1}^{\left\lfloor n_{i} / 2\right\rfloor}\left(1-\left(q_{i}\right)_{l}\right) \leq \prod_{l=n_{i}-1}^{\left\lfloor n_{i} / 2\right\rfloor}\left(1-p_{l}\right) \leq \prod_{l<n_{i}}\left(1-q_{l}\right) \cdot\left(\left\lfloor n_{i} / 2\right\rfloor\right)^{-\epsilon} \leq\left(n_{i}\right)^{-\epsilon / 2}
$$

Together letting $Y\left(n_{i}\right)$ be the expected number of isolated k tuples in $M_{\bar{q}_{i}}^{n_{i}}$ we have:

$$
Y\left(n_{i}\right) \leq 8^{k} \cdot\left(n_{i}\right)^{1+k \epsilon / 3} \cdot\left(n_{i}\right)^{-k \epsilon / 2}=8^{k} \cdot\left(n_{i}\right)^{1-k \epsilon / 6} \rightarrow_{n_{i} \rightarrow \infty} 0
$$

So by choosing n_{i} large enough and using Markov's inequality, we have $*_{\text {odd }}$, and we are done.

4. Allowing some probabilities to equal 1

In this section we analyze the hereditary $0-1$ law for \bar{p} where some of the p_{i}-s may equal 1. For $\bar{p} \in \mathfrak{P}^{\text {inf }}$ let $U^{*}(\bar{p}):=\left\{l>0: p_{l}=1\right\}$. The situation $U^{*}(\bar{p}) \neq \emptyset$ was discussed briefly in the end of section 4 of [1] , an example was given there of some \bar{p} consisting of only ones and zeros with $\left|U^{*}(\bar{p})\right|=\infty$ such that the $0-1$ law fails for $M_{\bar{p}}^{n}$. We follow the lines of that example and prove that if $\left|U^{*}(\bar{p})\right|=\infty$ and $j \in\{1,2,3\}$, then the j-hereditary $0-1$ law for L fails for \bar{p}. This is done in 4.1. The case $0<\left|U^{*}(\bar{p})\right|<\infty$ is also studied and a full characterization of the j-hereditary 0 -1 law for L is given in 4.6 for $j \in\{2,3\}$, and for $j=1,1<\left|U^{*}(\bar{p})\right|$. The case $j=1$ and $1=\left|U^{*}(\bar{p})\right|$ is discussed in section 5 .
Theorem 4.1. Let $\bar{p} \in \mathfrak{P}^{i n f}$ be such that $U^{*}(\bar{p})$ is infinite, and j be in $\{1,2,3\}$. Then $M_{\bar{p}}^{n}$ does not satisfy the j-hereditary weak convergence law for L.

Proof. We start with the case $j=1$. The idea here is similar to that of section 2. We show that some $\bar{q} \in G e n_{1}(\bar{p})$ has a structure (similar to the "proper" structure defined in 2.5) that allows us to identify the sections "close" to 1 or n in $M_{\bar{q}}^{n}$. It is then easy to see that if \bar{q} has infinitely many ones and infinitely many "long" sections of consecutive zeros, then the sentence saying: "there exists an edge connecting vertexes close to the the edges", will exemplify the failure of the 0-1 law for $M_{\bar{q}}^{n}$. This is formulated below. Consider the following demands on $\bar{q} \in \mathfrak{P}^{i n f}$:
(1) Let $l^{*}<l^{* *}$ be the first two members of $U^{*}(\bar{q})$, then l^{*} is odd and $l^{* *}=2 \cdot l^{*}$.
(2) If l_{1}, l_{2}, l_{3} all belong to $\left\{l>0: q_{l}>0\right\}$ and $l_{1}+l_{2}=l_{3}$ then $l_{1}=l_{2}=l^{*}$.
(3) The set $\left\{n \in \mathbb{N}: n-2 l^{*}<l<n \Rightarrow q_{l}=0\right\}$ is infinite.
(4) The set $U^{*}(\bar{q})$ is infinite.

We first claim that some $\bar{q} \in G e n_{1}(\bar{p})$ satisfies the demands (1)-(4) above. This is straight forward. We inductively add enough zeros before each nonzero member of \bar{p} guaranteing that it is larger than the sum of any two (not necessarily different) nonzero members preceding it. We continue until we reach l^{*}, then by adding zeros either before l^{*} or before $l^{* *}$ we can guarantee that l^{*} is odd and that $l^{* *}=2 \cdot l^{*}$, and hence (1) holds. We then continue the same process from $l^{* *}$, adding at least $2 l^{*}$ zero's at each step. This guaranties (2) and (3). (4) follows immediately form our assumption that $U^{*}(\bar{p})$ is infinite. Assume that \bar{q} satisfies (1)-(4) and $n \in \mathbb{N}$. With probability 1 we have:

$$
\{x, y, z\} \text { is a triangle in } M_{\bar{q}}^{n} \text { iff }\{x, y, z\}=\left\{l, l+l^{*}, l+l^{* *}\right\} \text { for some } 0<l \leq n
$$

To see this use (1) for the "if" direction and (2) for the "only if" direction. We conclude that letting $\psi_{\text {ext }}(x)$ be the L sentence saying that x belongs to exactly one triangle, for each $n \in \mathbb{N}$ and $m \in[n]$ with probability 1 we have:

$$
M_{\bar{q}}^{n} \models \psi_{e x t}[m] \text { iff } m \in\left[1, l^{*}\right] \cup\left(n-l^{*}, n\right]
$$

We are now ready to prove the failure of the weak convergence law in $M_{\bar{q}}^{n}$, but in the first stage let us only show the failure of the convergence law. This will be useful for other cases (see Remark 4.2 below). Define

$$
\psi:=(\exists x \exists y) \psi_{e x t}(x) \wedge \psi_{e x t}(y) \wedge x \sim y
$$

Recall that l^{*} is the first member of $U^{*}(\bar{p})$, hence for some $p>0$ (not depending on n) for any $x, y \in\left[1, l^{*}\right]$ we have $\operatorname{Pr}\left[M_{\bar{q}}^{n} \models \neg x \sim y\right] \geq p$ and similarly for any $x, y \in\left(n-l^{*}, n\right]$. We conclude that:

By all the above, for each l such that $q_{l}=1$ we have $\operatorname{Pr}\left[M_{\bar{q}}^{l+1} \models \psi\right]=1$, as the pair $(1, l+1)$ exemplifies ψ in $M_{\bar{q}}^{l+1}$ with probability 1 . On the other hand if n is such that $n-2 l^{*}<l<n \Rightarrow q_{l}=0$ then $\operatorname{Pr}\left[M_{\bar{q}}^{n} \models \psi\right] \leq 1-p^{2\binom{l^{*}}{2} \text {. Hence by (3) }}$ and (4) above, ψ exemplifies the failure of the convergence law for $M_{\bar{q}}^{n}$ as required.

We return to the proof of the failure of the weak convergence law. Define:

$$
\begin{aligned}
\psi^{\prime}= & \exists x_{0} \ldots \exists x_{2 l^{*}-1}\left[\bigwedge_{0 \leq i<i^{\prime}<2 l^{*}} x_{i} \neq x_{i^{\prime}} \wedge \forall y\left(\left(\bigwedge_{0 \leq i<2 l^{*}} y \neq x_{i}\right) \rightarrow \neg \psi_{e x t}(y)\right)\right. \\
& \left.\wedge \bigwedge_{0 \leq i<2 l^{*}} \psi_{e x t}\left(x_{i}\right) \wedge \bigwedge_{0 \leq i<l^{*}} x_{2 i} \sim x_{2 i+1}\right] .
\end{aligned}
$$

We will show that both ψ^{\prime} and $\neg \psi^{\prime}$ holds infinitely often in $M_{\bar{q}}^{n}$. First let $n \in \mathbb{N}$ be such that $q_{n-l^{*}}=1$. Then by choosing for each $0 \leq i<l^{*}, x_{2 i}:=i+1$ and $x_{2 i+1}:=n-l^{*}+1+i$, we will get that the sequence ($x_{0}, \ldots, x_{2 l^{*}-1}$) exemplifies ψ^{\prime} in $M_{\bar{q}}^{n}$ (with probability 1). As by assumption (4) above the set $\left\{n \in \mathbb{N}: q_{n-l^{*}}=1\right\}$ is unbounded we have $\lim \sup _{n \rightarrow \infty}\left[M_{\bar{q}}^{n} \models \psi^{\prime}\right]=1$. For the other direction let $n \in \mathbb{N}$ be such that for each $n-2 l^{*}<l<n, q_{l}=0$. Then $M_{\bar{q}}^{n}$ satisfies (again with probability 1) for each $x, y \in\left[1, l^{*}\right] \cup\left(n-l^{*}, n\right]$ such that $x \sim y: x \in\left[1, l^{*}\right]$ iff $y \in\left[1, l^{*}\right]$. Now assume that $\left(x_{0}, \ldots, x_{2 l^{*}-1}\right)$ exemplifies ψ^{\prime} in $M_{\bar{q}}^{n}$. Then for each $0 \leq i<l^{*}, x_{2 i} \in\left[1, l^{*}\right]$ iff $x_{2 i+1} \in\left[1, l^{*}\right]$. We conclude that the set $\left[1, l^{*}\right]$ is of even size, thus contradicting (1). So we have $\operatorname{Pr}\left[M_{\bar{q}}^{n} \models \psi^{\prime}\right]=0$. But by assumption (3) above the set of natural numbers, n, for which we have $n-2 l^{*}<l<n$ implies $q_{l}=0$ is unbounded, and hence we have $\lim \sup _{n \rightarrow \infty}\left[M_{\bar{q}}^{n} \models \neg \psi^{\prime}\right]=1$ as desired.

We turn to the proof of the case $j \in\{2,3\}$, and as $\operatorname{Gen}_{3}(\bar{p}) \subseteq \operatorname{Gen}_{2}(\bar{p})$ it is enough to prove that for some $\bar{q} \in \operatorname{Gen}_{3}(\bar{p})$ the $0-1$ law for L strongly fails in $M_{\bar{q}}^{n}$. Motivated by the example mentioned above appearing in the end of section 4 of [1], we let ψ be the sentence in L implying that each edge of the graph is contained in a cycle of length 4 . Once again we use an inductive construction of $\left(\bar{q}_{1}, \bar{q}_{2}, \bar{q}_{3}, \ldots\right)$ in $\mathfrak{P}^{f i n}$ such that $\bar{q}=\bigcup_{i>0} \bar{q}_{i} \in \operatorname{Gen}_{3}(\bar{p})$ and both ψ and $\neg \psi$ hold infinitely often in $M_{\bar{q}}^{n}$. For $i=1$ let $n_{\bar{q}_{1}}=n_{1}:=\min \left\{l: p_{l}=1\right\}+1$ and define $\left(q_{1}\right)_{l}=0$ if $0<l<n_{1}-1$ and $\left(q_{1}\right)_{n_{1}-1}=1$. For even $i>1$ let $n_{\bar{q}_{i}}=n_{i}:=$ $\min \left\{l>4 n_{i-1}: p_{l}=1\right\}+1$ and define $\left(q_{i}\right)_{l}=\left(q_{i-1}\right)_{l}$ if $0<l<n_{i-1},\left(q_{i}\right)_{l}=0$ if $n_{i-1} \leq l<n_{i}-1$ and $\left(q_{1}\right)_{n_{1}-1}=1$. For odd $i>i$ recall $n_{1}=\min \left\{l: p_{l}=1\right\}+1$ and let $n_{\bar{q}_{i}}=n_{i}:=n_{i-1}+n_{1}$. Now define $\left(q_{i}\right)_{l}=\left(q_{i-1}\right)_{l}$ if $0<l<n_{i-1}$ and $\left(q_{i}\right)_{l}=0$ if $n_{i-1} \leq l<n_{i}$. Clearly we have for even $i>1, \operatorname{Pr}\left[M_{\bar{q}_{n_{i}+1}}^{n_{i}+1} \models \psi\right]=0$ and for odd $i>1 \operatorname{Pr}\left[M_{\bar{q}_{n_{i}}}^{n_{i}} \models \psi\right]=1$. Note that indeed $\bigcup_{i>0} \bar{q}_{i} \in \operatorname{Gen}_{3}(\bar{p})$, hence we are done.

Remark 4.2. In the proof of the failure of the convergence law in the case $j=$ 1 the assumption $\left|U^{*}(\bar{p})\right|=\infty$ is not needed, our proof works under the weaker assumption $\left|U^{*}(\bar{p})\right| \geq 2$ and for some $p>0,\left\{l>0: p_{l}>p\right\}$ is infinite. See below more on the case $j=1$ and $1<\left|U^{*}(\bar{p})\right|<\infty$.

Lemma 4.3. Let $\bar{q} \in \mathfrak{P}^{i n f}$ and assume:
(1) Let $l^{*}<l^{* *}$ be the first two members of $U^{*}(\bar{q})$ (in particular assume $\left.\left|U^{*}(\bar{q})\right| \geq 2\right)$ then $l^{* *}=2 \cdot l^{*}$.
(2) If l_{1}, l_{2}, l_{3} all belong to $\left\{l>0: q_{l}>0\right\}$ and $l_{1}+l_{2}=l_{3}$ then $\left\{l_{1}, l_{2}, l_{3}\right\}=$ $\left\{l, l+l^{*}, l+l^{* *}\right\}$ for some $l \geq 0$.
(3) Let $l^{* * *}$ be the first member of $\left\{l>0: 0<q_{l}<1\right\}$ (in particular assume $\left.\left|\left\{l>0: 0<q_{l}<1\right\}\right| \geq 1\right)$ then the set $\left\{n \in \mathbb{N}: n \leq l \leq n+l^{* *}+l^{* * *} \Rightarrow\right.$ $\left.q_{l}=0\right\}$ is infinite.
Then the 0-1 law for L fails for $M_{\bar{q}}^{n}$.
Proof. The proof is similar to the case $j=1$ in the proof of Theorem 4.1 hence we will not go into detail. Below n is some large enough natural number (say larger than $3 \cdot l^{* *} \cdot l^{* * *}$) such that (3) above holds, and if we say that some property holds in $M_{\bar{q}}^{n}$ we mean it holds there with probability 1 . Let $\psi_{\text {ext }}^{1}(x)$ be the formula in L implying that x belongs to at most two distinct triangles. Then for all $m \in[n]$:

$$
M_{\bar{q}}^{n} \models \psi_{e x t}^{1}[m] \text { iff } m \in\left[1, l^{* *}\right] \cup\left(n-l^{* *}, n\right] .
$$

Similarly for any natural $t<n / 3 l^{* *}$ define (using induction on t):

$$
\psi_{e x t}^{t}(x):=(\exists y \exists z) x \sim y \wedge x \sim z \wedge y \sim z \wedge\left(\psi_{e x t}^{t-1}(y) \vee \psi_{e x t}^{t-1}(z)\right)
$$

we then have for all $m \in[n]$:

$$
M_{\bar{q}}^{n} \models \psi_{\text {ext }}^{t}[m] \text { iff } m \in\left[1, t l^{* *}\right] \cup\left(n-t l^{* *}, n\right] .
$$

Now for $1 \leq t<n / 3 l^{* *}$ let $m^{*}(t)$ be the minimal number of edges in $\left.M_{\bar{q}}^{n}\right|_{\left[1, t \cdot l^{* *}\right] \cup\left(n-t \cdot l^{* *}, n\right]}$ i.e only edges with probability one and within one of the intervals are counted, formally

$$
m^{*}(t):=2 \cdot \mid\left\{\left(m, m^{\prime}\right): m<m^{\prime} \in\left[1, t \cdot l^{* *}\right] \text { and } q_{m^{\prime}-m}=1\right\} \mid
$$

Let $1 \leq t^{*}<n / 3 l^{* *}$ be such that $l^{* * *}<l^{* *} \cdot t^{*}$ (it exists as n is large enough). Note that $m^{*}\left(t^{*}\right)$ depends only on \bar{q} and not on n hence we can define $\psi:="$ There exists exactly $m^{*}\left(t^{*}\right)$ couples $\{x, y\}$ s.t. $\psi_{\text {ext }}^{t^{*}}(x) \wedge \psi_{\text {ext }}^{t^{*}}(y) \wedge x \sim y$."
We then have $\operatorname{Pr}\left[m_{\bar{q}}^{n} \models \psi\right] \leq\left(1-q_{l^{* * *}}\right)^{2}<1$ as we have $m^{*}\left(t^{*}\right)$ edges on $\left[1, t^{*} l^{* *}\right] \cup$ $\left(n-t^{*} l^{* *}, n\right]$ that exist with probability 1 , and at least two additional edges (namely $\left\{1, l^{* * *}+1\right\}$ and $\left.\left\{n-l^{* * *}, n\right\}\right)$ that exist with probability $q_{l * * *}$ each. On the other hand if we define:

$$
p^{\prime}:=\prod\left\{1-q_{m^{\prime}-m}: m<m^{\prime} \in\left[1, t^{*} \cdot l^{* *}\right] \text { and } q_{m^{\prime}-m}<1\right\}
$$

and note that p^{\prime} does not depend on n, then (recalling assumption (3) above) we have $\operatorname{Pr}\left[m_{\bar{q}}^{n} \models \psi\right] \geq\left(p^{\prime}\right)^{2}>0$ thus completing the proof.

