HEREDITARY ZERO-ONE LAWS FOR GRAPHS

SAHARON SHELAH AND MOR DORON

ABSTRACT. We consider the random graph $M_{\bar{p}}^{\bar{n}}$ on the set [n], were the probability of $\{x, y\}$ being an edge is $p_{|x-y|}$, and $\bar{p} = (p_1, p_2, p_3, ...)$ is a series of probabilities. We consider the set of all \bar{q} derived from \bar{p} by inserting 0 probabilities to \bar{p} , or alternatively by decreasing some of the p_i . We say that \bar{p} hereditarily satisfies the 0-1 law if the 0-1 law (for first order logic) holds in $M_{\bar{q}}^{\bar{n}}$ for any \bar{q} derived from \bar{p} in the relevant way described above. We give a necessary and sufficient condition on \bar{p} for it to hereditarily satisfy the 0-1 law.

1. INTRODUCTION

In this paper we will investigate the random graph on the set $[n] = \{1, 2, ..., n\}$ were the probability of a pair $i \neq j \in [n]$ being connected by an edge depends only on their distance |i - j|. Let us define:

Definition 1.1. For a sequence $\bar{p} = (p_1, p_2, p_3, ...)$ where each p_i is a probability *i.e.* a real in [0, 1], let $M_{\bar{p}}^n$ be the random graph defined by:

- The set of vertices is $[n] = \{1, 2, ..., n\}.$
- For $i, j \leq n, i \neq j$ the probability of $\{i, j\}$ being an edge is $p_{|i-j|}$.
- All the edges are drawn independently.

If \mathfrak{L} is some logic, we say that $M_{\bar{p}}^n$ satisfies the 0-1 law for the logic \mathfrak{L} if for each sentence $\psi \in \mathfrak{L}$ the probability that ψ holds in $M_{\bar{p}}^n$ tends to 0 or 1, as napproaches ∞ . The relations between properties of \bar{p} and the asymptotic behavior of $M_{\bar{p}}^n$ were investigated in [1]. It was proved there that for L, the first order logic in the vocabulary with only the adjacency relation, we have:

- **Theorem 1.2.** (1) Assume $\bar{p} = (p_1, p_2, ...)$ is such that $0 \le p_i < 1$ for all i > 0and let $f_{\bar{p}}(n) := \log(\prod_{i=1}^{n} (1-p_i))/\log(n)$. If $\lim_{n\to\infty} f_{\bar{p}}(n) = 0$ then $M_{\bar{p}}^n$ satisfies the 0-1 law for L.
 - (2) The demand above on $f_{\bar{p}}$ is the best possible. Formally for each $\epsilon > 0$, there exists some \bar{p} with $0 \le p_i < 1$ for all i > 0 such that $|f_{\bar{p}}(n)| < \epsilon$ but the 0-1 law fails for $M_{\bar{n}}^{\bar{n}}$.

Part (1) above gives a necessary condition on \bar{p} for the 0-1 law to hold in $M_{\bar{p}}^n$, but the condition is not sufficient and a full characterization of \bar{p} seems to be harder. However we give below a complete characterization of \bar{p} in terms of the 0-1 law in $M_{\bar{q}}^n$ for all \bar{q} "dominated by \bar{p} ", in the appropriate sense. Alternatively one may ask which of the asymptotic properties of $M_{\bar{p}}^n$ are kept under some operations on \bar{p} . The notion of "domination" or the "operations" are taken from examples of the failure of the 0-1 law, and specifically the construction for part (2) above. Those

The authors would like to thank the Israel Science Foundation for partial support of this research (Grant no. 242/03). Publication no. 953 on Saharon Shelah's list.

are given in [1] by either adding zeros to a given sequence or decreasing some of the members of a given sequence. Formally define:

Definition 1.3. For a sequence $\bar{p} = (p_1, p_2, ...)$:

(1) $Gen_1(\bar{p})$ is the set of all sequences $\bar{q} = (q_1, q_2, ...)$ obtained from \bar{p} by adding zeros to \bar{p} . Formally $\bar{q} \in Gen_1(\bar{p})$ iff for some increasing $f : \mathbb{N} \to \mathbb{N}$ we have for all l > 0

$$q_l = \begin{cases} p_i & F(i) = l \\ 0 & l \notin Im(f). \end{cases}$$

- (2) $Gen_2(\bar{p}) := \{\bar{q} = (q_1, q_2, ...) : l > 0 \Rightarrow q_l \in [0, p_l]\}.$
- (3) $Gen_3(\bar{p}) := \{\bar{q} = (q_1, q_2, ...) : l > 0 \Rightarrow q_l \in \{0, p_l\}\}.$

Definition 1.4. Let $\bar{p} = (p_1, p_2, ...)$ be a sequence of probabilities and \mathfrak{L} be some logic. For a sentence $\psi \in \mathfrak{L}$ denote by $Pr[M_{\bar{p}}^n \models \psi]$ the probability that ψ holds in $M_{\bar{p}}^n$.

- (1) We say that $M_{\bar{p}}^n$ satisfies the 0-1 law for \mathfrak{L} , if for all $\psi \in \mathfrak{L}$ the limit $\lim_{n\to\infty} \Pr[M_{\bar{p}}^n \models \psi]$ exists and belongs to $\{0,1\}$.
- (2) We say that $M_{\bar{p}}^n$ satisfies the convergence law for \mathfrak{L} , if for all $\psi \in \mathfrak{L}$ the limit $\lim_{n\to\infty} \Pr[M_{\bar{p}}^n \models \psi]$ exists.
- (3) We say that $M_{\bar{p}}^n$ satisfies the weak convergence law for \mathfrak{L} , if for all $\psi \in \mathfrak{L}$, $\limsup_{n \to \infty} \Pr[M_{\bar{p}}^n \models \psi] - \liminf_{n \to \infty} \Pr[M_{\bar{p}}^n \models \psi] < 1.$
- (4) For i ∈ {1,2,3} we say that p̄ i-hereditarily satisfies the 0-1 law for L, if for all q̄ ∈ Gen_i(p̄), Mⁿ_{q̄} satisfies the 0-1 law for L.
- (5) Similarly to (4) for the convergence and weak convergence law.

The main theorem of this paper is the following strengthening of theorem 1.2:

Theorem 1.5. Let $\bar{p} = (p_1, p_2, ...)$ be such that $0 \le p_i < 1$ for all i > 0, and $j \in \{1, 2, 3\}$. Then \bar{p} j-hereditarily satisfies the 0-1 law for L iff

(*)
$$\lim_{n \to \infty} \log(\prod_{i=1}^{n} (1-p_i)) / \log n = 0.$$

Moreover we may replace above the "0-1 law" by the "convergence law" or "weak convergence law".

Note that the 0-1 law implies the convergence law which in turn implies the weak convergence law. Hence it is enough to prove the "if" direction for the 0-1 law and the "only if" direction for the weak convergence law. Also note that the "if" direction is an immediate conclusion of Theorem 1.2 (in the case j = 1 it is stated in [1] as a corollary at the end of section 3). The case j = 1 is proved in section 2, and the case $j \in \{2,3\}$ is proved in section 3. In section 4 we deal with the case $U^*(\bar{p}) := \{i : p_i = 1\}$ is not empty. We give an almost full analysis of the hereditary 0 - 1 law in this case as well. The only case which is not fully characterized is the case j = 1 and $|U^*(\bar{p})| = 1$. We give some results regarding this case in section 5. The case j = 1 and $|U^*(\bar{p})| = 1$ and the case that the successor relation belongs to the dictionary, will be dealt with in [2]. The following table summarizes the results in this article regarding the *j*-hereditary laws.

	$ U^* = \infty$	$2 \le U^* < \infty$	$ U^* = 1$	$ U^* = 0$
		The 0-1 law holds	See	
j = 1		\uparrow	section	$\lim_{n \to \infty} \frac{\log(\prod_{i=1}^{n} (1-p_i))}{\log n} = 0$
	The weak	$\{l: 0 < p_l < 1\} = \emptyset$	5	\$
		The 0-1 law holds		The 0-1 law holds
j = 2	convergence	1		\uparrow
		$ \{l: p_l > 0\} \le$	≤ 1	The convergence law holds
	law fails	The 0-1 law holds		\uparrow
j = 3		\uparrow		The weak convergence law holds
		$\{l: 0 < p_l < 1\}$	$= \emptyset$	

Convention 1.6. Formally speaking Definition 1.1 defines a probability on the space of subsets of $G^n := \{G : G \text{ is a graph with vertex set } [n]\}$. If H is a subset of G^n we denote its probability by $Pr[M_{\bar{p}}^n \in H]$. If ϕ is a sentence in some logic we write $Pr[M_{\bar{p}}^n \models \phi]$ for the probability of $\{G \in G^n : G \models \phi\}$. Similarly if A_n is some property of graphs on the set of vertexes [n], then we write $Pr[A_n]$ or $Pr[A_n$ holds in $M_{\bar{p}}^n]$ for the probability of the set $\{G \in G^n : G \text{ has the property } A_n\}$.

Notation 1.7. (1) \mathbb{N} is the set of natural numbers (including 0).

- (2) n,m,r,i,j and k will denote natural numbers. l will denote a member of N^{*} (usually an index).
- (3) p, q and similarly p_l, q_l will denote probabilities i.e. reals in [0, 1].
- (4) ϵ, ζ and δ will denote positive reals.
- (5) L = {~} is the vocabulary of graphs i.e ~ is a binary relation symbol. All L-structures are assumed to be graphs i.e. ∽ is interpreted by a symmetric non-reflexive binary relation.
- (6) If x ~ y holds in some graph G, we say that {x, y} is an edge of G or that x and y are "connected" or "neighbors" in G.