Lemma 4.4. Let $\bar{q} \in \mathfrak{P}^{\text {inf }}$ be such that for some $l_{1}<l_{2} \in \mathbb{N} \backslash\{0\}$ we have: $0<p_{l_{1}}<1, p_{l_{2}}=1$ and $p_{l}=0$ for all $l \notin\left\{l_{1}, l_{2}\right\}$. Then the 0-1 law for L fails for $M_{\bar{q}}^{n}$.

Proof. Let ψ be the sentence in L "saying" that some vertex has exactly one neighbor and this neighbor has at least three neighbors. Formally:

$$
\psi:=(\exists x)(\exists!y) x \sim y \wedge(\forall z) x \sim z \rightarrow\left(\exists u_{1} \exists u_{2} \exists u_{3}\right) \bigwedge_{0<i<j \leq 3} u_{i} \neq u_{j} \wedge \bigwedge_{0<i \leq 3} z \sim u_{i}
$$

We first show that for some $p>0$ and $n_{0} \in \mathbb{N}$, for all $n>n_{0}$ we have $\operatorname{Pr}\left[M_{\bar{q}}^{n} \models\right.$ $\psi]>p$. To see this simply take $n_{0}=l_{1}+l_{2}+1$ and $p=\left(1-p_{l_{1}}\right)\left(p_{l_{1}}\right)$. Now for $n>n_{0}$ in $M_{\bar{q}}^{n}$, with probability $1-p_{l_{1}}$ the node $1 \in[n]$ has exactly one neighbor (namely $\left.1+l_{2} \in[n]\right)$ and with probability at least $p_{l_{1}}, 1+l_{2}$ is connected to $1+l_{1}+l_{2}$, and hence has three neighbors $\left(1,1+2 l_{2}\right.$ and $\left.1+l_{1}+l_{2}\right)$. This yields the desired result. On the other hand for some $p^{\prime}>0$ we have for all $n \in \mathbb{N}, \operatorname{Pr}\left[M_{\bar{q}}^{n} \models \neg \psi\right]>p^{\prime}$. To see this note that for all n, only members of $\left[1, l_{2}\right] \cup\left(n-l_{2}, n\right]$ can possibly exemplify ψ, as all members of $\left(l_{2}, n-l_{2}\right.$] have at least two neighbors with probability one. For each $x \in\left[1, l_{2}\right] \cup\left(n-l_{2}, n\right]$, with probability at least $\left(1-p_{1}\right)^{2}, x$ dose not exemplify ψ (since the unique neighbor of x has less then three neighbors). As the size of $\left[1, l_{2}\right] \cup\left(n-l_{2}, n\right]$ is $2 \cdot l_{2}$ we get $\operatorname{Pr}\left[M_{\bar{q}}^{n} \models \neg \psi\right]>\left(1-p_{1}\right)^{2 l_{2}}:=p^{\prime}>0$. Together we are done.

Lemma 4.5. Let $\bar{p} \in \mathfrak{P}^{\text {inf }}$ be such that $\left|U^{*}(\bar{p})\right|<\infty$ and $p_{i} \in\{0,1\}$ for $i>0$. Then $M_{\bar{p}}^{n}$ satisfy the 0-1 law for L.

Proof. Let S^{n} be the (not random) structure in vocabulary $\{S u c\}$, with universe $[n]$ and $S u c$ is the successor relation on $[n]$. It is straightforward to see that any sentence $\psi \in L$ has a sentence $\psi^{S} \in\{S u c\}$ such that

$$
\operatorname{Pr}\left[M_{\bar{p}}^{n} \models \psi\right]= \begin{cases}1 & S^{n} \models \psi^{S} \\ 0 & S^{n} \not \models \psi^{S} .\end{cases}
$$

Also by a special case of Gaifman's result from [3] we have: for each $k \in \mathbb{N}$ there exists some $n_{k} \in \mathbb{N}$ such that if $n, n^{\prime}>n_{k}$ then S^{n} and $S^{n^{\prime}}$ have the same first order theory of quantifier depth k. Together we are done.

Conclusion 4.6. Let $\bar{p} \in \mathfrak{P}^{\text {inf }}$ be such that $0<\left|U^{*}(\bar{p})\right|<\infty$.
(1) The 2-hereditary 0-1 law holds for \bar{p} iff $\left|\left\{l>0: p_{l}>0\right\}\right|>1$.
(2) The 3-hereditary 0-1 law holds for \bar{p} iff $\left\{l>0: 0<p_{l}<1\right\} \neq \emptyset$.
(3) If furthermore $1<\left|U^{*}(\bar{p})\right|$ then the 1-hereditary 0-1 law holds for \bar{p} iff $\left\{l>0: 0<p_{l}<1\right\} \neq \emptyset$.
Proof. For (1) note that if indeed $\left|\left\{i>0: p_{l}>0\right\}\right|>1$ then some $\bar{q} \in \operatorname{Gen}_{2}(\bar{p})$ is as in the assumption of Lemma 4.4, otherwise any $\bar{q} \in \operatorname{Gen}_{2}(\bar{p})$ has at most 1 nonzero member hence $M_{\bar{q}}^{n}$ satisfy the 0-1 law by either 4.5 or 1.2 ,

For (2) note that if $\left\{i>0: 0<p_{l}<1\right\} \neq \emptyset$ then some $\bar{q} \in \operatorname{Gen}_{3}(\bar{p})$ is as in the assumption of Lemma 4.4, otherwise any $\bar{q} \in \operatorname{Gen}_{3}(\bar{p})$ is as in the assumption of Lemma 4.5 and we are done.

Similarly for (3) note that if $1<\left|U^{*}(\bar{p})\right|$ and $\left\{l>0: 0<p_{l}<1\right\} \neq \emptyset$ then some $\bar{q} \in G e n_{1}(\bar{p})$ satisfies assumptions (1)-(3) of Lemma4.3, otherwise any $\bar{q} \in \operatorname{Gen}_{1}(\bar{p})$ is as in the assumption of Lemma 4.5 and we are done.

5. When exactly one probability equals 1

In this section we assume:
Assumption 5.1. \bar{p} is a fixed member of $\mathfrak{P}^{\text {inf }}$ such that $\left|U^{*}(\bar{p})\right|=1$ hence denote $U^{*}(\bar{p})=\left\{l^{*}\right\}$, and assume

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \log \left(\prod_{l \in[n] \backslash\left\{l^{*}\right\}}\left(1-p_{l}\right)\right) / \log (n)=0 \tag{*}
\end{equation*}
$$

We try to determine when the 1-hereditary 0-1 law holds. The assumption of $(*)^{\prime}$ is justified as the proof in section 2 works also in this case and in fact in any case that $U^{*}(\bar{p})$ is finite. To see this replace in section 2 products of the form $\prod_{l<n}\left(1-p_{l}\right)$ by $\prod_{l<n, l \notin U^{*}(\bar{p})}\left(1-p_{l}\right)$, sentences of the form " x has valency m " by " x has valency $m+2\left|U^{*}(\bar{p})\right|^{\prime}$, and similar simple changes. So if $(*)^{\prime}$ fails then the 1-hereditary weak convergence law fails, and we are done. It seems that our ability to "identify" the l^{*}-boundary (i.e. the set $\left.\left[1, l^{*}\right] \cup\left(n-l^{*}, n\right]\right)$ in $M_{\bar{p}}^{n}$ is closely related to the holding of the 0-1 law. In Conclusion 5.6 we use this idea and give a necessary condition on \bar{p} for the 1-hereditary weak convergence law. The proof uses methods similar to those of the previous sections. Finding a sufficient condition for the 1-hereditary 0-1 law seems to be harder. It turns out that the analysis of this case is, in a way, similar to the analysis when we add the successor relation to our vocabulary. This is because the edges of the form $\left\{l, l+l^{*}\right\}$ appear with probability 1 similarly to the successor relation. There are, however, some obvious differences. Let L^{+}be the vocabulary $\{\sim, S\}$, and let $\left(M^{+}\right)_{\bar{p}}^{n}$ be the random L^{+}
structure with universe $[n], \sim$ is the same as in $M_{\bar{p}}^{n}$, and $S^{\left(M^{+}\right)_{\bar{p}}^{n}}$ is the successor relation on $[n]$. Now if for some $l^{* *}>0,0<p_{l^{* *}}<1$ then $\left(M^{+}\right)_{\bar{p}}^{n}$ does not satisfy the 0-1 law for L^{+}. This is because the elements 1 and $l^{* *}+1$ are definable in L^{+} and hence some L^{+}sentence holds in $\left(M^{+}\right)_{\bar{p}}^{n}$ iff $\left\{1, l^{* *}+1\right\}$ is an edge of $\left(M^{+}\right)_{\bar{p}}^{n}$ which holds with probability $p_{l^{* *}}$. In our case, as in L we can not distinguish edges of the form $\left\{l, l+l^{*}\right\}$ from the rest of the edged, the 0-1 law may hold even if such l^{*} exists. In Lemma 5.10 below we show that if, in fact, we can not "identify the edges" in $M_{\bar{p}}^{n}$ then the 0-1 law, holds in $M_{\bar{p}}^{n}$. This is translated in Theorem 5.14 to a sufficient condition on \bar{p} for the 0-1 law holding in $M_{\bar{p}}^{n}$, but not necessarily for the 1-hereditary 0-1 law. The proof uses "local" properties of graphs. It seems that some form of "1-hereditary" version of 5.14 is possible. In any case we could not find a necessary and sufficient condition for the 1-hereditary 0-1 law, and the analysis of this case is not complete.

We first find a necessary condition on \bar{p} for the 1-hereditary weak convergence law. Let us start with a definition of a structure on a sequence $\bar{q} \in \mathfrak{P}$ that enables us to "identify" the l^{*}-boundary in $M_{\bar{q}}^{n}$.

Definition 5.2. (1) A sequence $\bar{q} \in \mathfrak{P}$ is called nice if:
(a) $U^{*}(\bar{q})=\left\{l^{*}\right\}$.
(b) If $l_{1}, l_{2}, l_{3} \in\left\{l<n_{\bar{q}}: q_{l}>0\right\}$ then $l_{1}+l_{2} \neq l_{3}$.
(c) If $l_{1}, l_{2}, l_{3}, l_{4} \in\left\{l<n_{\bar{q}}: q_{l}>0\right\}$ then $l_{1}+l_{2}+l_{3} \neq l_{4}$.
(d) If $l_{1}, l_{2}, l_{3}, l_{4} \in\left\{l<n_{\bar{p}}: q_{l}>0\right\}, l_{1}+l_{2}=l_{3}+l_{4}$ and $l_{1}+l_{2}<n_{\bar{q}}$ then $\left\{l_{1}, l_{2}\right\}=\left\{l_{3}, l_{4}\right\}$.
(2) Let ϕ^{1} be the following L-formula:

$$
\phi^{1}\left(y_{1}, z_{1}, y_{2}, z_{2}\right):=y_{1} \sim z_{1} \wedge z_{1} \sim z_{2} \wedge z_{2} \sim y_{2} \wedge y_{2} \sim y_{1} \wedge y_{1} \neq z_{2} \wedge z_{1} \neq y_{2}
$$

(3) For $k \geq 0$ define by induction on k the L-formula $\phi_{k}^{1}\left(y_{1}, z_{1}, y_{2}, z_{2}\right)$ by:

- $\phi_{0}^{1}\left(y_{1}, z_{1}, y_{2}, z_{2}\right):=y_{1}=y_{2} \wedge z_{1}=z_{2} \wedge y_{1} \neq z_{1}$.
- $\phi_{1}^{1}\left(y_{1}, z_{1}, y_{2}, z_{2}\right):=\phi^{1}\left(y_{1}, z_{1}, y_{2}, z_{2}\right)$.
- $\phi_{k+1}^{1}\left(y_{1}, z_{1}, y_{2}, z_{2}\right):=$
$(\exists y \exists z)\left[\left(\phi_{k}^{1}\left(y_{1}, z_{1}, y, z\right) \wedge \phi^{1}\left(y, z, y_{2}, z_{2}\right)\right) \vee\left(\phi_{k}^{1}\left(y_{2}, z_{2}, y, z\right) \phi^{1}\left(y_{1}, z_{1}, y, z\right)\right)\right]$.
(4) For $k_{1}, k_{2}, \in \mathbb{N}$ let $\phi_{k_{1}, k_{2}}^{2}$ be the following L-formula:

$$
\phi_{k_{1}, k_{2}}^{2}(y, z):=\left(\exists x_{1} \exists x_{2} \exists x_{3} \exists x_{4}\right)\left[\phi_{k_{1}}^{1}\left(y, z, x_{1}, x_{2}\right) \wedge \phi_{k_{2}}^{1}\left(x_{2}, x_{1}, x_{3}, x_{4}\right) \wedge \neg x_{3} \sim x_{4}\right] .
$$

(5) For $k_{1}, k_{2}, \in \mathbb{N}$ let $\phi_{k_{1}, k_{2}}^{3}$ be the following L formula:

$$
\phi_{k_{1}, k_{2}}^{3}(x):=(\exists!y)\left[x \sim y \wedge \neg \phi_{k_{1}, k_{2}}^{2}(x, y)\right] .
$$

Observation 5.3. Let $\bar{q} \in \mathfrak{P}$ be nice and $n \in \mathbb{N}$ be such that $n<n_{\bar{q}}$. Then the following holds in $M_{\bar{q}}^{n}$ with probability 1:
(1) For $y_{1}, z_{1}, y_{2}, z_{2} \in[n]$, if $M_{\bar{q}}^{n} \models \phi^{1}\left[y_{1}, z_{1}, y_{2}, z_{2}\right]$ then $y_{1}-z_{1}=y_{2}-z_{2}$. (Use (d) in the definition of nice).
(2) For $k \in \mathbb{N}$ and $y_{1}, z_{1}, y_{2}, z_{2} \in[n]$, if $M_{\bar{q}}^{n} \models \phi_{k}^{1}\left[y_{1}, z_{1}, y_{2}, z_{2}\right]$ then $y_{1}-z_{1}=$ $y_{2}-z_{2}$. (Use (1) above and induction on k).
(3) For $k_{1}, k_{2} \in \mathbb{N}$ and $y, z \in[n]$, if $M_{\bar{q}}^{n} \models \phi_{k_{1}, k_{2}}^{2}[y, z]$ then $|y-z| \neq l^{*}$. (Use (2) above and the definition of $\phi_{k_{1}, k_{2}}^{2}(y, z)$).
(4) For $k_{1}, k_{2} \in \mathbb{N}$ and $x \in[n]$, if $M_{\bar{q}}^{n} \models \phi_{k_{1}, k_{2}}^{3}[x]$ then $x \in\left[1, l^{*}\right] \cup\left(n-l^{*}, n\right]$. (Use (3) above).

The following claim shows that if \bar{q} is nice (and have a certain structure) then, with probability close to $1, \phi_{3,0}^{3}[y]$ holds in $M_{\bar{q}}^{n}$ for all $y \in\left[1, l^{*}\right] \cup\left(n-l^{*}, n\right]$. This, together with (4) in the observation above gives us a "definition" of the l^{*}-boundary in $M_{\bar{q}}^{n}$.
Claim 5.4. Let $\bar{q} \in \mathfrak{P}^{\text {fin }}$ be nice and denote $n=n_{\bar{q}}$. Assume that for all $l>0$, $q_{l}>0$ implies $l<\lfloor n / 3\rfloor$. Assume further that for some $\epsilon>0,0<q_{l}<1 \Rightarrow \epsilon<$ $q_{l}<1-\epsilon$. Let $y_{0} \in\left[1, l^{*}\right] \cup\left(n-l^{*}, n\right]$. Denote $m:=\left|\left\{0<l<n_{\bar{p}}: 0<q_{l}<1\right\}\right|$. Then:

$$
\operatorname{Pr}\left[M_{\bar{q}}^{n} \models \neg \phi_{3,0}^{3}\left[y_{0}\right]\right] \leq\left(\sum_{\left\{y \in[n]:\left|y_{0}-y\right| \neq l^{*}\right\}} q_{\left|y_{0}-y\right|}\right)\left(1-\epsilon^{11}\right)^{m / 2-1}
$$

Proof. We deal with the case $y_{0} \in\left[1, l^{*}\right]$, the case $y_{0} \in\left(n-l^{*}, n\right]$ is symmetric. Let $z_{0} \in[n]$ be such that $l_{0}:=z_{0}-y_{0} \in\left\{0<l<n: 0<q_{l}<1\right\}$ (so $l_{0} \neq l^{*}$ and $l_{0}<\lfloor n / 3\rfloor$), and assume that $M_{\bar{q}}^{n} \models y_{0} \sim z_{0}$. For any $l_{1}, l_{2}<\lfloor n / 3\rfloor$ denote (see diagram below): $y_{1}:=y_{0}+l_{1}, y_{2}:=y_{0}+l_{2}, y_{3}:=y_{2}+l_{1}=y_{1}+l_{2}=$ $y_{0}+l_{1}+l_{2}$ and symmetrically for z_{1}, z_{2}, z_{3} (so y_{i} and z_{i} for $i \in\{0,1,2,3\}$ all belong to $[n]) . y_{0} \longrightarrow z_{0} \quad$ The following holds in

$M_{\bar{q}}^{n}$ with probability 1 : If for some $l_{1}, l_{2}<\lfloor n / 3\rfloor$ such that $\left(l_{0}, l_{1}, l_{2}\right)$ is without repetitions, we have:
$(*)_{1}\left(y_{0}, y_{1}, y_{3}, y_{2}\right),\left(z_{0}, z_{1}, z_{3}, z_{2}\right)$ and $\left(y_{2}, y_{3}, z_{3}, z_{2}\right)$ are all circles in $M_{\bar{q}}^{n}$.
$(*)_{2}\left\{y_{1}, z_{1}\right\}$ is not an edge of $M_{\bar{q}}^{n}$.
Then $M_{\bar{q}}^{n} \models \phi_{0,3}^{2}\left[y_{0}, z_{0}\right]$. Why? As $\left(y_{1}, y_{0}, z_{0}, z_{1}\right)$, in the place of $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, exemplifies $M_{\bar{p}}^{n} \models \phi_{0,3}^{2}\left[y_{0}, z_{0}\right]$. Let us fix $z_{0}=y_{0}+l_{0}$ and assume that $M_{\bar{q}}^{n} \models y_{0} \sim$ z_{0}. (Formally we condition the probability space $M_{\bar{q}}^{n}$ to the event $y_{0} \sim z_{0}$.) Denote

$$
L^{y_{0}, z_{0}}:=\left\{\left(l_{1}, l_{2}\right): q_{l_{1}}, q_{l_{2}}>0, l_{0} \neq l_{1}, l_{0} \neq l_{2}, l_{1} \neq l_{2}\right\} .
$$

For $\left(l_{1}, l_{2}\right) \in L^{y_{0}, z_{0}}$, the probability that $(*)_{1}$ and $(*)_{2}$ holds, is $\left(1-q_{l_{0}}\right)\left(q_{l_{0}}\right)^{2}\left(q_{l_{1}}\right)^{4}\left(q_{l_{2}}\right)^{4}$. Denote the event that $(*)_{1}$ and $(*)_{2}$ holds by $E^{y_{0}, z_{0}}\left(l_{1}, l_{2}\right)$. Note that if $\left(l_{1}, l_{2}\right),\left(l_{1}^{\prime}, l_{2}^{\prime}\right) \in$ $L^{y_{0}, z_{0}}$ are such that $\left(l_{1}, l_{2}, l_{1}^{\prime}, l_{2}^{\prime}\right)$ is without repetitions and $l_{1}+l_{2} \neq l_{1}^{\prime}+l_{2}^{\prime}$ then the events $E^{y_{0}, z_{0}}\left(l_{1}, l_{2}\right)$ and $E^{y_{0}, z_{0}}\left(l_{1}^{\prime}, l_{2}^{\prime}\right)$ are independent. Now recall that $m:=\mid\{l>$ $\left.0: \epsilon<q_{l}<1-\epsilon\right\} \mid$. Hence we have some $L^{\prime} \subseteq L^{y_{0}, z_{0}}$ such that: $\left|L^{\prime}\right|=\lfloor m / 2-1\rfloor$, and if $\left(l_{1}, l_{2}\right),\left(l_{1}^{\prime}, l_{2}^{\prime}\right) \in L^{\prime}$ then the events $E^{y_{0}, z_{0}}\left(l_{1}, l_{2}\right)$ and $E^{y_{0}, z_{0}}\left(l_{1}^{\prime}, l_{2}^{\prime}\right)$ are independent. We conclude that

$$
\begin{gathered}
\operatorname{Pr}\left[M_{\bar{q}}^{n} \models \neg \phi_{0,3}^{2}\left[y_{0}, z_{0}\right] \mid M_{\bar{q}}^{n} \models y_{0} \sim z_{0}\right] \leq \\
\left(1-\left(1-q_{l_{0}}\right)\left(q_{l_{0}}\right)^{2}\left(q_{l_{1}}\right)^{4}\left(q_{l_{2}}\right)^{4}\right)^{m / 2-1} \leq\left(1-\epsilon^{11}\right)^{m / 2-1} .
\end{gathered}
$$

This is a common bound for all $z_{0}=y_{0}+l_{0}$, and the same bound holds for all $z_{0}=y_{0}-l_{0}$ (whenever it belongs to $\left.[n]\right)$. We conclude that the expected number of $z_{0} \in[n]$ such that: $\left|z_{0}-y_{0}\right| \neq l^{*}, M_{\bar{q}}^{n} \models y_{0} \sim z_{0}$ and $M_{\bar{q}}^{n} \models \neg \phi_{0,3}^{2}\left[y_{0}, z_{0}\right]$ is at most $\left(\sum_{\left\{y \in[n]:\left|y_{0}-y\right| \neq l^{*}\right\}} q_{\left|y_{0}-y\right|}\right)\left(1-\epsilon^{11}\right)^{m / 2-1}$. Now by (3) in Observation 5.3, $M_{\bar{q}}^{n} \models \phi_{0,3}^{2}\left[y_{0}, y_{0}+l^{*}\right]$. By Markov's inequality and the definition of $\phi_{0,3}^{3}(x)$ we are done.

We now prove two lemmas which allow us to construct a sequence \bar{q} such that for $\varphi:=\exists x \phi_{0,3}^{3}(x)$ both φ and $\neg \varphi$ will hold infinitely often in $M_{\bar{q}}^{n}$.

Lemma 5.5. Assume \bar{p} satisfy $\sum_{l>0} p_{l}=\infty$, and let $\bar{q} \in \operatorname{Gen}_{1}^{r}(\bar{p})$ be nice. Let $\zeta>0$ be some rational number. Then there exists some $r^{\prime}>r$ and $\bar{q}^{\prime} \in \operatorname{Gen}_{1}^{r^{\prime}}(\bar{p})$ such that: \bar{q}^{\prime} is nice, $\bar{q} \triangleleft \bar{q}^{\prime}$ and $\operatorname{Pr}\left[M_{\bar{q}^{\prime}}^{n_{\bar{q}^{\prime}}} \models \varphi\right] \leq \zeta$.

Proof. Define $p^{1}:=\left(\prod_{l \in\left[n_{\bar{q}} \backslash \backslash\left\{l^{*}\right\}\right.}\left(1-p_{l}\right)\right)^{2}$, and choose $r^{\prime}>r$ large enough such that $\sum_{r<l \leq r^{\prime}} p_{l} \geq 2 l^{*} \cdot p^{1} / \zeta$. Now define $\bar{q}^{\prime} \in \operatorname{Gen}_{1}^{r^{\prime}}(\bar{p})$ in the following way:

$$
q_{l}^{\prime}= \begin{cases}q_{l} & 0<l<n_{\bar{q}} \\ 0 & n_{\bar{q}} \leq l<\left(r^{\prime}-r\right) \cdot n_{\bar{q}} \\ p_{r+i} & l=\left(r^{\prime}-r+i\right) \cdot n_{\bar{q}} \text { for some } 0<i \leq\left(r^{\prime}-r\right) \\ 0 & \left(r^{\prime}-r\right) \cdot n_{\bar{q}} \leq l<2\left(r^{\prime}-r\right) \cdot n_{\bar{q}} \text { and } l \not \equiv 0 \quad\left(\bmod n_{\bar{q}}\right)\end{cases}
$$

Note that indeed \bar{q}^{\prime} is nice and $\bar{q} \triangleleft \bar{q}^{\prime}$. Denote $n:=n_{\bar{q}^{\prime}}=2\left(r^{\prime}-r\right) \cdot n_{\bar{q}}$. Note further that every member of $M_{\bar{q}^{\prime}}^{n}$ have at most one neighbor of distance more more than $n / 2$, and all the rest of its neighbors are of distance at most $n_{\bar{q}}$. We now bound from above the probability of $M_{\bar{q}^{\prime}}^{n} \models \exists x \phi_{0,3}^{3}(x)$. Let x be in [1, $\left.l^{*}\right]$. For each $0<i \leq\left(r^{\prime}-r\right)$ denote $y_{i}:=x+\left(r^{\prime}-r+i\right) \cdot n_{\bar{q}}$ (hence $\left.y_{i} \in[n / 2, n]\right)$ and let E_{i} be the following event: " $M_{\bar{q}^{\prime}}^{n} \models y_{i} \sim z$ iff $z \in\left\{x, y_{i}+l^{*}, y_{i}-l^{*}\right\}$ ". By the definition of \bar{q}^{\prime}, each y_{i} can only be connected to either x of to members of $\left[y-n_{\bar{q}}, y+n_{\bar{q}}\right]$, hence we have

$$
\operatorname{Pr}\left[E_{i}\right]=q_{\left(r^{\prime}-r+i\right) \cdot n_{\bar{q}}}^{\prime} \cdot p^{1}=p_{r+i} \cdot p^{1}
$$

As $i \neq j \Rightarrow n / 2>\left|y_{i}-y_{j}\right|>n_{\bar{q}}$ we have that the E_{i}-is are independent events. Now if E_{i} holds then by the definition of $\phi_{0,3}^{2}$ we have $M_{\bar{q}^{\prime}}^{n} \models \neg \phi_{0,3}^{2}\left[x, y_{i}\right]$, and as $M_{\bar{q}^{\prime}}^{n} \models \neg \phi_{0,3}^{2}\left[x, x+l^{*}\right]$ this implies $M_{\bar{q}^{\prime}}^{n} \models \neg \phi_{0,3}^{3}[x]$. Let the random variable X denote the number of $0<i \leq\left(r^{\prime}-r\right)$ such that E_{i} holds in $M_{\bar{q}^{\prime}}^{n}$. Then by Chebyshev's inequality we have:

$$
\operatorname{Pr}\left[M_{\bar{q}^{\prime}}^{n} \models \phi_{0,3}^{3}[x]\right] \leq \operatorname{Pr}[X=0] \leq \frac{\operatorname{Var}(X)}{\operatorname{Exp}(X)^{2}} \leq \frac{1}{\operatorname{Exp}(X)} \leq \frac{p^{1}}{\sum_{0<i \leq\left(r^{\prime}-r\right)} p_{r+i}} \leq \frac{\zeta}{2 l^{*}}
$$

This is true for each $x \in\left[1, l^{*}\right]$ and the symmetric argument gives the same bound for each $x \in\left(n-l^{*}, n\right]$. Finally note that if $x, x+l^{*}$ both belong to $[n]$ then $M_{\bar{q}^{\prime}}^{n} \models \neg \phi_{0,3}^{2}\left[x, x+l^{*}\right]$ (see 5.3(4)). Hence if $x \in\left(l^{*}, n-l^{*}\right]$ then $M_{\bar{q}^{\prime}}^{n} \models \neg \phi_{0,3}^{3}[x]$. We conclude that:

$$
\operatorname{Pr}\left[M_{\bar{q}^{\prime}}^{n} \models \exists x \phi_{0,3}^{3}(x)\right]=\operatorname{Pr}\left[M_{\bar{q}^{\prime}}^{n} \models \phi\right] \leq \zeta
$$

as desired.
Lemma 5.6. Assume \bar{p} satisfy $0<p_{l}<1 \Rightarrow \epsilon<p_{l}<1-\epsilon$ for some $\epsilon>0$, and $\sum_{n=1}^{\infty} p_{n}=\infty$. Let $\bar{q} \in \operatorname{Gen}_{1}^{r}(\bar{p})$ be nice, and $\zeta>0$ be some rational number.