2. Adding zeros

In this section we prove theorem 1.5 for j = 1. As the "if" direction is immediate from Theorem 1.2 it remains to prove that if (*) of 1.5 fails then the 0-1 law for Lfails for some $\bar{q} \in Gen_1(\bar{p})$. In fact we will show that it fails "badly" i.e. for some $\psi \in L$, $Pr[M_{\bar{q}}^n \models \psi]$ approaches both 0 and 1 simultaneously. Formally:

- **Definition 2.1.** (1) Let ψ be a sentence in some logic \mathfrak{L} , and $\bar{q} = (q_1, q_2, ...)$ be a series of probabilities. We say that ψ holds infinitely often in $M_{\bar{q}}^n$ if $\limsup_{n\to\infty} \operatorname{Prob}[M_{\bar{q}}^n \models \psi] = 1.$
 - (2) We say that the 0-1 law for \mathfrak{L} strongly fails in $M^n_{\overline{q}}$, if for some $\psi \in \mathfrak{L}$ both ψ and $\neg \psi$ hold infinitely often in $M^n_{\overline{q}}$.

Obviously the 0-1 law strongly fails in some $M_{\bar{q}}^n$ iff $M_{\bar{q}}^n$ does not satisfy the weak semi 0-1 law. Hence in order to prove Theorem 1.5 for j = 1 it is enough if we prove:

Lemma 2.2. Let $\bar{p} = (p_1, p_2, ...)$ be such that $0 \le p_i < 1$ for all i > 0, and assume that (*) of 1.5 fails. Then for some $\bar{q} \in Gen_1(\bar{p})$ the 0-1 law for L strongly fails in $M^n_{\bar{q}}$.

In the remainder of this section we prove Lemma 2.2. We do so by inductively constructing \bar{q} , as the limit of a series of finite sequences. Let us start with some basic definitions:

- Definition 2.3. (1) Let \mathfrak{P} be the set of all, finite or infinite, sequences of probabilities. Formally each $\bar{p} \in \mathfrak{P}$ has the form $\langle p_l : 0 < l < n_{\bar{p}} \rangle$ where each $p_l \in [0,1]$ and $n_{\bar{p}}$ is either ω (the first infinite ordinal) or a member of $\mathbb{N} \setminus \{0,1\}$. Let $\mathfrak{P}^{inf} = \{\bar{p} \in \mathfrak{P} : n_{\bar{p}} = \omega\}$, and $\mathfrak{P}^{fin} := \mathfrak{P} \setminus \mathfrak{P}^{inf}$.
 - (2) For $\bar{q} \in \mathfrak{P}^{fin}$ and increasing $f : [n_{\bar{q}}] \to \mathbb{N}$, define $\bar{q}^f \in \mathfrak{P}^{fin}$ by $n_{\bar{q}^f} = f(n_{\bar{q}})$,
 - $[r+1] \to \mathbb{N}, (\bar{p}|_{[r]})^f = \bar{q}\}.$
 - (4) For $\bar{p}, \bar{p}' \in \mathfrak{P}$ denote $\bar{p} \triangleleft \bar{p}'$ if $n_{\bar{p}} < n_{\bar{p}'}$ and for each $l < n_{\bar{p}}, p_l = p'_l$.
 - (5) If $\bar{p} \in \mathfrak{P}^{fin}$ and $n > n_{\bar{p}}$, we can still consider $M^n_{\bar{p}}$ by putting $p_l = 0$ for all $l \geq n_{\bar{p}}.$
- Observation 2.4. (1) Let $\langle \bar{p}_i : i \in \mathbb{N} \rangle$ be such that each $\bar{p}_i \in \mathfrak{P}^{fin}$, and assume that $i < j \in \mathbb{N} \Rightarrow \bar{p}_i \triangleleft \bar{p}_j$. Then $\bar{p} = \bigcup_{i \in \mathbb{N}} \bar{p}_i$ (i.e. $p_l = (p_i)_l$ for some \bar{p}_i with $n_{\bar{p}_i} > l$) is well defined and $\bar{p} \in \mathfrak{P}^{inf}$.
 - (2) Assume further that $\langle r_i : i \in \mathbb{N} \rangle$ is non-decreasing and unbounded, and that $\bar{p}_i \in Gen_1^{r_i}(\bar{p}')$ for some fixed $\bar{p}' \in \mathfrak{P}^{inf}$, then $\cup_{i \in \mathbb{N}} \bar{p}_i \in Gen_1(\bar{p}')$.

We would like our graphs $M_{\bar{q}}^n$ to have a certain structure, namely that the number of triangles in $M_{\bar{q}}^n$ is o(n) rather than say $o(n^3)$. we can impose this structure by making demands on \bar{q} . This is made precise by the following:

Definition 2.5. A sequence $\bar{q} \in \mathfrak{P}$ is called proper (for l^*), if:

- (1) l^* and $2l^*$ are the first and second members of $\{0 < l < n_{\bar{q}} : q_l > 0\}$.
- (2) Let $l^{**} = 3l^* + 2$. If $l < n_{\bar{q}}$, $l \notin \{l^*, 2l^*\}$ and $q_l > 0$, then $\bar{l} \equiv 1 \pmod{l}^{**}$.

For $\bar{q}, \bar{q}' \in \mathfrak{P}$ we write $\bar{q} \triangleleft^{prop} \bar{q}'$ if $\bar{q} \triangleleft \bar{q}'$, and both \bar{q} and \bar{q}' are proper.

(1) If $\langle \bar{p}_i : i \in \mathbb{N} \rangle$ is such that each $\bar{p}_i \in \mathfrak{P}$, and $i < j \in$ Observation 2.6. $\mathbb{N} \Rightarrow \bar{p}_i \triangleleft^{prop} \bar{p}_j$, then $\bar{p} = \bigcup_{i \in \mathbb{N}} \bar{p}_i$ is proper.

- (2) Assume that $\bar{q} \in \mathfrak{P}$ is proper for l^* and $n \in \mathbb{N}$. Then the following event holds in $M_{\bar{q}}^n$ with probability 1:
- $(*)_{\bar{q},l^*}$ If $m_1, m_2, m_3 \in [n]$ and $\{m_1, m_2, m_3\}$ is a triangle in $M^n_{\bar{q}}$, then $\{m_1, m_2, m_3\} =$ $\{l, l+l^*, l+2l^*\}$ for some l > 0.

We can now define the sentence ψ for which we have failure of the 0-1 law.

Definition 2.7. Let k be an even natural number. Let ψ_k be the L sentence "saying": There exists $x_0, x_1, ..., x_k$ such that:

- $(x_0, x_1, ..., x_k)$ is without repetitions.
- For each even $0 \leq i < k$, $\{x_i, x_{i+1}, x_{i+2}\}$ is a triangle.
- The valency of x_0 and x_k is 2.
- For each even 0 < i < k the valency of x_i is 4.
- For each odd 0 < i < k the valency of x_i is 2.

If the above holds (in a graph G) we say that $(x_0, x_1, ..., x_k)$ is a chain of triangles (in G).

Definition 2.8. Let $n \in \mathbb{N}$, $k \in \mathbb{N}$ be even and $l^* \in [n]$. For $1 \leq m < n - k \cdot l^*$ a sequence $(m_0, m_1, ..., m_k)$ is called a candidate of type (n, l^*, k, m) if it is without repetitions, $m_0 = m$ and for each even $0 \le i < k$, $\{m_i, m_{i+1}, m_{i+2}\} = \{l, l+l^*, l+1\}$ $2l^*$ for some l > 0. Note that for given (n, l^*, k, m) , there are at most 4 candidates of type (n, l^*, k, m) (and at most 2 if k > 2).

Claim 2.9. Let $n \in \mathbb{N}$, $k \in \mathbb{N}$ be even, and $\bar{q} \in \mathfrak{P}$ be proper for l^* . For $1 \leq m < n - k \cdot l^*$ let $E^n_{\bar{q},m}$ be the following event (on the probability space $M^n_{\bar{q}}$): "No candidate of of type (n, l^*, k, m) is a chain of triangles." Then $M^n_{\bar{q}}$ satisfies with probability 1: $M^n_{\bar{q}} \models \neg \psi_k$ iff $M^n_{\bar{q}} \models \bigwedge_{1 \leq m < n - k \cdot l^*} E^n_{\bar{q},m}$

Proof. The "only if" direction is immediate. For the "if" direction note that by 2.6(2), with probability 1, only a candidate can be a chain of triangles, and the claim follows immediately.

The following claim shows that by adding enough zeros at the end of \bar{q} we can make sure that ψ_k holds in $M_{\bar{q}}^n$ with probability close to 1. Note that we do not make a "strong" use of the properness of \bar{q} , i.e we do not use item (2) of Definition 2.5.

Claim 2.10. Let $\bar{q} \in \mathfrak{P}^{fin}$ be proper for l^* , $k \in \mathbb{N}$ be even, and $\zeta > 0$ be some rational. Then there exists $\bar{q}' \in \mathfrak{P}^{fin}$ such that $\bar{q} \triangleleft^{prop} \bar{q}'$ and $Pr[M_{\bar{q}'}^{n_{\bar{q}'}} \models \psi_k] \ge 1-\zeta$.