Then there exists some $r^{\prime}>r$ and $\bar{q}^{\prime} \in \operatorname{Gen}_{1}^{r^{\prime}}(\bar{p})$ such that: \bar{q}^{\prime} is nice, $\bar{q} \triangleleft \bar{q}^{\prime}$ and $\operatorname{Pr}\left[M_{\bar{q}^{\prime}}^{n_{\bar{q}^{\prime}}} \models \varphi\right] \geq 1-\zeta$.

Proof. This is a direct consequence of Claim 5.4. For each $r^{\prime}>r$ denote $m\left(r^{\prime}\right):=$ $\left|\left\{0<l \leq r^{\prime}: 0<p_{l}<1\right\}\right|$. Trivially we can choose $r^{\prime}>r$ such that $m\left(r^{\prime}\right)(1-$ $\left.\epsilon^{11}\right)^{m\left(r^{\prime}\right) / 2-1} \leq \zeta$. As \bar{q} is nice there exists some nice $\bar{q}^{\prime} \in \operatorname{Gen}_{1}^{r^{\prime}}(\bar{p})$ such that $\bar{q} \triangleleft \bar{q}^{\prime}$. Note that

$$
\sum_{\left\{y \in[n]:|1-y| \neq l^{*}\right\}} q_{|1-y|}^{\prime} \leq \sum_{\left\{0<l<n_{\bar{q}^{\prime}}: l \neq l^{*}\right\}} q_{l}^{\prime} \leq m\left(r^{\prime}\right)
$$

and hence by 5.4 we have:

$$
\operatorname{Pr}\left[M_{\bar{q}^{\prime}}^{n} \models \neg \phi\right] \leq \operatorname{Pr}\left[M_{\bar{q}^{\prime}}^{n} \models \neg \phi_{2,0}^{3}[1]\right] \leq m\left(r^{\prime}\right)\left(1-\epsilon^{11}\right)^{m\left(r^{\prime}\right) / 2-1} \leq \zeta
$$

as desired.
From the last two lemmas we conclude:
Conclusion 5.7. Assume that \bar{p} satisfy $0<p_{l}<1 \Rightarrow \epsilon<p_{l}<1-\epsilon$ for some $\epsilon>0$, and $\sum_{n=1}^{\infty} p_{n}=\infty$. Then \bar{p} does not satisfy the 1-hereditary weak convergence law for L.

The proof is by inductive construction of $\bar{q} \in \operatorname{Gen}_{1}(\bar{p})$ such that for $\varphi:=$ $\exists x \phi_{0,3}^{3}(x)$ both φ and $\neg \varphi$ hold infinitely often in $M_{\bar{q}}^{n}$, using Lemmas 5.5, 5.6 as done on previous proofs.

From Conclusion5.7we have a necessary condition on \bar{p} for the 1-hereditary weak convergence law. We now find a sufficient condition on \bar{p} for the (not necessarily 1-hereditary) 0-1 law. Let us start with definitions of distance in graphs and of local properties in graphs.

Definition 5.8. Let G be a graph on vertex set $[n]$.
(1) For $x, y \in[n]$ let dist ${ }^{G}(x, y):=\min \{k \in \mathbb{N}: G$ has a path of length k from x to $y\}$. Note that for each $k \in \mathbb{N}$ there exists some L-formula $\theta_{k}(x, y)$ such that for all G and $x, y \in[n]$:

$$
G \models \theta_{k}[x, y] \quad \text { iff } \quad \operatorname{dist}^{G}(x, y) \leq k .
$$

(2) For $x \in[n]$ and $r \in \mathbb{N}$ let $B^{G}(r, x):=\left\{y \in[n]:\right.$ dist $\left.^{G}(x, y) \leq r\right\}$ be the ball with radius r and center x in G.
(3) An L-formula $\phi(x)$ is called r-local if every quantifier in ϕ is restricted to the set $B^{G}(r, x)$. Formally each appearance of the form $\forall y \ldots$ in ϕ is of the form $(\forall y) \theta_{r}(x, y) \rightarrow \ldots$, and similarly for $\exists y$ and other variables. Note that for any $G, x \in[n], r \in \mathbb{N}$ and an r-local formula $\phi(x)$ we have:

$$
G \models \phi[x] \quad \text { iff }\left.\quad G\right|_{B(r, x)} \models \phi[x] .
$$

(4) An L-sentence is called local if it has the form

$$
\exists x_{1} \ldots \exists x_{m} \bigwedge_{1 \leq i \leq m} \phi\left(x_{i}\right) \bigwedge_{1 \leq i<j \leq m} \neg \theta_{2 r}\left(x_{i}, x_{j}\right)
$$

where $\phi=\phi(x)$ is an r-local formula for some $r \in \mathbb{N}$.
(5) For $l, r \in \mathbb{N}$ and an L-formula $\phi(x)$ we say that the l-boundary of G is r-indistinguishable by $\phi(x)$ if for all $z \in[1, l] \cup(n-l, n]$ there exists some $y \in[n]$ such that $B^{G}(r, y) \cap([1, l] \cup(n-l, n])=\emptyset$ and $G \models \phi[z] \leftrightarrow \phi[y]$
We can now use the following famous result from [3]:

Theorem 5.9 (Gaifman's Theorem). Every L-sentence is logically equivalent to a boolean combination of local L-sentences.

We will use Gaifman's theorem to prove:
Lemma 5.10. Assume that for all $k \in \mathbb{N}$ and k-local L-formula $\varphi(z)$ we have:

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\text { The } l^{*} \text {-boundary of } M_{\bar{p}}^{n} \text { is } k \text {-indistinguishable by } \varphi(z)\right]=1
$$

Then the 0-1 law for L holds in $M_{\bar{p}}^{n}$.
Proof. By Gaifman's theorem it is enough if we prove that the 0-1 law holds in $M_{\bar{p}}^{n}$ for local L-sentences. Let

$$
\psi:=\exists x_{1} \ldots \exists x_{m} \bigwedge_{1 \leq i \leq m} \phi\left(x_{i}\right) \bigwedge_{1 \leq i<j \leq m} \neg \theta_{2 r}\left(x_{i}, x_{j}\right)
$$

be some local L-sentence, where $\phi(x)$ is an r-local formula.
Define \mathfrak{H} to be the set of all 4 -tuples $\left(l, U, u_{0}, H\right)$ such that: $l \in \mathbb{N}, U \subseteq[l]$, $u_{0} \in U$ and H is a graph with vertex set U. We say that some $\left(l, U, u_{0}, H\right) \in \mathfrak{H}$ is r-proper for \bar{p} (but as \bar{p} is fixed we usually omit it) if it satisfies:
$\left(*_{1}\right)$ For all $u \in U, \operatorname{dist}^{H}\left(u_{0}, u\right) \leq r$.
$\left(*_{2}\right)$ For all $u \in U$, if $\operatorname{dist}^{H}\left(u_{0}, u\right)<r$ then $u+l^{*}, u-l^{*} \in U$.
$\left(*_{3}\right) \operatorname{Pr}\left[\left.M_{\bar{p}}^{l}\right|_{U}=H\right]>0$.
We say that a member of \mathfrak{H} is proper if it is r-proper for some $r \in \mathbb{N}$.
Let H be a graph on vertex set $U \subseteq[l]$ and G be a graph on vertex set $[n]$. We say that $f: U \rightarrow[n]$ is a strong embedding of H in G if:

- f in one-to one.
- For all $u, v \in U, H \models u \sim v$ iff $G \models f(u) \sim f(v)$.
- For all $u, v \in U, f(u)-f(v)=u-v$.
- If $i \in \operatorname{Im}(f), j \in[n] \backslash \operatorname{Im}(f)$ and $|i-j| \neq l^{*}$ then $G \models \neg i \sim j$.

We make two observations which follow directly from the definitions:
(1) If $\left(l, U, u_{0}, H\right) \in \mathfrak{H}$ is r-proper and $f: U \rightarrow[n]$ is a strong embedding of H in G then $\operatorname{Im}(f)=B^{G}\left(r, f\left(u_{0}\right)\right)$. Furthermore for any r-local formula $\phi(x)$ and $u \in U$ we have, $G \models \phi[f(u)]$ iff $H \models \phi[u]$.
(2) Let G be a graph on vertex set $[n]$ such that $\operatorname{Pr}\left[M_{\bar{p}}^{n}=G\right]>0$, and $x \in[n]$ be such that $B^{G}(r-1, x)$ is disjoint to $\left[1, l^{*}\right] \cup\left(n-l^{*}, n\right]$. Denote by m and M the minimal and maximal elements of $B^{G}(r, x)$ respectively. Denote by U the set $\left\{i-m+1: i \in B^{G}(r, x)\right\}$ and by H the graph on U defined by $H \models u \sim v$ iff $G \models(u+m-1) \sim(v+m-1)$. Then the 4-tuple $(M-m+1, U, x-m+1, H)$ is an r-proper member of \mathfrak{H}. Furthermore for any r-local formula $\phi(x)$ and $u \in U$ we have, $G \models \phi[u-m+1]$ iff $H \models \phi[u]$.
We now show that for any proper member of \mathfrak{H} there are many disjoint strong embeddings into $M_{\bar{p}}^{n}$. Formally:

Claim 5.11. Let $\left(l, U, u_{0}, H\right) \in \mathfrak{H}$ be proper, and $c>1$ be some fixed real. Let E_{c}^{n} be the following event on $M_{\bar{p}}^{n}$: "For any interval $I \subseteq[n]$ of length at least n / c there exists some $f: U \rightarrow I$ a strong embedding of H in $M_{\bar{p}}^{n}$ ". Then

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[E_{c}^{n} \text { holds in } M_{\bar{p}}^{n}\right]=1
$$

We skip the proof of this claim an almost identical lemma is proved in [1] (see Lemma at page 8 there).

We can now finish the proof of Lemma 5.10 Recall that $\phi(x)$ is am r-local formula. We consider two possibilities. First assume that for some r-proper $\left(l, U, u_{0}, H\right) \in \mathfrak{H}$ we have $H \models \phi\left[u_{0}\right]$. Let $\zeta>0$ be some real. Then by the claim above, for n large enough, with probability at least $1-\zeta$ there exists f_{1}, \ldots, f_{m} strong embeddings of H into $M_{\bar{p}}^{n}$ such that $\left\langle\operatorname{Im}\left(f_{i}\right): 1 \leq i \leq m\right\rangle$ are pairwise disjoint. By observation (1) above we have:

- For $1 \leq i<j \leq m, B^{M_{\bar{p}}^{n}}\left(r, f_{i}\left(u_{0}\right)\right) \cap B^{M_{\bar{p}}^{n}}\left(r, f_{j}\left(u_{0}\right)\right)=\emptyset$.
- For $1 \leq i \leq m, M_{\bar{p}}^{n} \models \phi\left[f_{i}\left(u_{0}\right)\right]$.

Hence $f_{1}\left(u_{0}\right), \ldots, f_{m}\left(u_{0}\right)$ exemplifies ψ in $M_{\bar{p}}^{n}$, so $\operatorname{Pr}\left[M_{\bar{p}}^{n} \models \psi\right] \geq 1-\zeta$ and as ζ was arbitrary we have $\lim _{n \rightarrow \infty} \operatorname{Pr}\left[M_{\bar{p}}^{n} \models \psi\right]=1$ and we are done.

Otherwise assume that for all r-proper $\left(l, U, u_{0}, H\right) \in \mathfrak{H}$ we have $H \models \neg \phi\left[u_{0}\right]$. We will show that $\lim _{n \rightarrow \infty} \operatorname{Pr}\left[M_{\bar{p}}^{n} \models \psi\right]=0$ which will finish the proof. Towards contradiction assume that for some $\epsilon>0$ for unboundedly many $n \in \mathbb{N}$ we have $\operatorname{Pr}\left[M_{\bar{p}}^{n} \models \psi\right] \geq \epsilon$. Define the L-formula:

$$
\varphi(z):=(\exists x)\left(\theta_{r-1}(x, z) \wedge \phi(x)\right)
$$

Note that $\varphi(z)$ is equivalent to a k-local formula for $k=2 r-1$. Hence by the assumption of our lemma for some (large enough $n \in \mathbb{N}$) we have with probability at least $\epsilon / 2: M_{\bar{p}}^{n} \models \psi$ and the l^{*}-boundary of $M_{\bar{p}}^{n}$ is k-indistinguishable by $\varphi(z)$. In particular for some $n \in \mathbb{N}$ and G a graph on vertex set $[n]$ we have:
(α) $\operatorname{Pr}\left[M_{\bar{p}}^{n}=G\right]>0$.
(β) $G \models \psi$.
(γ) The l^{*}-boundary of G is k-indistinguishable by $\varphi(z)$.
By (β) for some $x_{0} \in[n]$ we have $G \models \phi\left[x_{0}\right]$. If x_{0} is such that $B^{G}\left(r-1, x_{0}\right)$ is disjoint to $\left[1, l^{*}\right] \cup\left(n-l^{*}, n\right]$ then by (α) and observation (2) above we have some r-proper $\left(l, U, u_{0}, H\right) \in \mathfrak{H}$ such that $H \models \phi\left[u_{0}\right]$ in contradiction to our assumption. Hence assume that $B^{G}\left(r-1, x_{0}\right)$ is not disjoint to $\left[1, l^{*}\right] \cup\left(n-l^{*}, n\right]$ and let $z_{0} \in[n]$ belong to their intersection. So by the definition of $\varphi(z)$ we have $G \models \varphi\left[z_{0}\right]$ and by (γ) we have some $y_{0} \in[n]$ such that $B^{G}\left(k, y_{0}\right) \cap\left(\left[1, l^{*}\right] \cup\left(n-l^{*}, n\right]\right)=\emptyset$ and $G \models \varphi\left[y_{0}\right]$. Again by the definition of $\varphi(z)$, and recalling that $k=2 r-1$ we have some $x_{1} \in[n]$ such that $B^{G}\left(r-1, x_{1}\right) \cap\left(\left[1, l^{*}\right] \cup\left(n-l^{*}, n\right]\right)=\emptyset$ and $G \models \phi\left[x_{1}\right]$. So again by (α) and observation (2) we get a contradiction.

Remark 5.12. Lemma 5.10 above gives a sufficient condition for the $0-1$ law. If we are only interested in the convergence law, then a weaker condition is sufficient, all we need is that the probability of any local property holding in the l^{*}-boundary converges. Formally:

Assume that for all $r \in \mathbb{N}$ and r-local L-formula, $\phi(x)$, and for all $1 \leq l \leq l^{*}$ we have: Both $\left\langle\operatorname{Pr}\left[M_{\bar{p}}^{n} \models \phi[l]: n \in \mathbb{N}\right\rangle\right.$ and $\left\langle\operatorname{Pr}\left[M_{\bar{p}}^{n} \models \phi[n-l+1]: n \in \mathbb{N}\right\rangle\right.$ converge to a limit. Then $M_{\bar{p}}^{n}$ satisfies the convergence law.