Proof. For $n > n_{\bar{q}}$ denote by \bar{q}^n the member of \mathfrak{P} with $n_{\bar{q}^n} = n$ and $(q^n)_l$ is q_l if $l < n_{\bar{q}}$ and 0 otherwise. Note that $\bar{q} \triangleleft^{prop} \bar{q}^n$, hence if we show that for n large enough we have $Pr[M^n_{\bar{q}^n} \models \psi_k] \ge 1 - \zeta$ then we will be done by putting $\bar{q}' = \bar{q}^n$. Note that (recalling Definition 2.3(5)) $M^n_{\bar{q}} = M^n_{\bar{q}^n}$ so below we may confuse between them. Now set $n^* = \max\{n_{\bar{q}}, k \cdot l^*\}$. For any $n > n^*$ and $1 \le m \le n - n^*$ consider the sequence $s(m) = (m, m + l^*, m + 2l^*, ..., m + k \cdot l^*)$ (note that s(m) is a candidate of type (n, l^*, k, m)). Denote by E_m the event that s(m) is a chain of triangles (in $M^n_{\bar{q}}$). We then have:

$$Pr[M_{\bar{q}}^{n} \models E_{m}] \ge (q_{l^{*}})^{k} \cdot (q_{2l^{*}})^{k/2} \cdot (\prod_{l=1}^{n_{\bar{q}}-1} (1-p_{l}))^{2(k+1)}.$$

Denote the expression on the right by $p_{\bar{q}}^*$ and note that it is positive and depends only on k and \bar{q} (but not on n). Now assume that $n > 6 \cdot n^*$ and that $1 \le m < m' \le n - n^*$ are such that $m' - m > 2 \cdot n^*$. Then the distance between the sequences s(m)and s(m') is larger than $n_{\bar{q}}$ and hence the events E_m and $E_{m'}$ are independent. We conclude that $Pr[M_{\bar{q}}^n \not\models \psi_k] \le (1 - p_{\bar{q}}^*)^{n/(2 \cdot n^* + 1)} \to_{n \to \infty} 0$ and hence by choosing n large enough we are done.

The following claim shows that under our assumptions we can always find a long initial segment \bar{q} of some member of $Gen_1(\bar{p})$ such that ψ_k holds in $M_{\bar{q}}^n$ with probability close to 0. This is where we make use of our assumptions on \bar{p} and the properness of \bar{q} .

Claim 2.11. Let $\bar{p} \in \mathfrak{P}^{inf}$, $\epsilon > 0$ and assume that for an unbounded set of $n \in \mathbb{N}$ we have $\prod_{l=1}^{n} (1-p_l) \leq n^{-\epsilon}$. Let $k \in \mathbb{N}$ be even such that $k \cdot \epsilon > 2$. Let $\bar{q} \in Gen_1^r(\bar{p})$ be proper for l^* , and $\zeta > 0$ be some rational. Then there exists r' > r and $\bar{q}' \in Gen_1^{r'}(\bar{p})$ such that $\bar{q} \triangleleft^{prop} \bar{q}'$ and $Pr[M_{\bar{q}'}^{n_{\bar{q}'}} \models \neg \psi_k] \geq 1 - \zeta$.

Proof. First recalling Definition 2.5 let $l^{**} = 3l^* + 2$, and for $l \ge n_{\bar{q}}$ define $r(l) := \lceil (l - n_{\bar{q}} + 1)/l^{**} \rceil$. Now for each $n > n_{\bar{q}} + l^{**}$ denote by \bar{q}_n the member of \mathfrak{P} defined by:

$$(q_n)_l = \begin{cases} q_l & 0 < l < n_{\bar{q}} \\ 0 & n_{\bar{q}} \le l < n \text{ and } l \ne 1 \mod l^{**} \\ p_{r+r(l)} & n_{\bar{q}} \le l < n \text{ and } l \equiv 1 \mod l^{**}. \end{cases}$$

Note that $n_{\bar{q}_n} = n$, $\bar{q}_n \in Gen_1^{r'}(\bar{p})$ where r' = r + r(n-1) > r and $\bar{q} \triangleleft^{prop} \bar{q}_n$. Hence if we show that for some n large enough we have $Pr[M_{\bar{q}_n}^n \models \neg \psi_k] \geq 1 - \zeta$ then we will be done by putting $\bar{q}' = \bar{q}_n$. As before let $n^* := \max\{kl^*, n_{\bar{q}} + l^*\}$. Now fix some $n > n^*$ and for $1 \le m < n - k \cdot l^*$ let s(m) be some candidate of type (n, l^*, k, m) . Denote by E = E(s(m)) the event that s(m) is a chain of triangles in $M_{\bar{a}_n}^n$. We then have:

$$Pr[M_{\bar{q}_n}^n \models E] \le (q_{l^*})^k \cdot (q_{2l^*})^{k/2} \cdot (\prod_{n^*+1}^{\lfloor (n-n^*)/2 \rfloor} (1-(q_i)_l))^k.$$

Now denote:

$$p_{\bar{q}}^* := (q_{l^*})^k \cdot (q_{2l^*})^{k/2} \cdot (\prod_{l=1}^{n^*} (1 - (q_i)_l))^{-k}$$

and note that it is positive and does not depend on n. Together we get:

$$Pr[M_{\bar{q}_n}^n \models E] \le p^* \cdot (\prod_{l=1}^{\lfloor (n-n^*)/2 \rfloor} (1-(q_i)_l))^k \le p_{\bar{q}}^* \cdot (\prod_{l=1}^{\lfloor (n-n^*)/(2l^{**}) \rfloor} (1-p_l))^k.$$

For each $1 \leq m < n - k \cdot l^*$ the number of candidates of type (n, l^*, k, m) is at most 4, hence the total number of candidates is no more then 4n. We get that the expected number (in the probability space $M_{\bar{q}_n}^n$) of candidates which are a chain of triangles is at most $p_{\bar{q}}^* \cdot (\prod_{l=1}^{\lfloor (n-n^*)/(2l^{**}) \rfloor} (1-p_l))^k \cdot 4n$. Let E^* be the following event: "No candidate is a chain of triangles". Then using Claim 2.9 and Markov's inequality we get:

$$Pr[M_{\bar{q}}^{n} \models \psi_{k}] = Pr[M_{\bar{q}}^{n} \not\models E^{*}] \le p_{\bar{q}}^{*} \cdot (\prod_{l=1}^{\lfloor (n-n^{*})/(2l^{**}) \rfloor} (1-p_{l}))^{k} \cdot 4n.$$

Finally by our assumptions, for an unbounded n we have $\prod_{l=1}^{\lfloor (n-n^*)/(2l^{**}) \rfloor} (1-1)^{l}$ $p_l \leq (\lfloor (n-n^*)/(2l^{**}) \rfloor)^{-\epsilon}$, and note that for n large enough we have $(\lfloor (n-n^*)/(2l^{**}) \rfloor)^{-\epsilon} \leq n^{-\epsilon/2}$. Hence for unbounded $n \in \mathbb{N}$ we have $Pr[M_{\overline{q}}^n \models \psi_k] \leq 1$ $p_{\overline{q}}^* \cdot 4 \cdot n^{1-\epsilon \cdot k/2}$, and as $\epsilon \cdot k > 2$ this tends to 0 as n tends to ∞ , so we are done. \Box

We are now ready to prove Lemma 2.2. First as (*) of 1.5 does not hold we have some $\epsilon > 0$ such that for an unbounded set of $n \in \mathbb{N}$, we have $\prod_{l=1}^{n} (1-p_l) \leq n^{-\epsilon}$. Let $k \in \mathbb{N}$ be even such that $k \cdot \epsilon > 2$. Now for each $i \in \mathbb{N}$ we will construct a pair (\bar{q}_i, r_i) such that the following holds:

- (1) For $i \in \mathbb{N}$, $\bar{q}_i \in Gen_1^{r_i}(\bar{p})$ and put $n_i := n_{\bar{q}_i}$.
- (2) For $i \in \mathbb{N}$, $\bar{q}_i \triangleleft^{prop} \bar{q}_{i+1}$.
- (3) For each odd i > 0, $Pr[M_{\overline{q}_i}^{n_i} \models \psi_k] \ge 1 \frac{1}{i}$ and $r_i = r_{i-1}$. (4) For each even i > 0, $Pr[M_{\overline{q}_i}^{n_i} \models \neg \psi_k] \ge 1 \frac{1}{i}$ and $r_i > r_{i-1}$.

Clearly if we construct such $\langle (\bar{q}_i, r_i) : i \in \mathbb{N} \rangle$ then by taking $\bar{q} = \bigcup_{i \in \mathbb{N}} \bar{q}_i$ (recall observation 2.4), we have $\bar{q} \in Gen_1(\bar{p})$ and both ψ_k and $\neg \psi_k$ holds infinitely often in $M^n_{\bar{q}}$, thus finishing the proof. We turn to the construction of $\langle (\bar{q}_i, r_i) : i \in \mathbb{N} \rangle$, and naturally we use induction on $i \in \mathbb{N}$.

Case 1: i = 0. Let $l_1 < l_2$ be the first and second indexes such that $p_{l_i} > 0$. Put $r_0 := l_2$. If $l_2 \leq 2l_1$ define \bar{q}_0 by:

$$(q_0)_l = \begin{cases} p_l & l \le l_1 \\ 0 & l_1 \le l \le 2l_1 \\ p_{l_2} & l = 2l_1. \end{cases}$$

Otherwise if $l_2 > 2l_1$ define \bar{q}_0 by:

$$(q_0)_l = \begin{cases} 0 & l < \lceil l_2/2 \rceil \\ p_{l_1} & l = \lceil l_2/2 \rceil \\ 0 & \lceil l_2/2 \rceil < l < 2 \lceil l_2/2 \rceil \\ p_{l_2} & l = 2 \lceil l_2/2 \rceil. \end{cases}$$

clearly $\bar{q}_0 \in Gen_1^{r_0}(\bar{p})$ as desired, and note that \bar{q}_0 is proper (for either l_1 or $\lceil l_2/2 \rceil$).

Case 2: i > 0 is odd. First set $r_i = r_{i-1}$. Next we use Claim 2.10 where we set: \bar{q}_{i-1} for \bar{q} , $\frac{1}{i}$ for ζ and \bar{q}_i is the one promised by the claim. Note that indeed $\bar{q}_{i-1} \triangleleft^{prop} \bar{q}_i$, $\bar{q}_i \in gen^{r_i}(\bar{p})$ and $Pr[M_{\bar{q}_i}^{n_i} \models \psi_k] \ge 1 - \frac{1}{i}$.

Case 3: i > 0 is even. We use Claim 2.11 where we set: \bar{q}_{i-1} for \bar{q} , $\frac{1}{i}$ for ζ and (r_i, \bar{q}_i) are (r', \bar{q}') promised by the claim. Note that indeed $\bar{q}_{i-1} \triangleleft^{prop} \bar{q}_i$, $\bar{q}_i \in Gen_1^{r_i}(\bar{p})$ and $Pr[M_{\bar{q}_i}^{n_i} \models \psi_k] \ge 1 - \frac{1}{i}$. This completes the proof of Lemma 2.2.

3. Decreasing coordinates

In this section we prove Theorem 1.5 for $j \in \{2, 3\}$. As before, the "if" direction is an immediate conclusion of Theorem 1.2. Moreover as $Gen_3(\bar{p}) \subseteq Gen_2(\bar{p})$ it remains to prove that if (*) of 1.5 fails then the 0-1 strongly fails for some $\bar{q} \in Gen_3(\bar{p})$. We divide the proof into two cases according to the behavior of $\sum_{l=1}^{n} p_l$, which is an approximation of the expected number of neighbors of a given node in $M_{\bar{p}}^n$. Define:

(**)
$$\lim_{n \to \infty} \log(\sum_{i=1}^{n} p_i) / \log n = 0.$$

Assume that (**) above fails. Then for some $\epsilon > 0$, the set $\{n \in \mathbb{N} : \sum_{i=1}^{n} p_i \ge n^{\epsilon}\}$ is unbounded, hence we finish by Lemma 3.1. On the other hand if (**) holds then $\sum_{i=1}^{n} p_i$ increases slower then any positive power of n, formally for all $\delta > 0$ for some $n_{\delta} \in \mathbb{N}$ we have $n > n_{\delta}$ implies $\sum_{i=1}^{n} p_i \le n^{\delta}$. As we assume that (*) of Theorem 1.5 fails we have for some $\epsilon > 0$ the set $\{n \in \mathbb{N} : \prod_{i=1}^{n} (1-p_i) \le n^{-\epsilon}\}$ is unbounded. Together (with $-\epsilon/6$ as δ) we have that the assumptions of Lemma 3.2 hold, hence we finish the proof.

Lemma 3.1. Let $\bar{p} \in \mathfrak{P}^{inf}$ be such that $p_l < 1$ for l > 0. Assume that for some $\epsilon > 0$ we have for an unbounded set of $n \in \mathbb{N}$: $\sum_{l \leq n} p_l \geq n^{\epsilon}$. Then for some $\bar{q} \in Gen_3(\bar{p})$ and $\psi = \psi_{isolated} := \exists x \forall y \neg x \sim y$, both ψ and $\neg \psi$ holds infinitely often in $M^n_{\bar{q}}$.

Proof. We construct a series, $(\bar{q}_1, \bar{q}_2, ...)$ such that for i > 0: $\bar{q}_i \in \mathfrak{P}^{fin}, \bar{q}_i \triangleleft \bar{q}_{i+1}$ and $\bigcup_{i>0} \bar{q}_i \in Gen_3(\bar{p})$. For $i \ge 1$ denote $n_i := n_{\bar{q}_i}$. We will show that:

 $\begin{aligned} *_{even} & \text{ For even } i > 1: \ Pr[M_{\bar{q}_i}^{n_i} \models \psi] \ge 1 - \frac{1}{i}. \\ *_{odd} & \text{ For odd } i > 1: \ Pr[M_{\bar{q}_i}^{n_i} \models \neg \psi] \ge 1 - \frac{1}{i}. \end{aligned}$

Taking $\bar{q} = \bigcup_{i>0} \bar{q}_i$ will then complete the proof. We construct \bar{q}_i by induction on i > 0:

Case 1 i = 1: Let $n_1 = 2$ and $(q_1)_1 = p_1$.

Case 2 even i > 1: As (\bar{q}_{i-1}, n_{i-1}) are given, let us define \bar{q}_i were $n_i > n_{i-1}$ is to be determined later: $(q_i)_l = (q_{i-1})_l$ for $l < n_{i-1}$ and $(q_i)_l = 0$ for $n_{i-1} \leq l < n_i$. For $x \in [n_i]$ let E_x be the event: "x is an isolated point". Denote $p' := (\prod_{0 < l < n_{i-1}} (1 - (q_{i-1})_l)^2)$ and note that p' > 0 and does not depend on n_i . Now for $x \in [n_i]$, $Pr[M_{\bar{q}_i}^{n_i} \models E_x] \geq p'$, furthermore if $x, x' \in [n_i]$ and $|x - x'| > n_{i-1}$ then E_x and $E_{x'}$ are independent in $M_{\bar{q}_i}^{n_i}$. We conclude that $Pr[M_{\bar{q}_i}^{n_i} \models \neg \psi] \leq (1 - p)^{\lfloor n_i/(n_{i-1}+1) \rfloor}$ which approaches 0 as $n_i \to \infty$. So by choosing n_i large enough we have $*_{even}$.

Case 3 odd i > 1: As in case 2 let us define \bar{q}_i were $n_i > n_{i-1}$ is to be determined later: $(q_i)_l = (q_{i-1})_l$ for $l < n_{i-1}$ and $(q_i)_l = p_l$ for $n_{i-1} \le l < n_i$. Let $n' = \max\{n < n_i/2 : n = 2^m$ for some $m \in \mathbb{N}\}$, so $n_i/4 \le n' < n_i/2$. Denote $a = \sum_{0 < l \le n'} (q_i)_l$ and $a' = \sum_{0 < l \le n/4} (q_i)_l$. Again let E_x be the event: "x is isolated". Now as $n' < n_i/2$, $Pr[M_{\bar{q}_i}^{n_i} \models E_x] \le \prod_{0 < l \le n'} (1 - (q_i)_l)$. By a repeated use of: $(1 - x)(1 - y) \le (1 - \frac{x+y}{2})^2$ we get $Pr[M_{\bar{q}_i}^{n_i} \models E_x] \le (1 - \frac{a}{n'})^{n'}$ which for n' large enough is smaller then $2 \cdot e^{-a}$, and as $a' \le a$, we get $Pr[M_{\bar{q}_i}^{n_i} \models E_x] \le 2 \cdot e^{-a'}$. By the definition of a' and \bar{q}_i we have $a' = \sum_{l=1}^{\lfloor n_1/4 \rfloor} p_l - \sum_{l < n_{i-1}} (p_l - (q_{i-1})_l)$. But as the sum on the right is independent of n_i we have $(a_{gain}$ for n_i large enough): $a' \ge (n_i/5)^{\epsilon}$. Consider the expected number of isolated points in the probability space $M_{\bar{q}_i}^{n_i}$, denote this number by $X(n_i)$. By all the above we have:

$$X(n_i) < n_i \cdot 2 \cdot e^{-a} < n_i \cdot 2 \cdot e^{-a'} < 2n_i \cdot e^{-(n_i/5)^{\epsilon}}.$$

The last expression approaches 0 as $n_i \to \infty$. So by choosing n_i large enough (while keeping $a' \ge (n_i/5)^{\epsilon}$ we have $*_{odd}$.

Finally notice that indeed $\bigcup_{i>0} \bar{q}_i \in Gen_3(\bar{p})$, as the only change we made in the inductive process is decreasing p_l to 0 for $n_{i-1} < l \leq n_i$ and i is even.

Lemma 3.2. Let $\bar{p} \in \mathfrak{P}^{inf}$ be such that $p_l < 1$ for l > 0. Assume that for some $\epsilon > 0$ we have for an unbounded set of $n \in \mathbb{N}$:

(
$$\alpha$$
) $\sum_{l \le n} p_l \le n^{\epsilon/6}$

$$(\beta) \prod_{l \le n}^{-} (1 - p_l) \le n^{-\epsilon}$$

Let $k = \lceil \frac{6}{\epsilon} \rceil + 1$ and $\psi = \psi_k$ be the sentence "saying" there exists a connected component which is a path of length k, formally:

$$\psi_k := \exists x_1 \dots \exists x_k \bigwedge_{1 \le i \ne j \le k} x_i \ne x_j \land \bigwedge_{1 \le i < k} x_i \sim x_{i+1} \land \forall y (\bigwedge_{1 \le i \le k} x_i \ne y) \to (\bigwedge_{1 \le i \le k} \neg x_i \sim y)$$

Then for some $\bar{q} \in Gen_3(\bar{p})$, both ψ and $\neg \psi$ holds infinitely often in $M^n_{\bar{q}}$.

Proof. The proof follows the same line as the proof of 3.1. We construct an increasing series, $(\bar{q}_1, \bar{q}_2, ...)$, and demand $*_{even}$ and $*_{odd}$ as in 3.1. Taking $\bar{q} = \bigcup_{i>0} \bar{q}_i$ will then complete the proof. We construct \bar{q}_i by induction on i > 0:

Case 1 i = 1: Let $l(*) := \min\{l > 0 : p_l > 0\}$ and define $n_1 = l(*) + 1$ and $(q_1)_l = p_l$ for $l < n_1$.

Case 2 even i > 1: As before, for $n_i > n_{i-1}$ define: $(q_i)_l = (q_{i-1})_l$ for $l < n_{i-1}$ and $(q_i)_l = 0$ for $n_{i-1} \leq l < n_i$. For $1 \leq x < n_i - k \cdot l(*)$ let E^x be the event: "(x, x+l(*), ..., x+l(*)(k-1)) exemplifies ψ ." Formally E^x holds in $M_{\overline{q_i}}^{n_i}$ iff $\{(x, x+l) \in U_i \}$ for $M_{\overline{q_i}}^{n_i}$ for $M_{\overline{q_i}}^{n_i}$ iff $\{(x, x+l) \in U_i \}$ for $M_{\overline{q_i}}^{n_i}$ for $M_{\overline{q_i}}^{n_i}$ iff $\{(x, x+l) \in U_i \}$ for $M_{\overline{q_i}}^{n_i}$ for $M_{\overline{q_i}$

l(*), ..., x + l(*)(k-1)) is isolated and for $0 \le j < k-1$, $\{x + jl(*), x + (j+1)l(*)\}$ is an edge of $M_{\bar{q}_i}^{n_i}$. The remainder of this case is similar to case 2 of Lemma 3.1 so we will not go into details. Note that $Pr[M_{\bar{q}_i}^{n_i} \models E^x] > 0$ and does not depend on n_i , and if |x - x'| is large enough (again not depending on n_i) then E^x and $E^{x'}$ are independent in $M_{\bar{q}_i}^{n_i}$. We conclude that by choosing n_i large enough we have $*_{even}$.