The proof is similar to the proof of Lemma5.10. A similar proof on the convergence law in graphs with the successor relation is Theorem 2(i) in 11.

We now use 5.10 to get a sufficient condition on \bar{p} for the 0-1 law holding in $M_{\bar{p}}^{n}$. Our proof relays on the assumption that $M_{\bar{p}}^{n}$ contains few circles, and only those that are "unavoidable". We start with a definition of such circles:

Definition 5.13. Let $n \in \mathbb{N}$.
(1) For a sequence $\bar{x}=\left(x_{0}, x_{1}, \ldots, x_{k}\right) \subseteq[n]$ and $0 \leq i<k$ denote $l_{i}^{\bar{x}}:=$ $x_{i+1}-x_{i}$.
(2) A sequence $\left(x_{0}, x_{1}, \ldots, x_{k}\right) \subseteq[n]$ is called possible for \bar{p} (but as \bar{p} is fixed we omit it and similarly below) if for each $0 \leq i<k, p_{\left|L_{i}^{\bar{x}}\right|}>0$.
(3) A sequence $\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ is called a circle of length k if $x_{0}=x_{k}$ and $\left\langle\left\{x_{i}, x_{i+1}\right\}: 0 \leq i<k\right\rangle$ is without repetitions.
(4) A circle of length k, is called simple if $\left(x_{0}, x_{1}, \ldots, x_{k-1}\right)$ is without repetitions.
(5) For $\bar{x}=\left(x_{0}, x_{1}, \ldots, x_{k}\right) \subseteq[n]$, a pair $(S \cup A)$ is called a symmetric partition of $\bar{x} i f$:

- $S \cup A=\{0, \ldots, k-1\}$.
- If $i \neq j$ belong to A then $l_{i}^{\bar{x}}+l_{j}^{\bar{x}} \neq 0$.
- The sequence $\left\langle l_{i}^{\bar{x}}: i \in S\right\rangle$ can be partitioned into two sequences of length $r=|S| / 2:\left\langle l_{i}: 0 \leq i<r\right\rangle$ and $\left\langle l_{i}^{\prime}: 0 \leq i<r\right\rangle$ such that $l_{i}+l_{i}^{\prime}=0$ for each $0 \leq i<r$.
(6) For $\bar{x}=\left(x_{0}, x_{1}, \ldots, x_{k}\right) \subseteq[n]$ let $(\operatorname{Sym}(\bar{x}), \operatorname{Asym}(\bar{x}))$ be some symmetric partition of \bar{x} (say the first in some prefixed order). Denote $\operatorname{Sym}^{+}(\bar{x}):=$ $\left\{i \in \operatorname{Sym}(\bar{x}): l_{i}^{\bar{x}}>0\right\}$.
(7) We say that \bar{p} has no unavoidable circles if for all $k \in \mathbb{N}$ there exists some $m_{k} \in \mathbb{N}$ such that if \bar{x} is a possible circle of length k then for each $i \in$ $\operatorname{Asym}(\bar{x}),\left|l_{i}^{\bar{x}}\right| \leq m_{k}$.

Theorem 5.14. Assume that \bar{p} has no unavoidable circles, $\sum_{l=1}^{\infty} p_{l}=\infty$ and $\sum_{l=1}^{\infty}\left(p_{l}\right)^{2}<\infty$. Then $M_{\bar{p}}^{n}$ satisfies the 0-1 law for L.

Proof. Let $\phi(x)$ be some r-local formula, and j^{*} be in $\left\{1,2, \ldots, l^{*}\right\} \cup\left\{-1,-2, \ldots,-l^{*}\right\}$. For $n \in \mathbb{N}$ let $z_{n}^{*}=z^{*}\left(n, j^{*}\right)$ equal j^{*} if $j^{*}>0$ and $n-j^{*}+1$ if $j^{*}<0$ (so z_{n}^{*} belongs to $\left.\left[1, l^{*}\right] \cup\left(n-l^{*}, n\right]\right)$. We will show that with probability approaching 1 as $n \rightarrow \infty$ there exists some $y^{*} \in[n]$ such that $B^{M_{\bar{p}}^{n}}\left(r, y^{*}\right) \cap\left(\left[1, l^{*}\right] \cup\left(n-l^{*}, n\right]\right)=\emptyset$ and $M_{\bar{p}}^{n} \models \phi\left[z_{n}^{*}\right] \leftrightarrow \phi\left[y^{*}\right]$. This will complete the proof by Lemma 5.10. For simplicity of notation assume $j^{*}=1$ hence $z_{n}^{*}=1$ (the proof of the other cases is similar). We use the notations of the proof of 5.10. In particular recall the definition of the set \mathfrak{H} and of an r-proper member of \mathfrak{H}. Now if for two r-proper members of \mathfrak{H}, $\left(l^{1}, x^{1}, U^{1}, H^{1}\right)$ and $\left(l^{2}, x^{2}, U^{2}, H^{2}\right)$ we have $H^{1} \models \phi\left[x^{1}\right]$ and $H^{2} \models \neg \phi\left[x^{2}\right]$ then by Claim 5.11 we are done. Otherwise all r-proper members of \mathfrak{H} give the same value to $\phi[x]$ and without loss of generality assume that if $(l, x, U, H) \in \mathfrak{H}$ is a r-proper then $H \models \phi[x]$ (the dual case is identical). If $\lim _{n \rightarrow \infty} \operatorname{Pr}\left[M_{\bar{p}}^{n} \models \phi[1]\right]=1$ then again we are done by 5.11. Hence we may assume that:
\odot For some $\epsilon>0$, for an unbounded set of $n \in \mathbb{N}, \operatorname{Pr}\left[M_{\bar{p}}^{n} \models \neg \phi[1]\right] \geq \epsilon$.
In the construction below we use the following notations: 2 denotes the set $\{0,1\}$. ${ }^{k} 2$ denotes the set of sequences of length k of members of 2 , and if η belongs to ${ }^{k} 2$ we write $|\eta|=k$. ${ }^{\leq k} 2$ denotes $\bigcup_{0 \leq i \leq k}{ }^{k} 2$ and similarly ${ }^{<k} 2$. \rangle denotes the empty sequence, and for $\eta, \eta^{\prime} \in \leq k 2$, $\hat{\eta}^{\prime}$ denotes the concatenation of η and η^{\prime}. Finally for $\eta \in{ }^{k} 2$ and $k^{\prime}<k,\left.\eta\right|_{k^{\prime}}$ is the initial segment of length k^{\prime} of η.

Call \bar{y} a saturated tree of depth k in $[n]$ if:

- $\bar{y}=\left\langle y_{\eta} \in[n]: \eta \in{ }^{\leq k} 2\right\rangle$.
- \bar{y} is without repetitions.
- $\left\{y_{\langle 0\rangle}, y_{\langle 1\rangle}\right\}=\left\{y_{\langle \rangle}+l^{*}, y_{\langle \rangle}-l^{*}\right\}$.
- If $0<l<k$ and $\eta \in{ }^{l} 2$ then $\left\{y_{\eta}+l^{*}, y_{\eta}-l^{*}\right\} \subseteq\left\{y_{\eta^{\chi}\langle 0\rangle}, y_{\eta_{\eta}\{1\rangle}, y_{\left.\eta\right|_{l-1}}\right\}$.

Let G be a graph with set of vertexes $[n]$, and $i \in[n]$. We say that \bar{y} is a circle free saturated tree of depth k for i in G if:
(i) \bar{y} is a saturated tree of depth k in $[n]$.
(ii) $G \models i \sim y_{\langle \rangle}$but $\left|i-y_{\langle \rangle}\right| \neq l^{*}$.
(iii) For each $\eta \in^{<k} 2, G \models y_{\eta} \sim y_{\eta^{\prime}\langle 0\rangle}$ and $G \models y_{\eta} \sim y_{\eta^{\prime}\langle 1\rangle}$.
(iv) None of the edges described in (ii),(iii) belongs to a circle of length $\leq 6 k$ in G.
(v) Recalling that \bar{p} have no unavoidable circles let $m_{2 k}$ be the one from definition 5.13(7). For all $\eta \in \leq^{\leq k}$ and $y \in[n]$ if $G \models y_{\eta} \sim y$ and $y \notin\left\{y_{\eta^{\hat{}}\langle 0\rangle}, y_{\eta_{\eta}\langle 1\rangle}, y_{\left.\eta\right|_{l-1}}, i\right\}$ then $\left|y-y_{\eta}\right|>m_{2 k}$.
For $I \subseteq[n]$ we say that $\left\langle\bar{y}^{i}: i \in I\right\rangle$ is a circle free saturated forest of depth k for I in G if:
(a) For each $i \in I, \bar{y}^{i}$ is a circle free saturated tree of depth k for i in G.
(b) As sets $\left\langle\bar{y}^{i}: i \in I\right\rangle$ are pairwise disjoint.
(c) If $i_{1}, i_{2} \in I$ and \bar{x} is a path of length $k^{\prime} \leq k$ in G from $y_{\backslash\rangle}^{i_{1}}$ to i_{2}, then for some $j<k^{\prime},\left(x_{j}, x_{j+1}\right)=\left(y_{\langle \rangle}^{i_{1}}, i_{1}\right)$.
Claim 5.15. For $n \in \mathbb{N}$ and G a graph on $[n]$ denote by $I_{k}^{*}(G)$ the set $\left(\left[1, l^{*}\right] \cup\right.$ $\left.\left(n-l^{*}, n\right]\right) \cap B^{G}(1, k)$. Let $E^{n, k}$ be the event: "There exists a circle free saturated forest of depth k for $I_{k}^{*}(G)$ ". Then for each $k \in \mathbb{N}$:

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[E^{n, k} \text { holds in } M_{\bar{p}}^{n}\right]=1 .
$$

Proof. Let $k \in \mathbb{N}$ be fixed. The proof proceeds in six steps:
Step 1. We observe that only a bounded number of circles starts in each vertex of $M_{\bar{p}}^{n}$. Formally For $n, m \in \mathbb{N}$ and $i \in[n]$ let $E_{n, m, i}^{1}$ be the event: "More than m different circles of length at most $12 k$ include $i "$. Then for all $\zeta>0$ for some $m=m(\zeta)$ (m depends also on \bar{p} and k but as those are fixed we omit them from the notation and similarly below) we have:

$$
\circledast_{1} \text { For all } n \in \mathbb{N} \text { and } i \in[n], \operatorname{Pr}_{M_{p}^{n}}\left[E_{n, m, i}^{1}\right] \leq \zeta .
$$

To see this note that if $\bar{x}=\left(x_{0}, \ldots, x_{k^{\prime}}\right)$ is a possible circle in [n], then

$$
\operatorname{Pr}\left[\bar{x} \text { is a weak circle in } M_{\bar{p}}^{n}\right]:=p(\bar{x})=\prod_{i \in \operatorname{Asym}(\bar{x})} p_{\left|l_{i}^{\bar{x}}\right|} \cdot \prod_{i \in \operatorname{Sym}^{+}(\bar{x})}\left(p_{l_{\bar{x}}^{\bar{x}}}\right)^{2} .
$$

Now as \bar{p} has no unavoidable, circles let $m_{12 k}$ be as in 5.13(7). Then the expected number of circles of length $\leq 12 k$ starting in $i=x_{0}$ is
$\sum_{\substack{k^{\prime} \leq 12 k, \bar{x}=\left(x_{0}, \ldots, x_{k^{\prime}}\right) \\ \text { is a possible circle }}} p(\bar{x}) \leq\left(m_{12 k}\right)^{12 k} . \sum_{0<l_{1}, \ldots, l_{6 k}<n} \prod_{i=1}^{6 k}\left(p_{l_{i}}\right)^{2} \leq\left(m_{1} 2 k\right)^{12 k} \cdot\left(\sum_{0<l<n}\left(p_{l}\right)^{2}\right)^{6 k}$.
But as $\sum_{0<l<n}\left(p_{l}\right)^{2}$ is bounded by $\sum_{l=1}^{\infty}\left(p_{l}\right)^{2}:=c^{*}<\infty$, if we take $m=\left(m_{12 k}\right)^{12 k}$. $\left(c^{*}\right)^{6 k} / \zeta$ then we have \circledast_{1} as desired.

Step 2. We show that there exists a positive lower bound on the probability that a circle passes through a given edge of $M_{\bar{p}}^{n}$. Formally: Let $n \in \mathbb{N}$ and $i, j \in[n]$ be such that $p_{|i-j|}>0$. Denote By $E_{n, i, j}^{2}$ the event: "There does not exists a circle
of length $\leq 6 k$ containing the edge $\{i, j\} "$. Then there exists some $q_{2}>0$ such that:
\circledast_{2} For any $n \in \mathbb{N}$ and $i, j \in[n]$ such that $p_{|i-j|}>0, \operatorname{Pr}_{M_{p}^{n}}\left[E_{n, i, j}^{2} \mid i \sim j\right] \geq q_{2}$.
To see this call a path $\bar{x}=\left(x_{0}, \ldots, x_{k^{\prime}}\right) \operatorname{good}$ for $i, j \in[n]$ if $x_{0}=j, x_{k^{\prime}}=i, \bar{x}$ does not contain the edge $\{i, j\}$ and does not contain the same edge more than once. Let $E_{n, i, j}^{\prime 2}$ be the event: "There does not exists a path good for i, j of length $<6 k "$. Note that for $i, j \in[n]$ and G a graph on $[n]$ such that $G \models i \sim j$ we have: $\left(i, j, x_{2}, \ldots, x_{k^{\prime}}\right)$ is a circle in G iff $\left(j, x_{2}, \ldots, k_{k^{\prime}}\right)$ is a path in G good for i, j. Hence for such G we have: $E_{n, i, j}^{2}$ holds in G iff $E_{n, i, j}^{\prime 2}$ holds in G. Since the events $i \sim j$ and $E_{n, i, j}^{\prime 2}$ are independent in $M_{\bar{p}}^{n}$ we conclude:

$$
\operatorname{Pr}_{M_{p}^{n}}\left[E_{n, i, j}^{2} \mid i \sim j\right]=\operatorname{Pr}_{M_{p}^{n}}\left[E_{n, i, j}^{\prime 2} \mid i \sim j\right]=\operatorname{Pr}_{M_{p}^{n}}\left[E_{n, i, j}^{\prime 2}\right]
$$