Case 3 odd i > 1: In this case we make use of the fact that almost always, no $x \in [n]$ have to many neighbors. Formally:

Claim 3.3. Let $\bar{q} \in \mathfrak{P}^{inf}$ be such that $q_l < 1$ for l > 0. Let $\delta > 0$ and assume that for an unbounded set of $n \in \mathbb{N}$ we have, $\sum_{l=1}^{n} q_l \leq n^{\delta}$. Let E_{δ}^n be the event: "No $x \in [n]$ have more than $8n^{2\delta}$ neighbors". Then we have:

$$\limsup_{n\to\infty} \Pr[E_{\delta}^n \text{ holds in } M_{\bar{q}}^n] = 1.$$

Proof. First note that the size of the set $\{l > 0 : q_l > n^{-\delta}\}$ is at most $n^{2\delta}$. Hence by ignoring at most $2n^{2\delta}$ neighbors of each $x \in [n]$, and changing the number of neighbors in the definition of E_{δ}^n to $6n^{2\delta}$ we may assume that for all l > 0, $q_l \le n^{-\delta}$. The idea is that the number of neighbors of each $x \in [n]$ can be approximated (or in our case only bounded from above) by a Poisson random variable with parameter close to $\sum_{i=l}^n q_l$. Formally, for each l > 0 let B_l be a Bernoulli random variable with $Pr[B_l = 1] = q_l$. For $n \in \mathbb{N}$ let X^n be the random variable defined by $X^n := \sum_{l=1}^n B_l$. For l > 0 let Po_l be a Poisson random variable with parameter $\lambda_l := -\log(1 - q_l)$ that is for $i = 0, 1, 2, \dots$ $Pr[Po_l = i] = e^{-\lambda_l} \frac{(\lambda_l)^i}{i!}$. Note that $Pr[B_l = 0] = Pr[Po_l = 0]$. Now define $Po^n := \sum_{i=1}^n Po_l$. By the last sentence we have $Po^n \ge_{st} X^n$ (Po^n is stochastically larger than X^n) that is, for $i = 0, 1, 2, \dots$ $Pr[Po^n \ge i] \ge Pr[X^n \ge i]$. Now Po^n (as the sum of Poisson random variables) is a Poisson random variable with parameter $\lambda^n := \sum_{l=1}^n \lambda_l$. Let $n \in \mathbb{N}$ be such that $\sum_{l=1}^n q_l \le n^{\delta}$, and define $n' = n'(n) := \min\{n' \ge n : n' = 2^m$ for some $m \in \mathbb{N}\}$, so $n \le n' < 2n$. For $0 < l \le n'$ let q_l' be q_l if $l \le n$ and 0 otherwise, so we have: $\prod_{l=1}^n 1 - q_l = \prod_{l=1}^{n'} 1 - q_l'$ and $\sum_{l=1}^n q_l = \sum_{l=1}^{n'} q_l'$. Note that if $0 \le p, q \le 1/4$ then $(1-p)(1-q) \ge (1-\frac{p+q}{2})^2 \cdot \frac{1}{2}$. By a repeated use of the last inequality we get that $\prod_{i=l}^{n'} (1-q_l') \ge (1-\frac{\sum_{i=l}^{n'} q_l'}{n'})^{n'} \cdot \frac{1}{n'}$. We can now evaluate λ^n :

$$\begin{split} \lambda^n &= \sum_{l=1}^n \lambda_l = \sum_{l=1}^n -\log(1-q_l) = -\log(\prod_{l=1}^n (1-q_l)) = -\log(\prod_{l=1}^{n'} (1-q_l')) \\ &\leq -\log[(1-\frac{\sum_{l=1}^{n'} q_l'}{n'})^{n'} \cdot \frac{1}{n'}] = -\log[(1-\frac{\sum_{l=1}^n q_l}{n'})^{n'} \cdot \frac{1}{n'}] \\ &\approx -\log[e^{-\sum_{l=1}^n q_l} \cdot \frac{1}{n'}] \leq -\log[e^{-n^{\delta}} \cdot \frac{1}{2n}] \leq -\log[e^{-n^{2\delta}}] = n^{2\delta}. \end{split}$$

Hence by choosing $n \in \mathbb{N}$ large enough while keeping $\sum_{l=1}^{n} q_l \leq n^{\delta}$ (which is possible by our assumption) we have $\lambda^n \leq n^{2\delta}$. We now use the Chernoff bound for Poisson random variable: If Po is a Poisson random variable with parameter λ and i > 0 we have $Pr[Po \geq i] \leq e^{\lambda(i/\lambda - 1)} \cdot (\frac{\lambda}{i})^i$. Applying this bound to Po^n (for n as above) we get:

$$\Pr[Po^{n} \ge 3n^{2\delta}] \le e^{\lambda^{n}(3n^{2\delta}/\lambda^{n}-1)} \cdot (\frac{\lambda^{n}}{3n^{2\delta}})^{3n^{2\delta}} \le e^{3n^{2\delta}} \cdot (\frac{\lambda^{n}}{3n^{2\delta}})^{3n^{2\delta}} \le (\frac{e}{3})^{3n^{2\delta}}.$$

Now for $x \in [n]$ let X_x^n be the number of neighbors of x in $M_{\bar{q}}^n$ (so X_x^n is a random variable on the probability space $M_{\bar{q}}^n$). By the definition of $M_{\bar{q}}^n$ we have $X_x^n \leq_{st} 2 \cdot X^n \leq_{st} 2 \cdot Po^n$. So for unbounded $n \in \mathbb{N}$ we have for all $x \in [n]$, $\Pr[X_x^n \geq 6n^{2\delta}] \leq (\frac{e}{3})^{3n^{2\delta}}$. Hence by the Markov inequality for unbounded $n \in \mathbb{N}$ we have,

 $Pr[E^n \text{ does not hold in } M^n_{\bar{q}}] = Pr[\text{for some } x \in [n], X^n_x \ge 3n^{2\delta}] \le n \cdot (\frac{e}{3})^{6n^{2\delta}}.$

But the last expression approaches 0 as n approaches ∞ , Hence we are done proving the claim.

We return to **Case 3** of the proof of 3.2, and it remains to construct \bar{q}_i . As before for $n_i > n_{i-1}$ define: $(q_i)_l = (q_{i-1})_l$ for $l < n_{i-1}$ and $(q_i)_l = p_l$ for $n_{i-1} \le l < n_i$. By the claim above and (α) is our assumptions, for n_i large enough we have $Pr[E_{\epsilon/6}^{n_i}$ holds in $M_{\bar{q}_i}^{n_i}] \ge 1/2i$, so assume in the rest of the proof that n_i is indeed large enough, and assume that $E_{\epsilon/6}^{n_i}$ holds in $M_{\bar{q}_i}^{n_i}$, and all the probabilities on the space $M_{\bar{q}_i}^{n_i}$ will be conditioned to $E_{\epsilon/6}^{n_i}$ (even if not explicitly said so). A k-tuple $\bar{x} = (x_1, ..., x_k)$ of members of $[n_i]$ is called a k-path (in $M_{\bar{q}_i}^{n_i}$) if it is without repetitions and for 0 < j < k we have $M_{\bar{q}_i}^{n_i} \models x_j \sim x_{j+1}$. A k-path is isolated if in addition no member of $\{x_1, ..., x_k\}$ is connected to a member of $[n_i] \setminus \{x_1, ..., x_k\}$. Now (recall we assume $E_{\epsilon/6}^{n_i}$) with probability 1: the number of k-paths in $M_{\bar{q}_i}^{n_i}$ is at most $8^k \cdot n^{1+k\epsilon/3}$. For each $(x_1, ..., x_k)$ without repetitions we have:

$$Pr[(x_1, ..., x_k) \text{ is isolated in } M_{\bar{q}_i}^{n_i}] = \prod_{j=1}^k \prod_{y \neq x_j} (1 - (q_i)_{|x_j - y|}) \le (\prod_{l=1}^{\lfloor n_i/2 \rfloor} (1 - (q_i)_l))^k.$$

By assumption (β) we have for unbounded set of $n_i \in \mathbb{N}$:

$$\prod_{l=1}^{\lfloor n_i/2 \rfloor} (1-(q_i)_l) \le \prod_{l=n_i-1}^{\lfloor n_i/2 \rfloor} (1-p_l) \le \prod_{l< n_i} (1-q_l) \cdot (\lfloor n_i/2 \rfloor)^{-\epsilon} \le (n_i)^{-\epsilon/2}.$$

Together letting $Y(n_i)$ be the expected number of isolated k tuples in $M_{\bar{q}_i}^{n_i}$ we have:

$$Y(n_i) \le 8^k \cdot (n_i)^{1+k\epsilon/3} \cdot (n_i)^{-k\epsilon/2} = 8^k \cdot (n_i)^{1-k\epsilon/6} \to_{n_i \to \infty} 0.$$

So by choosing n_i large enough and using Markov's inequality, we have $*_{odd}$, and we are done.