Next recalling Definition $5.13(7)$ let m_{k} be as there. Since $\sum_{l>0}\left(p_{l}\right)^{2}<\infty,\left(p_{l}\right)^{2}$ converges to 0 as l approaches infinity, and hence so does p_{l}. Hence for some $m^{0} \in \mathbb{N}$ we have $l>m^{0}$ implies $p_{l}<1 / 2$. Let $m_{k}^{*}:=\max \left\{m_{6 k}, m^{0}\right\}$. We now define for a possible path $\bar{x}=\left(x_{0}, \ldots x_{k^{\prime}}\right)$, Large $(\bar{x})=\left\{0 \leq r<k^{\prime}:\left|l_{r}^{\bar{x}}\right|>m_{k}^{*}\right\}$. Note that as \bar{p} have no unavoidable circles we have for any possible circle \bar{x} of length $\leq 6 k$, $\operatorname{Large}(\bar{x}) \subseteq \operatorname{Sym}(\bar{x})$, and $|\operatorname{Large}(\bar{x})|$ is even. We now make the following claim: For each $0 \leq k^{*} \leq\lfloor k / 2\rfloor$ let $E_{n, i, j}^{\prime 2, k^{*}}$ be the event: "There does not exists a path, \bar{x}, good for i, j of length $<6 k$ with $|\operatorname{Large}(\bar{x})|=2 k^{* \prime \prime}$. Then there exists a positive probability $q_{2, k^{*}}$ such that for any $n \in \mathbb{N}$ and $i, j \in[n]$ we have:

$$
\operatorname{Pr}_{M_{\bar{p}}^{n}}\left[E_{n, i, j}^{\prime 2, k^{*}}\right] \geq q_{2, k^{*}}
$$

Then by taking $q_{2}=\prod_{0 \leq k^{*} \leq\lfloor k / 2\rfloor} q_{2, k^{*}}$ we will have \circledast_{2}. Let us prove the claim. For $k^{*}=0$ we have (recalling that no circle consists only of edges of length l^{*}):

$$
\begin{aligned}
\operatorname{Pr}_{M_{\bar{p}}^{n}}\left[E_{n, i, j}^{\prime 2,0}\right] & =\prod_{\substack{k^{\prime} \leq 6 k, \bar{x}=\left(i=x_{0}, j=x_{1}, \ldots, x_{k^{\prime}}\right) \\
\text { is a possible circle }|\operatorname{Large}(\bar{x})|=0}}\left(1-\prod_{r=1}^{k^{\prime}-1} p_{\left|l_{r}^{\bar{x}}\right|}\right) \\
& \geq\left(1-\max \left\{p_{l}: 0<l \leq m_{k}^{*}, l \neq l^{*}\right\}\right)^{6 k \cdot\left(m_{k}^{*}\right)^{6 k-1}} .
\end{aligned}
$$

But as the last expression is positive and depends only on \bar{p} and k we are done. For $k^{*}>0$ we have:

$$
\begin{aligned}
& \operatorname{Pr}_{M_{\bar{p}}^{n}}\left[E_{n, i, j}^{\prime 2, k^{*}}\right]=\prod_{\substack{k^{\prime} \leq 6 k, \bar{x}=\left(i=x_{0}, j=x_{1}, \ldots, x_{k^{\prime}}\right) \\
\text { is a possible circle, }|\operatorname{Large}(\bar{x})|=k^{*}}}\left(1-\prod_{m=1}^{k^{\prime}-1} p_{\left.\left|l_{m}^{\bar{x}}\right|\right)}\right.
\end{aligned}
$$

But the product on the left of the last line is at least

$$
\left[\prod_{l_{1}, \ldots, l_{k^{*}}>m_{k}^{*}}\left(1-\prod_{m=1}^{k^{*}}\left(p_{l_{m}}\right)^{2}\right)\right]^{\left(m_{k}^{*}\right)^{\left(6 k-2 k^{*}\right)} \cdot(6 k)^{2 k^{*}}}
$$

and as $\sum_{l>m_{k}^{*}}\left(p_{l}\right)^{2} \leq c^{*}<\infty$ we have $\sum_{l_{1}, \ldots, l_{k^{*}}>m_{k}^{*}} \prod_{m=1}^{k^{*}}\left(p_{l_{m}}\right)^{2} \leq\left(c^{*}\right)^{k^{*}}<\infty$ and hence $\prod_{l_{1}, \ldots, l_{k^{*}}>m_{k}^{*}}\left(1-\prod_{m=1}^{k^{*}}\left(p_{l_{m}}\right)^{2}\right)>0$ and we have a bound as desired. Similarly the product on the right is at least

$$
\left[\prod_{l_{1}, \ldots, l_{k^{*}-1}>m_{k}^{*}}\left(1-\prod_{m=1}^{k^{*}-1}\left(p_{l_{m}}\right)^{2}\right) \cdot 1 / 2\right]^{\left(m_{k}^{*}\right)^{\left(6 k-2 k^{*}-1\right)} \cdot(6 k)^{2 k^{*}}}
$$

and again we have a bound as desired.
Step 3. Denote

$$
E_{n, i, j}^{3}:=E_{n, i, j}^{2} \wedge \bigwedge_{r=1, \ldots, k}\left(E_{n, j+(r-1) l^{*}, j+r l^{*}}^{2} \wedge E_{n, j, j-(r-1) l^{*}, j-r l^{*}}^{2}\right)
$$

and let $q_{3}=q_{2}^{\left(2 l^{*}+1\right)}$. We then have:
\circledast_{3} For any $n \in \mathbb{N}$ and $i, j \in[n]$ such that $p_{|i-j|}>0$ and $j+k l^{*}, j-k l^{*} \in[n]$, $\operatorname{Pr}_{M_{\bar{p}}^{n}}\left[E_{n, i, j}^{3} \mid i \sim j\right] \geq q_{3}$.
This follows immediately from \circledast_{2}, and the fact that if $i, i^{\prime}, j, j^{\prime}$ all belong to $[n]$ then the probability $\operatorname{Pr}_{M_{\bar{p}}^{n}}\left[E_{n, i, j}^{2} \mid E_{n, i^{\prime}, j^{\prime}}^{2}\right]$ is no smaller then the probability $\operatorname{Pr}_{M_{p}^{n}}\left[E_{n, i, j}^{2}\right]$.

Step 4. For $i, j \in[n]$ such that $j+k l^{*}, j-k l^{*} \in[n]$ denote by $E_{n, i, j}^{4}$ the event: $" E_{n, i, j}^{3}$ holds and for $x \in\left\{j+r l^{*}: r \in\{-k,-k+1, \ldots, k\}\right\}$ and $y \in[n] \backslash\{i\}$ we have $x \sim y \Rightarrow\left(|x-y|=l^{*} \vee|x-y|>m_{2 k}\right) "$. Then for some $q_{4}>0$ we have:
\circledast_{4} For any $n \in \mathbb{N}$ and $i, j \in[n]$ such that $p_{|i-j|}>0$ and $j+k l^{*}, j-k l^{*} \in[n]$, $\operatorname{Pr}_{M_{p}^{n}}\left[E_{n, i, j}^{4} \mid i \sim j\right] \geq q_{4}$.
To see this simply take $q_{4}=q_{3} \cdot\left(\prod_{l \in\left\{1, \ldots, m_{2 k}\right\} \backslash\left\{l^{*}\right\}}\left(1-p_{l}\right)\right)^{2 k+1}$, and use \circledast_{3}.
Step 5. For $n \in \mathbb{N}, S \subseteq[n]$, and $i \in[n]$ let $E_{n, S, i}^{5}$ be the event: "For some $j \in[n] \backslash S$ we have $i \sim j,|i-j| \neq l^{*}$ and $E_{n, i, j}^{4}$ ". Then for each $\delta>0$ and $s \in \mathbb{N}$, for $n \in \mathbb{N}$ large enough (depending on δ and s) we have:
\circledast_{5} For all $i \in[n]$ and $S \subseteq[n]$ with $|S| \leq s, \operatorname{Pr}_{M_{\bar{p}}^{n}}\left[E_{n, S, i}^{5}\right] \geq 1-\delta$.
First let $\delta>0$ and $s \in \mathbb{N}$ be fixed. Second for $n \in \mathbb{N}, S \subseteq[n]$ and $i \in[n]$ denote by $J_{i}^{n, S}$ the set of all possible candidates for j, namely $J_{i}^{n, S}:=\left\{j \in\left(k l^{*}, n-k l^{*}\right] \backslash S\right.$: $\left.|i-j| \neq l^{*}\right\}$. For $j \in J_{i}^{n, \emptyset}$ let $U_{j}:=\left\{j+r l^{*}: r \in\{-k,-k+1, \ldots, k\}\right\}$. For $m \in \mathbb{N}$ and G a graph on $[n]$ call $j \in J_{i}^{n, S}$ a candidate of type (n, m, S, i) in G, if each $j^{\prime} \in U(j)$, belongs to at most m different circles of length at most $6 k$ in G. Denote the set of all candidates of type (n, m, S, i) in G by $J_{i}^{n, S}(G)$. Now let $X_{i}^{n, m}$ be the random variable on $M_{\bar{p}}^{n}$ defined by:

$$
X_{i}^{n, m}\left(M_{\bar{p}}^{n}\right)=\sum\left\{p_{|i-j|}: j \in J_{i}^{n, S}\left(M_{\bar{p}}^{n}\right)\right\}
$$

Denote $R_{i}^{n, S}:=\sum\left\{p_{|i-j|}: j \in J_{i}^{n, S}\right\}$. Trivially for all n, m, S, i as above, $X_{i}^{n, m} \leq$ $R_{i}^{n, S}$. On the other hand, by \circledast_{1} and the definition of a candidate, for all $\zeta>0$ we can find $m=m(\zeta) \in \mathbb{N}$ such that for all n, S, i as above and $j \in J_{i}^{n, S}$, the probability that j is a candidate of type (n, m, S, i) in $M_{\bar{p}}^{n}$ is at least $1-\zeta$. Then for such m we have: $\operatorname{Exp}\left(X_{i}^{n, m}\right) \geq R_{i}^{n, S}(1-\zeta)$. Hence we have $\operatorname{Pr}_{M_{p}^{n}}\left[X_{i}^{n, m} \leq R_{i}^{n, S} / 2\right] \leq 2 \zeta$. Recall that $\delta>0$ was fixed, and let $m^{*}=m(\delta / 4)$. Then for all n, S, i as above we have with probability at least $1-\delta / 2, X_{i}^{n, m^{*}}\left(M_{\bar{p}}^{n}\right) \geq R_{i}^{n, S} / 2$. Now denote $m^{* *}:=\left(2 l^{*}+1\right)\left(m^{*}+2 m_{2 k}\right) 6 k\left(m^{*}+1\right)$, and fix $n \in \mathbb{N}$ such that $\sum_{0<l<n} p_{l}>$ $2 \cdot\left(\left(m^{* *} /\left(q_{4} \cdot \delta\right) \cdot 2 m_{2 k}\left(2 l^{*}+1\right)+\left(s+2 k l^{*}+2\right)\right)\right.$. Let $i \in[n]$ and $S \subseteq[n]$ be such that
$|S| \leq s$. We relatives our probability space $M_{\bar{p}}^{n}$ to the event $X_{i}^{n, m^{*}}\left(M_{\bar{p}}^{n}\right) \geq R_{i}^{n, S} / 2$, and all probabilities until the end of Step 5 will be conditioned to this event. If we show that under this assumption we have, $\operatorname{Pr}_{M_{p}^{n}}\left[E_{n, S, i}^{5}\right] \geq 1-\delta / 2$ then we will have \circledast_{5}.

Let G be a graph on $[n]$ such that, $X_{i}^{n, m^{*}}(G) \geq R_{i}^{n, S} / 2$. For $j \in J_{i}^{n, S}$ let $C_{j}(G)$ denote the set of all the pairs of vertexes which are relevant for the event $E_{n, i, j}^{4}$. Namely $C_{j}(G)$ will contain: $\{i, j\}$, all the edges $\{u, v\}$ such that : $u \in U(j), v \neq i$ and $|u-v|<m_{2 k}$, and all the edges that belong to a circle of length $\leq 6 k$ containing some member of $U(j)$. We make some observations:
(1) $X_{i}^{n, m^{*}}(G) \geq\left(m^{* *} /\left(q_{4} \cdot \delta\right)\right) \cdot 2 m_{2 k}\left(2 l^{*}+1\right)$.
(2) There exists $J^{1}(G) \subseteq J_{i}^{n, S}$ such that:
(a) The sets $U(j)$ for $j \in J^{1}(G)$ are pairwise disjoint. Moreover if $j_{1}, j_{2} \in$ $J^{1}(G), u_{l} \in U\left(j_{l}\right)$ for $l \in\{1,2\}$ and $j_{1} \neq j_{2}$ then $\left|u_{1}-u_{2}\right|>m_{2 k}$.
(b) Each $j \in J^{1}(G)$ is a candidate of type $\left(n, m^{*}, S, i\right)$ in G.
(c) The sum $\sum\left\{p_{|i-j|}: j \in J^{1}(G)\right\}$ is at least $m^{* *} /\left(q_{4} \cdot \delta\right)$.
[To see this use (1) and construct J^{1} by adding the candidate with the largest $p_{|i-j|}$ that satisfies (a). Note that each new candidate excludes at most $m_{2 k}\left(2 l^{*}+1\right)$ others.]
(3) Let j belong to $J^{1}(G)$. Then the set $\left\{j^{\prime} \in J^{1}(G): C_{j}(G) \cap C_{j^{\prime}}(G) \neq \emptyset\right\}$ has size at most $m^{* *}$. [To see this use (2)(b) above, the fact that two circles of length $\leq 6 k$ that intersect in an edge give a circle of length $\leq 12 k$ and similar trivial facts.]
(4) From (3) we conclude that there exists $J^{2}(G) \subseteq j^{1}(G)$ and $\left\langle j_{1}, \ldots j_{r}\right\rangle$ an enumeration of $J^{2}(G)$ such that:
(a) For any $1 \leq r^{\prime} \leq r$ the sets $C\left(j_{r^{\prime}}\right)$ and $\cup_{1 \leq r^{\prime \prime}<r^{\prime}} C\left(j_{r^{\prime \prime}}\right)$ are disjoint.
(b) The sum $\sum\left\{p_{|i-j|}: j \in J^{2}(G)\right\}$ is greater or equal $1 /\left(q_{4} \cdot \delta\right)$.

Now for each $j \in J_{i}^{n, S}$ let E_{j}^{*} be the event: " $i \sim j$ and $E_{n, i, j}^{4}$ ". By \circledast_{4} we have for each $j \in J_{i}^{n, S}, \operatorname{Pr}_{M_{p}^{n}}\left[E_{j}^{*}\right] \geq q_{4} \cdot p_{|i-j|}$. Recall that we condition the probability space $M_{\bar{p}}^{n}$ to the event $X_{i}^{n, m^{*}}\left(M_{\bar{p}}^{n}\right) \geq R_{i}^{n, S} / 2$, and let $\left\langle j_{1}, \ldots j_{r}\right\rangle$ be the enumeration of $J^{2}\left(M_{\bar{p}}^{n}\right)$ from (4) above. (Formally speaking r and each $j_{r^{\prime}}$ is a function of $\left.M_{\bar{p}}^{n}\right)$. We then have for $1 \leq r^{\prime}<r^{\prime \prime} \leq r, \operatorname{Pr}_{M_{\bar{p}}^{n}}\left[E_{j_{r^{\prime}}}^{*} \mid E_{j_{r^{\prime \prime}}}^{*}\right] \geq \operatorname{Pr}_{M_{\bar{p}}^{n}}\left[E_{j_{r^{\prime}}}^{*}\right]$, and $\operatorname{Pr}_{M_{\bar{p}}^{n}}\left[E_{j_{r^{\prime}}}^{*} \mid \neg E_{j_{r^{\prime}}}^{*}\right] \geq \operatorname{Pr}_{M_{\bar{p}}^{n}}\left[E_{j_{r^{\prime}}}^{*}\right]$. To see this use (2)(a) and (4)(a) above and the definition of $C_{j}(G)$.

Let the random variables X and X^{\prime} be defined as follows. X is the number of $j \in J^{2}\left(M_{\bar{p}}^{n}\right)$ such that E_{j}^{*} holds in $M_{\bar{p}}^{n}$. In other words X is the sum of r random variables $\left\langle Y_{1}, \ldots, Y_{r}\right\rangle$, where for each $1 \leq r^{\prime} \leq r, Y_{r^{\prime}}$ equals 1 if $E_{j_{r^{\prime}}}^{*}$ holds, and 0 otherwise. X^{\prime} is the sum of r independent random variables $\left\langle Y_{1}^{\prime}, \ldots, Y_{r}^{\prime}\right\rangle$, where for each $1 \leq r^{\prime} \leq r Y_{r^{\prime}}^{\prime}$ equals 1 with probability $q_{4} \cdot p_{\left|i-j_{r^{\prime}}\right|}$ and 0 with probability $1-q_{4} \cdot p_{\left|i-j_{r^{\prime}}\right|}$. Then by the last paragraph for any $0 \leq t \leq r$,

$$
\operatorname{Pr}_{M_{\bar{p}}^{n}}[X \geq t] \geq \operatorname{Pr}\left[X^{\prime} \geq t\right]
$$

But $\operatorname{Exp}\left(X^{\prime}\right)=\operatorname{Exp}(X)=q_{4} \cdot \sum_{1 \leq r^{\prime} \leq r} p_{\left|i-j_{r^{\prime}}\right|}$ and by (4)(b) above this is grater or equal $1 / \delta$. Hence by Chebyshev's inequality we have:

$$
\operatorname{Pr}_{M_{\bar{p}}^{n}}\left[\neg E_{n, S, i}^{5}\right] \leq \operatorname{Pr}_{M_{\bar{p}}^{n}}[X=0] \leq \operatorname{Pr}\left[X^{\prime}=0\right] \leq \frac{\operatorname{Var}\left(X^{\prime}\right)}{\operatorname{Exp}\left(X^{\prime}\right)^{2}} \leq \frac{1}{\operatorname{Exp}\left(X^{\prime}\right)} \leq \delta
$$

as desired.

Step 6. We turn to the construction of the circle free saturated forest. Let $\epsilon>0$, and we will prove that for $n \in \mathbb{N}$ large enough we have $\operatorname{Pr}\left[E^{n, k}\right.$ holds in $\left.M_{\bar{p}}^{n}\right] \geq 1-\epsilon$. Let $\delta=\epsilon /\left(l^{*} 2^{k+2}\right)$ and $s=2 l^{*}\left(\left(k+2^{k}\right)\left(2 l^{*} k+1\right)\right)$. Let $n \in \mathbb{N}$ be large enough such that \circledast_{5} holds for n, k, δ and s. We now choose (formally we show that with probability at least $1-\epsilon$ such a choice exists) by induction on $(i, \eta) \in I_{k}^{*}\left(M_{\bar{p}}^{n}\right) \times{ }^{\leq k} 2$ (ordered by the lexicographic order) $y_{\eta}^{i} \in[n]$ such that:
(1) $\left\langle y_{\eta}^{i} \in[n]:(i, \eta) \in I_{k}^{*}\left(M_{\bar{p}}^{n}\right) \times{ }^{\leq k} 2\right\rangle$ is without repetitions.
(2) If $\eta=\langle \rangle$ then $M_{\bar{p}}^{n} \models i \sim y_{\eta}^{i}$, but $\left|i-y_{\eta}^{i}\right| \neq l^{*}$.
(3) If $\eta \neq\langle \rangle$ then $M_{\bar{p}}^{n} \models y_{\eta}^{i} \sim y_{\left.\eta\right|_{|\eta|-1}}^{i}$.
(4) If $\eta=\langle \rangle$ then $M_{\bar{p}}^{n}$ satisfies $E_{n, i, y_{\eta}^{i}}^{4}$ else, denoting $\rho:=\left.\eta\right|_{|\eta|-1}, M_{\bar{p}}^{n}$ satisfies $E_{n, y_{\rho}^{i}, y_{n}^{i}}^{4}$.
Before we describe the choice of y_{η}^{i}, we need to define sets $S_{\eta}^{i} \subseteq[n]$. For a graph G on $[n]$ and $i \in I_{k}^{*}(G)$ let $S_{i}^{*}(G)$ be the set of vertexes in the first (in some pre fixed order) path of length $\leq k$ from 1 to i in G. Now let $S^{*}(G)=\bigcup_{i \in I_{k}^{*}(G)} S_{i}^{*}(G)$. For $(i, \eta) \in I_{k}^{*}\left(M_{\bar{p}}^{n}\right) \times \leq k 2$ and $\left\langle y_{\eta^{\prime}}^{i^{\prime}} \in[n]:\left(i^{\prime}, \eta^{\prime}\right)<_{l e x}(i, \eta)\right\rangle$ define:

$$
S_{\eta}^{i}(G)=S^{*}(G) \cup\left\{\left[y_{\eta^{\prime}}^{i^{\prime}}-k l^{*}, y_{\eta^{\prime}}^{i^{\prime}}+k l^{*}\right]:\left(i^{\prime} \eta^{\prime}\right)<_{l e x}(i, \eta)\right\}
$$

Note that indeed $\left|S^{*}(G)\right| \leq s$ for all G. In the construction below when we write S_{η}^{i} we mean $S_{\eta}^{i}\left(M_{\bar{p}}^{n}\right)$ where $\left\langle y_{\eta^{\prime}}^{i^{\prime}} \in[n]:\left(i^{\prime}, \eta^{\prime}\right)<_{l e x}(i, \eta)\right\rangle$ were already chosen. Now the choice of y_{η}^{i} is as follows:

- If $\eta=\langle \rangle$ by \circledast_{5} with probability at least $1-\delta, E_{n, S_{\eta}^{i}, i}^{5}$ holds in $M_{\bar{p}}^{n}$ hence we can choose y_{η}^{i} that satisfies (1)-(4).
- If $\eta=\langle 0\rangle$ (resp. $\eta=\langle 1\rangle$) choose $y_{\eta}^{i}=y_{\langle \rangle}^{i}-l^{*}$ (resp. $y_{\eta}^{i}=y_{\langle \rangle}^{i}+l^{*}$). By the induction hypothesis and the definition of $E_{n, i, j}^{4}$ this satisfies (1)-(4) above.
- If $|\eta|>1,\left|y_{\left.\eta\right|_{|\eta|-1}}^{i}-y_{\left.\eta\right|_{|\eta|-2}}^{i}\right| \neq l^{*}$ and $\eta(|\eta|)=0$ (resp. $\eta(|\eta|)=1$) then choose $y_{\eta}^{i}=y_{\left.\eta\right|_{|\eta|-1}}^{i}-l^{*}$ (resp. $y_{\eta}^{i}=y_{\left.\eta\right|_{|\eta|-1}}^{i}+l^{*}$). Again by the induction hypothesis and the definition of $E_{n, i, j}^{4}$ this satisfies (1)-(4).
- If $|\eta|>1, y_{\left.\eta\right|_{|\eta|-1}}^{i}-y_{\left.\eta\right|_{|\eta|-2}}^{i}=l^{*}$ (resp. $y_{\left.\eta\right|_{|\eta|-1}}^{i}-y_{\left.\eta\right|_{|\eta|-2}}^{i}=-l^{*}$) and $\eta(|\eta|)=0$, then choose $y_{\eta}^{i}=y_{\left.\eta\right|_{|\eta|-1} ^{i}}-l^{*}\left(\right.$ resp. $\left.y_{\eta}^{i}=y_{\left.\eta\right|_{|\eta|-1}}^{i}+l^{*}\right)$.
- If $|\eta|>1,\left|y_{\left.\eta\right|_{|\eta|-1}}^{i}-y_{\left.\eta\right|_{|\eta|-2}}^{i}\right|=l^{*}$ and $\eta(|\eta|)=1$. Then by \circledast_{5} with probability at least $1-\delta, E_{n, S_{n}^{i}, y_{\eta| | \eta \mid-1}^{i}}^{5}$ holds in $M_{\bar{p}}^{n}$, and hence we can choose y_{η}^{i} that satisfies (1)-(4).
At each step of the construction above the probability of "failure" is at most δ, hence with probability at least $1-\left(l^{*} 2^{k+2}\right) \delta=1-\epsilon$ we compleat the construction. It remains to show that indeed $\left\langle y_{\eta}^{i}: i \in I^{n}, \eta \in \leq^{k} 2\right\rangle$ is a circle free saturated forest of depth k for I_{k}^{*} in $M_{\bar{p}}^{n}$. This is straight forward from the definitions. First each $\left\langle y_{\eta}^{i}: \eta \in{ }^{\leq} 2\right\rangle$ is a saturated tree of depth k in [n] by its construction. Second (ii) and (iii) in the definition of a saturated tree holds by (2) and (3) above (respectively). Third note that by (4) each edge $\left(y, y^{\prime}\right)$ of our construction satisfies $E_{n, y, y^{\prime}}^{2}$ and $E_{n, y, y^{\prime}}^{4}$ hence (iv) and (v) (respectively) in the definition of a saturated tree follows. Lastly we need to show that (c) in the definition of a saturated forest holds. To see this note that if $i_{1}, i_{2} \in i_{k}^{*}\left(M_{\bar{p}}^{n}\right)$ then by the definition of $S_{\eta}^{i}\left(M_{\bar{p}}^{n}\right)$ there exists a path of length $\leq 2 k$ from i_{1} to i_{2} with all its vertexes in $S_{\eta}^{i}\left(M_{\bar{p}}^{n}\right)$.

Now if \bar{x} is a path of length $\leq k$ from $y_{\langle \rangle}^{i_{1}}$ to i_{2} and $\left(y_{\langle \rangle}^{i_{1}}, i_{1}\right)$ is not an edge of \bar{x}, then necessarily $\left\{y_{\langle \rangle}^{i_{1}}, i_{1}\right\}$ is included in some circle of length $\leq 3 k+2$. A contradiction to the choice of $y_{\langle \rangle}^{i_{1}}$. This completes the proof of the claim.

By \odot and the claim above we conclude that, for some large enough $n \in \mathbb{N}$, there exists a graph $G=([n], \sim)$ such that:
(1) $G \models \neg \phi[1]$.
(2) $\operatorname{Pr}\left[M_{\bar{p}}^{n}=G\right]>0$.
(3) There exists $\left\langle\bar{y}^{i}: i \in I_{r}^{*}(G)\right\rangle$, a circle free saturated forest of depth r for $I_{r}^{*}(G)$ in G.
Denote $B=B^{G}(1, r), I=I_{r}^{*}(G)$, and we will prove that for some r-proper $\left(l, u_{0}, U, H\right) \in \mathfrak{H}$ we have $(B, 1) \cong\left(H, u_{0}\right)$ (i.e. there exists a graph isomorphism from $\left.G\right|_{B}$ to H mapping 1 to u_{0}). As ϕ is r-local we will then have $H \models \neg \phi\left[u_{0}\right]$ which is a contradiction of our assumption and we will be done. We turn to the construction of $\left(l, u_{0}, U, H\right)$. For $i \in I$ let $r(i)=r-d i s t^{G}(1, i)$. Denote

$$
Y:=\left\{y_{\eta}^{i}: i \in I, \eta \in^{<r(i)} 2\right\}
$$

Note that by (ii)-(iii) in the definition of a saturated tree we have $Y \subseteq B$. We first define a one-to-one function $f: B \rightarrow \mathbb{Z}$ in three steps:

Step 1. For each $i \in I$ define

$$
B_{i}:=\{x \in B: \text { there exists a path of length } \leq r(i) \text { from } x \text { to } i \text { disjoint to } Y\}
$$

and $B^{0}:=I \cup \bigcup_{i \in I} B_{i}$. Now define for all $x \in B^{0}, f(x)=x$. Note that:
$\left.{ }^{-}{ }_{1} f\right|_{B^{0}}$ is one-to-one (trivially).
\bullet_{2} If $x \in B^{0}$ and $\operatorname{dist}^{G}(1, x)<r$ then $x+l^{*} \in[n] \Rightarrow x+l^{*} \in B^{0}$ and $x-l^{*} \in[n] \Rightarrow x-l^{*} \in B^{0}$ (use the definition of a saturated tree).
Step 2. We define $\left.f\right|_{Y}$. We start by defining $f(y)$ for $y \in \bar{y}^{1}$, so let $\eta \in \leq^{r} 2$ and denote $y=y_{\eta}^{1}$. We define $f(y)$ using induction on η were ${ }^{\leq r} 2$ is ordered by the lexicographic order. First if $\eta=\langle \rangle$ then define $f(y)=1-l^{*}$. If $\eta \neq\langle \rangle$ let $\rho:\left.\eta\right|_{|\eta|-1}$, and consider $u:=f\left(y_{\rho}^{1}\right)$. Denote $F=F_{\eta}:=\left\{f\left(y_{\eta^{\prime}}^{1}\right): \eta^{\prime}<_{l e x} \eta\right\}$. Now if $u-l^{*} \notin F$ define $f(y)=u-l^{*}$. If $u-l^{*} \in F$ but $u+l^{*} \notin F$ define $f(y)=u+l^{*}$. Finally, if $u-l^{*}, u+l^{*} \in F$, choose some $l=l_{\eta}$ such that $p_{l}>0$ and $u-l<\min F-r l^{*}-n$, and define $f(y)=u-l$. Note that by our assumptions $\left\{l: p_{l}>0\right\}$ is infinite so we can always choose l as desired. Note further that we chose $f(y)$ such that $\left.f\right|_{\bar{y}^{1}}$ is one-to-one. Now for each $i \in I \cap\left[1, l^{*}\right]$ and $\eta \in{ }^{<r(i)} 2$, define $f\left(y_{\eta}^{i}\right)=f\left(y_{\eta}^{1}\right)+(f(i)-1)$ (recall that $f(i)=i$ was defined in Step 1 , and that $k(i) \leq k(1)$ so $f\left(y_{\eta}^{i}\right)$ is well defined). For $i \in I \cap\left(n-l^{*}, n\right]$ preform a similar construction in "reversed directions". Formally define $f\left(y_{\langle \rangle}^{i}\right)=i+l^{*}$, and the induction step is similar to the case $i=1$ above only now choose l such that $u+l>\max F+r l^{*}+n$, and define $f(y)=u+l$. Note that:
$\left.\bullet_{3} f\right|_{Y}$ is one-to-one.
-4 $f(Y) \cap f\left(B^{0}\right)=\emptyset$. In fact:
${ }_{4}^{+} f(Y) \cap[n]=\emptyset$.
\bullet_{5} If $i \in I \cap\left[1, l^{*}\right]$ then $i-l^{*} \in f(Y)$ (namely $i-l^{*}=f\left(y_{\langle \rangle}^{i}\right)$).
\bullet_{5}^{\prime} If $i \in I \cap\left(n-l^{*}, n\right]$ then $i+l^{*} \in f(Y)$ (namely $i+l^{*}=f\left(y_{\langle \rangle}^{i}\right)$).
\bullet_{6} If $y \in Y \backslash\left\{y_{\langle \rangle}^{i}: i \in I\right\}$ and $\operatorname{dist}^{G}(1, y)<r$ then $f(y)+l^{*}, f(y)-l^{*} \in f(Y)$. (Why? As if $\operatorname{dist}^{G}\left(1, y_{\eta}^{i}\right)<r$ then $|\eta|<r(i)$, and the construction of Step 2).