4. Allowing some probabilities to equal 1

In this section we analyze the hereditary 0-1 law for \bar{p} where some of the p_i -s may equal 1. For $\bar{p} \in \mathfrak{P}^{inf}$ let $U^*(\bar{p}) := \{l > 0 : p_l = 1\}$. The situation $U^*(\bar{p}) \neq \emptyset$ was discussed briefly in the end of section 4 of [1], an example was given there of some \bar{p} consisting of only ones and zeros with $|U^*(\bar{p})| = \infty$ such that the 0-1 law fails for $M_{\bar{p}}^n$. We follow the lines of that example and prove that if $|U^*(\bar{p})| = \infty$ and $j \in \{1, 2, 3\}$, then the *j*-hereditary 0-1 law for *L* fails for \bar{p} . This is done in 4.1. The case $0 < |U^*(\bar{p})| < \infty$ is also studied and a full characterization of the *j*-hereditary 0-1 law for *L* is given in 4.6 for $j \in \{2, 3\}$, and for $j = 1, 1 < |U^*(\bar{p})|$. The case j = 1 and $1 = |U^*(\bar{p})|$ is discussed in section 5.

Theorem 4.1. Let $\bar{p} \in \mathfrak{P}^{inf}$ be such that $U^*(\bar{p})$ is infinite, and j be in $\{1, 2, 3\}$. Then $M^n_{\bar{p}}$ does not satisfy the j-hereditary weak convergence law for L.

Proof. We start with the case j = 1. The idea here is similar to that of section 2. We show that some $\bar{q} \in Gen_1(\bar{p})$ has a structure (similar to the "proper" structure defined in 2.5) that allows us to identify the sections "close" to 1 or n in $M_{\bar{q}}^n$. It is then easy to see that if \bar{q} has infinitely many ones and infinitely many "long" sections of consecutive zeros, then the sentence saying: "there exists an edge connecting vertexes close to the the edges", will exemplify the failure of the 0-1 law for $M_{\bar{q}}^n$. This is formulated below. Consider the following demands on $\bar{q} \in \mathfrak{P}^{inf}$:

- (1) Let $l^* < l^{**}$ be the first two members of $U^*(\bar{q})$, then l^* is odd and $l^{**} = 2 \cdot l^*$.
- (2) If l_1, l_2, l_3 all belong to $\{l > 0 : q_l > 0\}$ and $l_1 + l_2 = l_3$ then $l_1 = l_2 = l^*$.
- (3) The set $\{n \in \mathbb{N} : n 2l^* < l < n \Rightarrow q_l = 0\}$ is infinite.
- (4) The set $U^*(\bar{q})$ is infinite.

We first claim that some $\bar{q} \in Gen_1(\bar{p})$ satisfies the demands (1)-(4) above. This is straight forward. We inductively add enough zeros before each nonzero member of \bar{p} guaranteing that it is larger than the sum of any two (not necessarily different) nonzero members preceding it. We continue until we reach l^* , then by adding zeros either before l^* or before l^{**} we can guarantee that l^* is odd and that $l^{**} = 2 \cdot l^*$, and hence (1) holds. We then continue the same process from l^{**} , adding at least $2l^*$ zero's at each step. This guaranties (2) and (3). (4) follows immediately form our assumption that $U^*(\bar{p})$ is infinite. Assume that \bar{q} satisfies (1)-(4) and $n \in \mathbb{N}$. With probability 1 we have:

$$\{x, y, z\}$$
 is a triangle in $M_{\bar{a}}^n$ iff $\{x, y, z\} = \{l, l + l^*, l + l^{**}\}$ for some $0 < l \le n$.

To see this use (1) for the "if" direction and (2) for the "only if" direction. We conclude that letting $\psi_{ext}(x)$ be the *L* sentence saying that *x* belongs to exactly one triangle, for each $n \in \mathbb{N}$ and $m \in [n]$ with probability 1 we have:

$$M^n_{\bar{q}} \models \psi_{ext}[m] \text{ iff } m \in [1, l^*] \cup (n - l^*, n].$$

We are now ready to prove the failure of the weak convergence law in $M_{\bar{q}}^n$, but in the first stage let us only show the failure of the convergence law. This will be useful for other cases (see Remark 4.2 below). Define

$$\psi := (\exists x \exists y) \psi_{ext}(x) \land \psi_{ext}(y) \land x \sim y.$$

Recall that l^* is the *first* member of $U^*(\bar{p})$, hence for some p > 0 (not depending on n) for any $x, y \in [1, l^*]$ we have $\Pr[M^n_{\bar{q}} \models \neg x \sim y] \ge p$ and similarly for any $x, y \in (n - l^*, n]$. We conclude that:

$$Pr[(\exists x \exists y)(x, y \in [1, l^*] \text{ or } x, y \in (n - l^*, n]) \text{ and } x \sim y] \leq 1 - p^{2\binom{l^*}{2}} < 1.$$

By all the above, for each l such that $q_l = 1$ we have $Pr[M_{\bar{q}}^{l+1} \models \psi] = 1$, as the pair (1, l+1) exemplifies ψ in $M_{\bar{q}}^{l+1}$ with probability 1. On the other hand if n is such that $n - 2l^* < l < n \Rightarrow q_l = 0$ then $Pr[M_{\bar{q}}^n \models \psi] \le 1 - p^{2\binom{l^*}{2}}$. Hence by (3) and (4) above, ψ exemplifies the failure of the convergence law for $M_{\bar{q}}^n$ as required. We return to the proof of the failure of the weak convergence law. Define:

$$\begin{split} \psi' &= \exists x_0 \dots \exists x_{2l^*-1} [\bigwedge_{0 \leq i < i' < 2l^*} x_i \neq x_{i'} \land \forall y ((\bigwedge_{0 \leq i < 2l^*} y \neq x_i) \to \neg \psi_{ext}(y)) \\ &\wedge \bigwedge_{0 \leq i < 2l^*} \psi_{ext}(x_i) \land \bigwedge_{0 \leq i < l^*} x_{2i} \sim x_{2i+1}]. \end{split}$$

We will show that both ψ' and $\neg \psi'$ holds infinitely often in $M_{\bar{q}}^n$. First let $n \in \mathbb{N}$ be such that $q_{n-l^*} = 1$. Then by choosing for each $0 \leq i < l^*$, $x_{2i} := i + 1$ and $x_{2i+1} := n - l^* + 1 + i$, we will get that the sequence $(x_0, ..., x_{2l^*-1})$ exemplifies ψ' in $M_{\bar{q}}^n$ (with probability 1). As by assumption (4) above the set $\{n \in \mathbb{N} : q_{n-l^*} = 1\}$ is unbounded we have $\limsup_{n\to\infty} [M_{\bar{q}}^n \models \psi'] = 1$. For the other direction let $n \in \mathbb{N}$ be such that for each $n - 2l^* < l < n$, $q_l = 0$. Then $M_{\bar{q}}^n$ satisfies (again with probability 1) for each $x, y \in [1, l^*] \cup (n - l^*, n]$ such that $x \sim y$: $x \in [1, l^*]$ iff $y \in [1, l^*]$. Now assume that $(x_0, ..., x_{2l^*-1})$ exemplifies ψ' in $M_{\bar{q}}^n$. Then for each $0 \leq i < l^*, x_{2i} \in [1, l^*]$ iff $x_{2i+1} \in [1, l^*]$. We conclude that the set $[1, l^*]$ is of even size, thus contradicting (1). So we have $\Pr[M_{\bar{q}}^n \models \psi'] = 0$. But by assumption (3) above the set of natural numbers, n, for which we have $n - 2l^* < l < n$ implies $q_l = 0$ is unbounded, and hence we have $\limsup_{n\to\infty} [M_{\bar{q}}^n \models \neg\psi'] = 1$ as desired.

We turn to the proof of the case $j \in \{2,3\}$, and as $Gen_3(\bar{p}) \subseteq Gen_2(\bar{p})$ it is enough to prove that for some $\bar{q} \in Gen_3(\bar{p})$ the 0-1 law for L strongly fails in $M^n_{\bar{q}}$. Motivated by the example mentioned above appearing in the end of section 4 of [1], we let ψ be the sentence in L implying that each edge of the graph is contained in a cycle of length 4. Once again we use an inductive construction of $(\bar{q}_1, \bar{q}_2, \bar{q}_3, ...)$ in \mathfrak{P}^{fin} such that $\bar{q} = \bigcup_{i>0} \bar{q}_i \in Gen_3(\bar{p})$ and both ψ and $\neg \psi$ hold infinitely often in $M^n_{\bar{q}}$. For i = 1 let $n_{\bar{q}_1} = n_1 := \min\{l : p_l = 1\} + 1$ and define $(q_1)_l = 0$ if $0 < l < n_1 - 1$ and $(q_1)_{n_1-1} = 1$. For even i > 1 let $n_{\bar{q}_i} = n_i :=$ $\min\{l > 4n_{i-1} : p_l = 1\} + 1$ and define $(q_i)_l = (q_{i-1})_l$ if $0 < l < n_{i-1}, (q_i)_l = 0$ if $n_{i-1} \leq l < n_i - 1$ and $(q_1)_{n_1-1} = 1$. For odd i > i recall $n_1 = \min\{l : p_l = 1\} + 1$ and let $n_{\bar{q}_i} = n_i := n_{i-1} + n_1$. Now define $(q_i)_l = (q_{i-1})_l$ if $0 < l < n_{i-1}$ and $(q_i)_l = 0$ if $n_{i-1} \leq l < n_i$. Clearly we have for even i > 1, $Pr[M^{n_i+1}_{\bar{q}_{n_i+1}} \models \psi] = 0$ and for odd i > 1 $Pr[M^{n_i}_{\bar{q}_{n_i}} \models \psi] = 1$. Note that indeed $\bigcup_{i>0} \bar{q}_i \in Gen_3(\bar{p})$, hence we are done.

Remark 4.2. In the proof of the failure of the convergence law in the case j = 1 the assumption $|U^*(\bar{p})| = \infty$ is not needed, our proof works under the weaker assumption $|U^*(\bar{p})| \ge 2$ and for some p > 0, $\{l > 0 : p_l > p\}$ is infinite. See below more on the case j = 1 and $1 < |U^*(\bar{p})| < \infty$.

Lemma 4.3. Let $\bar{q} \in \mathfrak{P}^{inf}$ and assume:

- (1) Let $l^* < l^{**}$ be the first two members of $U^*(\bar{q})$ (in particular assume $|U^*(\bar{q})| \ge 2$) then $l^{**} = 2 \cdot l^*$.
- (2) If l_1, l_2, l_3 all belong to $\{l > 0 : q_l > 0\}$ and $l_1 + l_2 = l_3$ then $\{l_1, l_2, l_3\} = \{l, l + l^*, l + l^{**}\}$ for some $l \ge 0$.
- (3) Let l^{***} be the first member of $\{l > 0 : 0 < q_l < 1\}$ (in particular assume $|\{l > 0 : 0 < q_l < 1\}| \ge 1$) then the set $\{n \in \mathbb{N} : n \le l \le n + l^{**} + l^{***} \Rightarrow q_l = 0\}$ is infinite.

Then the 0-1 law for L fails for $M_{\bar{q}}^n$.

Proof. The proof is similar to the case j = 1 in the proof of Theorem 4.1, hence we will not go into detail. Below n is some large enough natural number (say larger than $3 \cdot l^{**} \cdot l^{***}$) such that (3) above holds, and if we say that some property holds in $M_{\bar{q}}^n$ we mean it holds there with probability 1. Let $\psi_{ext}^1(x)$ be the formula in L implying that x belongs to at most two distinct triangles. Then for all $m \in [n]$:

$$M_{\bar{q}}^{n} \models \psi_{ext}^{1}[m] \text{ iff } m \in [1, l^{**}] \cup (n - l^{**}, n].$$

Similarly for any natural $t < n/3l^{**}$ define (using induction on t):

$$\psi_{ext}^t(x) := (\exists y \exists z) x \sim y \land x \sim z \land y \sim z \land (\psi_{ext}^{t-1}(y) \lor \psi_{ext}^{t-1}(z))$$

we then have for all $m \in [n]$:

$$M_{\bar{q}}^{n} \models \psi_{ext}^{t}[m] \text{ iff } m \in [1, tl^{**}] \cup (n - tl^{**}, n].$$

Now for $1 \leq t < n/3l^{**}$ let $m^*(t)$ be the minimal number of edges in $M^n_{\bar{q}}|_{[1,t\cdot l^{**}]\cup(n-t\cdot l^{**},n]}$ i.e only edges with probability one and within one of the intervals are counted, formally

$$m^*(t) := 2 \cdot |\{(m, m') : m < m' \in [1, t \cdot l^{**}] \text{ and } q_{m'-m} = 1\}|.$$

Let $1 \leq t^* < n/3l^{**}$ be such that $l^{***} < l^{**} \cdot t^*$ (it exists as n is large enough). Note that $m^*(t^*)$ depends only on \bar{q} and not on n hence we can define

 $\psi :=$ "There exists exactly $m^*(t^*)$ couples $\{x, y\}$ s.t. $\psi_{ext}^{t^*}(x) \wedge \psi_{ext}^{t^*}(y) \wedge x \sim y$."

We then have $Pr[m_{\bar{q}}^n \models \psi] \leq (1 - q_{l^{***}})^2 < 1$ as we have $m^*(t^*)$ edges on $[1, t^*l^{**}] \cup (n - t^*l^{**}, n]$ that exist with probability 1, and at least two additional edges (namely $\{1, l^{***} + 1\}$ and $\{n - l^{***}, n\}$) that exist with probability $q_{l^{***}}$ each. On the other hand if we define:

$$p' := \prod \{ 1 - q_{m'-m} : m < m' \in [1, t^* \cdot l^{**}] \text{ and } q_{m'-m} < 1 \}$$

and note that p' does not depend on n, then (recalling assumption (3) above) we have $Pr[m_{\bar{q}}^n \models \psi] \ge (p')^2 > 0$ thus completing the proof.

Lemma 4.4. Let $\bar{q} \in \mathfrak{P}^{inf}$ be such that for some $l_1 < l_2 \in \mathbb{N} \setminus \{0\}$ we have: $0 < p_{l_1} < 1$, $p_{l_2} = 1$ and $p_l = 0$ for all $l \notin \{l_1, l_2\}$. Then the 0-1 law for L fails for $M^n_{\bar{q}}$.

Proof. Let ψ be the sentence in L "saying" that some vertex has exactly one neighbor and this neighbor has at least three neighbors. Formally:

$$\psi := (\exists x)(\exists ! y)x \sim y \land (\forall z)x \sim z \rightarrow (\exists u_1 \exists u_2 \exists u_3) \bigwedge_{0 < i < j \le 3} u_i \neq u_j \land \bigwedge_{0 < i \le 3} z \sim u_i.$$

We first show that for some p > 0 and $n_0 \in \mathbb{N}$, for all $n > n_0$ we have $Pr[M_{\bar{q}}^n \models \psi] > p$. To see this simply take $n_0 = l_1 + l_2 + 1$ and $p = (1 - p_{l_1})(p_{l_1})$. Now for $n > n_0$ in $M_{\bar{q}}^n$, with probability $1 - p_{l_1}$ the node $1 \in [n]$ has exactly one neighbor (namely $1 + l_2 \in [n]$) and with probability at least $p_{l_1}, 1 + l_2$ is connected to $1 + l_1 + l_2$, and hence has three neighbors $(1, 1 + 2l_2 \text{ and } 1 + l_1 + l_2)$. This yields the desired result. On the other hand for some p' > 0 we have for all $n \in \mathbb{N}$, $Pr[M_{\bar{q}}^n \models \neg \psi] > p'$. To see this note that for all n, only members of $[1, l_2] \cup (n - l_2, n]$ can possibly exemplify ψ , as all members of $(l_2, n - l_2]$ have at least two neighbors with probability one. For each $x \in [1, l_2] \cup (n - l_2, n]$, with probability at least $(1 - p_1)^2$, x dose not exemplify ψ (since the unique neighbor of x has less then three neighbors). As the size of $[1, l_2] \cup (n - l_2, n]$ is $2 \cdot l_2$ we get $Pr[M_{\bar{q}}^n \models \neg \psi] > (1 - p_1)^{2l_2} := p' > 0$. Together we are done.

Lemma 4.5. Let $\bar{p} \in \mathfrak{P}^{inf}$ be such that $|U^*(\bar{p})| < \infty$ and $p_i \in \{0,1\}$ for i > 0. Then $M_{\bar{p}}^n$ satisfy the 0-1 law for L. *Proof.* Let S^n be the (not random) structure in vocabulary $\{Suc\}$, with universe [n] and Suc is the successor relation on [n]. It is straightforward to see that any sentence $\psi \in L$ has a sentence $\psi^S \in \{Suc\}$ such that

$$Pr[M_{\bar{p}}^{n} \models \psi] = \begin{cases} 1 & S^{n} \models \psi^{S} \\ 0 & S^{n} \not\models \psi^{S}. \end{cases}$$

Also by a special case of Gaifman's result from [3] we have: for each $k \in \mathbb{N}$ there exists some $n_k \in \mathbb{N}$ such that if $n, n' > n_k$ then S^n and $S^{n'}$ have the same first order theory of quantifier depth k. Together we are done.

Conclusion 4.6. Let $\bar{p} \in \mathfrak{P}^{inf}$ be such that $0 < |U^*(\bar{p})| < \infty$.

- (1) The 2-hereditary 0-1 law holds for \bar{p} iff $|\{l > 0 : p_l > 0\}| > 1$.
- (2) The 3-hereditary 0-1 law holds for \bar{p} iff $\{l > 0 : 0 < p_l < 1\} \neq \emptyset$.
- (3) If furthermore $1 < |U^*(\bar{p})|$ then the 1-hereditary 0-1 law holds for \bar{p} iff $\{l > 0 : 0 < p_l < 1\} \neq \emptyset$.

Proof. For (1) note that if indeed $|\{i > 0 : p_l > 0\}| > 1$ then some $\bar{q} \in Gen_2(\bar{p})$ is as in the assumption of Lemma 4.4, otherwise any $\bar{q} \in Gen_2(\bar{p})$ has at most 1 nonzero member hence $M_{\bar{q}}^n$ satisfy the 0-1 law by either 4.5 or 1.2.

For (2) note that if $\{i > 0 : 0 < p_l < 1\} \neq \emptyset$ then some $\bar{q} \in Gen_3(\bar{p})$ is as in the assumption of Lemma 4.4, otherwise any $\bar{q} \in Gen_3(\bar{p})$ is as in the assumption of Lemma 4.5 and we are done.

Similarly for (3) note that if $1 < |U^*(\bar{p})|$ and $\{l > 0 : 0 < p_l < 1\} \neq \emptyset$ then some $\bar{q} \in Gen_1(\bar{p})$ satisfies assumptions (1)-(3) of Lemma 4.3, otherwise any $\bar{q} \in Gen_1(\bar{p})$ is as in the assumption of Lemma 4.5 and we are done.