Step 3. For each $i \in I$ and $\eta \in{ }^{<r(i)} 2$, define
$B_{\eta}^{i}:=\left\{x \in B:\right.$ there exists a path of length $\leq r(i)$ from x to y_{η}^{i} disjoint to $\left.Y \backslash\left\{y_{\eta}^{i}\right\}\right\}$ and $B^{1}:=\bigcup_{i \in I, \eta \in{ }^{<r(i) 2}} B_{\eta}^{i}$.

We now make a few observations:
(α) If $i_{1}, i_{2} \in I$ then, in G there exists a path of length at most $2 r$ from i_{1} to i_{2} disjoint to Y. Why? By the definition of I and (c) in the definition of a saturated forest.
(β) B^{0} and B^{1} are disjoint and cover B. Why? Trivially they cover B, and by (α) and (iv) in the definition of a saturated tree they are disjoint.
$(\gamma)\left\langle B_{\eta}^{i}: i \in I, \eta \in{ }^{<r(i)} 2\right\rangle$ is a partition of B^{1}. Why? Again trivially they cover B^{1}, and by (iv) in the definition of a saturated tree they are disjoint.
(δ) If $\{x, y\}$ is an edge of $\left.G\right|_{B}$ then either $x, y \in B^{0},\{x, y\}=\left\{i, y_{\langle \rangle}^{i}\right\}$ for some $i \in I,\{x, y\} \subseteq Y$ or $\{x, y\} \subseteq B_{\eta}^{i}$ for some $i \in I$ and $\eta \in{ }^{<r(i)} 2$. (Use the properties of a saturated forest.)
We now define $\left.f\right|_{B^{1}}$. Let $\left\langle\left(B_{j}, y_{j}\right): j<j^{*}\right\rangle$ be some enumeration of $\left\langle\left(B_{\eta}^{i}, y_{\eta}^{i}\right)\right.$: $\left.i \in I, \eta \in{ }^{<r(i)} 2\right\rangle$. We define $\left.f\right|_{B_{j}}$ by induction on $j<j^{*}$ so assume that $\left.f\right|_{\left(\cup_{j^{\prime}<j} B_{j^{\prime}}\right)}$ is already defined, and denote: $F=F_{j}:=f\left(B^{0}\right) \cup f(Y) \cup f\left(\cup_{j^{\prime}<j} B_{j^{\prime}}\right)$. Our construction of $\left.f\right|_{B_{j}}$ will satisfy:

- $\left.f\right|_{B_{j}}$ is one-to-one.
- $f\left(B_{j}\right)$ is disjoint to F_{j}.
- If $y \in B_{j}$ then either $f(y)=y$ or $f(y) \notin[n]$.

Let $\left\langle z_{s}^{j}: s<s(j)\right\rangle$ be some enumeration of the set $\left\{z \in B_{j}: G \models y_{j} \sim z\right\}$. For each $s<s(j)$ choose $l(j, s)$ such that $p_{l(j, s)}>0$ and:
\otimes If $k \leq 4 r,\left(m_{1}, \ldots, m_{k}\right)$ are integers with absolute value not larger than $4 r$ and not all equal 0 , and $\left(s_{1}, \ldots s_{k}\right)$ is a sequence of natural numbers smaller than $j(s)$ without repetitions. Then $\left|\sum_{1 \leq i \leq m}\left(m_{i} \cdot l\left(j, s_{i}\right)\right)\right|>n+\max \{|x|:$ $\left.x \in F_{j}\right\}$.
Again as $\left\{l: p_{l}>0\right\}$ is infinite we can always choose such $l(j, s)$. We now define $\left.f\right|_{B_{j}}$. For each $y \in B_{j}$ let $\bar{x}=\left(x_{0}, \ldots x_{k}\right)$ be a path in G from y to y_{j}, disjoint to $Y \backslash\left\{y_{j}\right\}$, such that k is minimal. So we have $x_{0}=y, x_{k}=y_{j}, k \leq r$ and \bar{x} is without repetitions. Note that by the definition of B_{j} such a path exists. For each $0 \leq t<k$ define

$$
l_{t}=l_{t}(\bar{x}) \begin{cases}l(j, s) & l_{t}^{\bar{x}}=\left|y_{j}-z_{s}^{j}\right| \text { for some } s<s(j) \\ -l(j, s) & l_{t}^{\bar{x}}=-\left|y_{j}-z_{s}^{j}\right| \text { for some } s<s(j) \\ l_{t}^{\bar{x}} & \text { otherwise }\end{cases}
$$

Now define $f(y)=f\left(y_{j}\right)+\sum_{0 \leq t<k} l_{t}$. We have to show that $f(y)$ is well defined. Assume that both $\bar{x}_{1}=\left(x_{0}, \ldots x_{k_{1}}\right)$ and $\bar{x}_{2}=\left(x_{0}^{\prime}, \ldots x_{k_{1}}^{\prime}\right)$ are paths as above. Then $k_{1}=k_{2}$ and $\bar{x}=\left(x_{0}, \ldots, x_{k_{1}}, x_{k_{2}-1}^{\prime}, \ldots, x_{0}^{\prime}\right)$ is a circle of length $k_{1}+k_{2} \leq 2 r$. By (v) in the definition of a saturated tree we know that for each $s<s(j),\left|y_{j}-z_{s}^{j}\right|>$ $m_{2 r}$. Hence as \bar{p} is without unavoidable circles we have for each $s<s(j)$ and $0 \leq t<k_{1}+k_{2}$, if $\left|l_{t}^{\bar{x}}\right|=\left|y_{j}-z_{s}^{j}\right|$ then $t \in \operatorname{Sym}(\bar{x})$. (see definition 5.13(6,7)).

Now put for $w \in\{1,2\}$ and $s<s(j), m_{w}^{+}(s):=\left|\left\{0 \leq t<k_{w}: l_{t}^{\bar{x}_{w}}=y_{j}-z_{s}^{j}\right\}\right|$ and similarly $m_{w}^{-}(s):=\left|\left\{0 \leq t<k_{w}:-l_{t}^{\bar{x}_{w}}=y_{j}-z_{s}^{j}\right\}\right|$. By the definition of \bar{x} we have, $m_{1}^{+}(s)-m_{1}^{-}(s)=m_{2}^{+}(s)-m_{2}^{-}(s)$. But from the definition of $l_{t}(\bar{x})$ we have for $w \in\{1,2\}$,

$$
\sum_{0 \leq t<k_{w}} l_{t}\left(\bar{x}_{w}\right)=\sum_{0 \leq t<k_{w}} l_{t}^{\bar{x}_{w}}+\sum_{s<s(j)}\left(m_{w}^{+}(s)-m_{w}^{-}(s)\right)\left(l(j, s)-\left(y_{j}-z_{s}^{j}\right)\right) .
$$

Now as $\sum_{0 \leq t<k_{1}} l_{t}^{\bar{x}_{1}}=\sum_{0 \leq t<k_{2}} l_{t}^{\bar{x}_{2}}$ we get $\sum_{0 \leq t<k_{1}} l_{t}\left(x_{1}\right)=\sum_{0 \leq t<k_{2}} l_{t}\left(x_{2}\right)$ as desired.

We now show that $\left.f\right|_{B_{j}}$ is one-to-one. Let $y^{1} \neq y^{2}$ be in B_{j}. So for $w \in\{1,2\}$ we have a path $\bar{x}_{w}=\left(x_{0}^{w}, \ldots x_{k_{w}}^{w}\right)$ from y^{w} to y_{j}. as before, for $s<s(j)$ denote $m_{w}^{+}(s):=\left|\left\{0 \leq t<k_{w}: l_{t}^{\bar{x}_{w}}=y_{j}-z_{s}^{j}\right\}\right|$ and similarly $m_{w}^{-}(s)$. By the definition of $f_{B_{j}}$ we have

$$
f\left(y^{1}\right)-f\left(y^{2}\right)=y^{1}-y^{2}+\sum_{s<s(j)}\left[\left(m_{1}^{+}(s)-m_{1}^{-}(s)\right)-\left(m_{2}^{+}(s)-m_{2}^{-}(s)\right)\right] \cdot l(j, s)
$$

Now if for each $s<s(j), m_{1}^{+}(s)-m_{1}^{-}(s)=m_{2}^{+}(s)-m_{2}^{-}(s)$ then we are done as $y^{1} \neq$ y^{2}. Otherwise note that for each $s<s(j),\left|m_{1}^{+}(s)-m_{1}^{-}(s)=m_{2}^{+}(s)-m_{2}^{-}(s)\right| \leq 4 r$. Note further that $\left|\left\{s<s(j): m_{1}^{+}(s)-m_{1}^{-}(s)=m_{2}^{+}(s)-m_{2}^{-}(s) \neq 0\right\}\right| \leq 4 r$. Hence by \otimes, and as $\left|y^{1}-y^{2}\right| \leq n$ we are done.

Next let $y \in B_{j}$ and $\bar{x}=\left(x_{0}, \ldots, x_{k}\right)$ be a path in G from y to y_{j}. For each $s<s(j)$ define $m^{+}(s)$ and $m^{-}(s)$ as above, hence we have $f(y)=y_{j}+\sum_{s<s(j)}\left(m^{+}(s)-\right.$ $\left.m^{-}(s)\right) l(j, s)$. Consider two cases. First if $\left(m^{+}(s)-m^{-}(s)\right)=0$ for each $s<s(j)$ then $f(y)=y$. Hence $f(y) \notin f\left(B^{0}\right)=B^{0}$ (by (β) above), $f(y) \notin f(Y)$ (as $f(Y) \cap[n]=\emptyset$) and $f(y) \notin f\left(\cup_{j^{\prime}<j} B_{j^{\prime}}\right)$ (by (γ) and the induction hypothesis). So $f(y) \notin F_{j}$. Second assume that for some $s<s(j),\left(m^{+}(s)-m^{-}(s)\right) \neq 0$. Then by the \otimes we have $f(y) \notin[n]$ and furthermore $f(y) \notin F_{j}$. In both cases the demands for $\left.f\right|_{B_{j}}$ are met and we are done. After finishing the construction for all $j<j^{*}$ we have $\left.f\right|_{B^{1}}$ such that:
$\left.{ }^{\bullet}{ }_{7} f\right|_{B^{1}}$ is one-to-one.

- $8 f\left(B^{1}\right)$ is disjoint to $f\left(B^{0}\right) \cup f(Y)$.
\bullet_{9} If $y \in B^{1}$ and $\operatorname{dist}^{G}(1, y)<r$ then $f(y)+l^{*}, f(y)-l^{*} \in f\left(B^{1}\right)$. In fact $f\left(y+l^{*}\right)=f(y)+l^{*}$ and $f\left(y-l^{*}\right)=f(y)-l^{*}$. (By the construction of Step 3.)
Putting $\bullet_{1}-\bullet_{9}$ together we have constructed $f: B \rightarrow \mathbb{Z}$ that is one-to-one and satisfies:
(o) If $y \in B$ and $\operatorname{dist}^{G}(1, y)<r$ then $f(y)+l^{*}, f(y)-l^{*} \in f(B)$. Furthermore:
(○) $\left\{y, f^{-1}\left(f(y)-l^{*}\right)\right\}$ and $\left\{y, f^{-1}\left(f(y)+l^{*}\right)\right\}$ are edges of G.
For (○○) use: \bullet_{2} with the definition of $\left.f\right|_{B^{0}}, \bullet_{5}+\bullet_{5}^{\prime}$ with the fact that $G \models i \sim y_{\langle \rangle}^{i}$,
\bullet_{6} with the construction of Step 2 and \bullet_{9}.
We turn to the definition of $\left(l, u_{0}, U, H\right)$ and the isomorphism $h: B \rightarrow H$. Let $l_{\text {min }}=\min \{f(b): b \in B\}$ and $l_{\text {max }}=\max \{f(b): b \in B\}$. Define:
- $l=l_{\text {min }}+l_{\max }+1$.
- $u_{0}=l_{\text {min }}+2$.
- $U=\left\{z+l_{\text {min }}+1: z \in \operatorname{Im}(f)\right\}$.
- For $b \in B, h(b)=f(b)+l_{\text {min }}+1$.
- For $u, v \in U, H \models u \sim v$ iff $G \models h^{-1}(u) \sim h^{-1}(v)$.

As f was one-to-one so is h, and trivially it is onto U and maps 1 to u_{0}. Also by the definition of H, h is a graph isomorphism. So it remains to show that $\left(l, u_{0}, U, H\right)$ is r-proper. First $(*)_{1}$ in the definition of proper is immediate from the definition of H. Second for $(*)_{2}$ in the definition of proper let $u \in U$ be such that $\operatorname{dist}^{H}\left(u_{0}, u\right)<r$. Denote $y:=h^{-1}(u)$ then by the definition of H we have $\operatorname{dist}^{G}(1, y)<r$, hence by (o), $f(y)+l^{*}, f(y)-l^{*} \in f(B)$ and hence by the definition of h and $U, u+l^{*}, u-l^{*} \in U$ as desired. Lastly to see $(*)_{3}$ let $u, u^{\prime} \in U$ and denote $y=h^{-1}(u)$ and $y^{\prime}=h^{-1}\left(u^{\prime}\right)$. Assume $\left|u-u^{\prime}\right|=l^{*}$ then by (o०) we have $G \models y \sim y^{\prime}$ and by the definition of $H, H \models u \sim u^{\prime}$. Now assume that $H \models u \sim u^{\prime}$ then $G \models y \sim y^{\prime}$. Using observation (δ) above and rereading 1-3 we see that $\left|u-u^{\prime}\right|$ is either $l^{*},\left|y-y^{\prime}\right|, l_{\eta}$ for some $\eta \in^{<r} 2$ (see Step 2) or $l(j, s)$ for some $j<j^{*}, s<s(j)$ (see step 3). In all cases we have $P_{\left|u-u^{\prime}\right|}>0$. Together we have $(*)_{3}$ as desired. This completes the proof of Theorem 5.14.

References

[1] Tomasz Luczak and Saharon Shelah. Convergence in homogeneous random graphs. Random Structures Algorithms, 6 (1995), no. 4, 371-391.
[2] Saharon Shelah. Hereditary convergence laws with successor. In preparation.
[3] Haim Gaifman. On local and nonlocal properties. Proceedings of the Herbrand symposium (Marseilles, 1981), 105-135, Stud. Logic Found. Math., 107, North-Holland, Amsterdam, 1982.

[^0]: The authors would like to thank the Israel Science Foundation for partial support of this research (Grant no. 242/03). Publication no. 953 on Saharon Shelah's list.