5. When exactly one probability equals 1

In this section we assume:

Assumption 5.1. \bar{p} is a fixed member of \mathfrak{P}^{inf} such that $|U^*(\bar{p})| = 1$ hence denote $U^*(\bar{p}) = \{l^*\}$, and assume

(*)'
$$\lim_{n \to \infty} \log(\prod_{l \in [n] \setminus \{l^*\}} (1 - p_l)) / \log(n) = 0.$$

We try to determine when the 1-hereditary 0-1 law holds. The assumption of (*)' is justified as the proof in section 2 works also in this case and in fact in any case that $U^*(\bar{p})$ is finite. To see this replace in section 2 products of the form $\prod_{l < n} (1 - p_l)$ by $\prod_{l < n, l \notin U^*(\bar{p})} (1 - p_l)$, sentences of the form "x has valency m" by "x has valency $m + 2|U^*(\bar{p})|$ ", and similar simple changes. So if (*)' fails then the 1-hereditary weak convergence law fails, and we are done. It seems that our ability to "identify" the l^* -boundary (i.e. the set $[1, l^*] \cup (n - l^*, n]$) in $M_{\bar{p}}^n$ is closely related to the holding of the 0-1 law. In Conclusion 5.6 we use this idea and give a necessary condition on \bar{p} for the 1-hereditary weak convergence law. The proof uses methods similar to those of the previous sections. Finding a sufficient condition for the 1-hereditary 0-1 law seems to be harder. It turns out that the analysis of this case is, in a way, similar to the analysis when we add the successor relation to our vocabulary. This is because the edges of the form $\{l, l + l^*\}$ appear with probability 1 similarly to the successor relation. There are, however, some obvious differences. Let L^+ be the vocabulary $\{\sim, S\}$, and let $(M^+)_{\bar{p}}^n$ be the random L^+

structure with universe [n], \sim is the same as in $M_{\bar{p}}^n$, and $S^{(M^+)_{\bar{p}}^n}$ is the successor relation on [n]. Now if for some $l^{**} > 0$, $0 < p_{l^{**}} < 1$ then $(M^+)_{\bar{p}}^n$ does not satisfy the 0-1 law for L^+ . This is because the elements 1 and $l^{**} + 1$ are definable in L^+ and hence some L^+ sentence holds in $(M^+)^n_{\bar{p}}$ iff $\{1, l^{**} + 1\}$ is an edge of $(M^+)^n_{\bar{p}}$ which holds with probability $p_{l^{**}}$. In our case, as in L we can not distinguish edges of the form $\{l, l+l^*\}$ from the rest of the edged, the 0-1 law may hold even if such l^* exists. In Lemma 5.10 below we show that if, in fact, we can not "identify the edges" in $M_{\bar{p}}^n$ then the 0-1 law, holds in $M_{\bar{p}}^n$. This is translated in Theorem 5.14 to a sufficient condition on \bar{p} for the 0-1 law holding in $M_{\bar{p}}^n$, but not necessarily for the 1-hereditary 0-1 law. The proof uses "local" properties of graphs. It seems that some form of "1-hereditary" version of 5.14 is possible. In any case we could not find a necessary and sufficient condition for the 1-hereditary 0-1 law, and the analysis of this case is not complete.

We first find a necessary condition on \bar{p} for the 1-hereditary weak convergence law. Let us start with a definition of a structure on a sequence $\bar{q} \in \mathfrak{P}$ that enables us to "identify" the l^* -boundary in $M^n_{\bar{q}}$.

Definition 5.2. (1) A sequence $\bar{q} \in \mathfrak{P}$ is called nice if:

- (a) $U^*(\bar{q}) = \{l^*\}.$
- (b) If $l_1, l_2, l_3 \in \{l < n_{\bar{q}} : q_l > 0\}$ then $l_1 + l_2 \neq l_3$.
- (c) If $l_1, l_2, l_3, l_4 \in \{l < n_{\bar{q}} : q_l > 0\}$ then $l_1 + l_2 + l_3 \neq l_4$.
- (d) If $l_1, l_2, l_3, l_4 \in \{l < n_{\bar{p}} : q_l > 0\}, l_1 + l_2 = l_3 + l_4 and l_1 + l_2 < n_{\bar{q}} then$ $\{l_1, l_2\} = \{l_3, l_4\}.$
- (2) Let ϕ^1 be the following L-formula:

 $\phi^{1}(y_{1}, z_{1}, y_{2}, z_{2}) := y_{1} \sim z_{1} \wedge z_{1} \sim z_{2} \wedge z_{2} \sim y_{2} \wedge y_{2} \sim y_{1} \wedge y_{1} \neq z_{2} \wedge z_{1} \neq y_{2}.$

- (3) For $k \ge 0$ define by induction on k the L-formula $\phi_k^1(y_1, z_1, y_2, z_2)$ by:
 - $\phi_0^{\overline{1}}(y_1, z_1, y_2, z_2) := y_1 = y_2 \land z_1 = z_2 \land y_1 \neq z_1.$ $\phi_1^{\overline{1}}(y_1, z_1, y_2, z_2) := \phi^{\overline{1}}(y_1, z_1, y_2, z_2).$ $\phi_{k+1}^{\overline{1}}(y_1, z_1, y_2, z_2) := \phi^{\overline{1}}(y_1, z_1, y_2, z_2).$

 $(\exists y \exists z) [(\phi_k^1(y_1, z_1, y, z) \land \phi^1(y, z, y_2, z_2)) \lor (\phi_k^1(y_2, z_2, y, z) \phi^1(y_1, z_1, y, z))].$ (4) For $k_1, k_2 \in \mathbb{N}$ let ϕ_{k_1,k_2}^2 be the following L-formula:

$$\phi_{k_1,k_2}^2(y,z) := (\exists x_1 \exists x_2 \exists x_3 \exists x_4) [\phi_{k_1}^1(y,z,x_1,x_2) \land \phi_{k_2}^1(x_2,x_1,x_3,x_4) \land \neg x_3 \sim x_4].$$

(5) For $k_1, k_2 \in \mathbb{N}$ let $\phi^3_{k_1, k_2}$ be the following L formula:

$$\phi^3_{k_1,k_2}(x) := (\exists ! y) [x \sim y \land \neg \phi^2_{k_1,k_2}(x,y)]$$

Observation 5.3. Let $\bar{q} \in \mathfrak{P}$ be nice and $n \in \mathbb{N}$ be such that $n < n_{\bar{q}}$. Then the following holds in $M_{\bar{q}}^n$ with probability 1:

- (1) For $y_1, z_1, y_2, z_2 \in [n]$, if $M_{\bar{q}}^n \models \phi^1[y_1, z_1, y_2, z_2]$ then $y_1 z_1 = y_2 z_2$. (Use (d) in the definition of nice).
- (2) For $k \in \mathbb{N}$ and $y_1, z_1, y_2, z_2 \in [n]$, if $M_{\bar{q}}^n \models \phi_k^1[y_1, z_1, y_2, z_2]$ then $y_1 z_1 =$ $y_2 - z_2$. (Use (1) above and induction on k).
- (3) For $k_1, k_2 \in \mathbb{N}$ and $y, z \in [n]$, if $M^n_{\bar{q}} \models \phi^2_{k_1, k_2}[y, z]$ then $|y z| \neq l^*$. (Use (2) above and the definition of $\phi_{k_1,k_2}^2(y,z)$).
- (4) For $k_1, k_2 \in \mathbb{N}$ and $x \in [n]$, if $M^{n}_{\bar{q}} \models \phi^{3}_{k_1, k_2}[x]$ then $x \in [1, l^*] \cup (n l^*, n]$. (Use (3) above).

The following claim shows that if \bar{q} is nice (and have a certain structure) then, with probability close to 1, $\phi_{3,0}^3[y]$ holds in $M_{\bar{q}}^n$ for all $y \in [1, l^*] \cup (n - l^*, n]$. This, together with (4) in the observation above gives us a "definition" of the l^* -boundary in $M_{\bar{q}}^n$.

Claim 5.4. Let $\bar{q} \in \mathfrak{P}^{fin}$ be nice and denote $n = n_{\bar{q}}$. Assume that for all l > 0, $q_l > 0$ implies $l < \lfloor n/3 \rfloor$. Assume further that for some $\epsilon > 0$, $0 < q_l < 1 \Rightarrow \epsilon < q_l < 1 - \epsilon$. Let $y_0 \in [1, l^*] \cup (n - l^*, n]$. Denote $m := |\{0 < l < n_{\bar{p}} : 0 < q_l < 1\}|$. Then:

$$\Pr[M^n_{\bar{q}} \models \neg \phi^3_{3,0}[y_0]] \leq (\sum_{\{y \in [n]: |y_0 - y| \neq l^*\}} q_{|y_0 - y|})(1 - \epsilon^{11})^{m/2 - 1}.$$

Proof. We deal with the case $y_0 \in [1, l^*]$, the case $y_0 \in (n - l^*, n]$ is symmetric. Let $z_0 \in [n]$ be such that $l_0 := z_0 - y_0 \in \{0 < l < n : 0 < q_l < 1\}$ (so $l_0 \neq l^*$ and $l_0 < \lfloor n/3 \rfloor$), and assume that $M^n_{\bar{q}} \models y_0 \sim z_0$. For any $l_1, l_2 < \lfloor n/3 \rfloor$ denote (see diagram below): $y_1 := y_0 + l_1, y_2 := y_0 + l_2, y_3 := y_2 + l_1 = y_1 + l_2 = y_0 + l_1 + l_2$ and symmetrically for z_1, z_2, z_3 (so y_i and z_i for $i \in \{0, 1, 2, 3\}$ all belong to [n]). y_0 l_0 The following holds in

 $M_{\bar{q}}^n$ with probability 1: If for some $l_1, l_2 < \lfloor n/3 \rfloor$ such that (l_0, l_1, l_2) is without repetitions, we have:

- $(*)_1$ $(y_0, y_1, y_3, y_2), (z_0, z_1, z_3, z_2)$ and (y_2, y_3, z_3, z_2) are all circles in $M^n_{\bar{q}}$.
- $(*)_2 \{y_1, z_1\}$ is not an edge of $M^n_{\overline{q}}$.

<u>Then</u> $M_{\bar{q}}^n \models \phi_{0,3}^2[y_0, z_0]$. Why? As (y_1, y_0, z_0, z_1) , in the place of (x_1, x_2, x_3, x_4) , exemplifies $M_{\bar{p}}^n \models \phi_{0,3}^2[y_0, z_0]$. Let us fix $z_0 = y_0 + l_0$ and assume that $M_{\bar{q}}^n \models y_0 \sim z_0$. (Formally we condition the probability space $M_{\bar{q}}^n$ to the event $y_0 \sim z_0$.) Denote

$$L^{y_0,z_0} := \{ (l_1, l_2) : q_{l_1}, q_{l_2} > 0, l_0 \neq l_1, l_0 \neq l_2, l_1 \neq l_2 \}.$$

For $(l_1, l_2) \in L^{y_0, z_0}$, the probability that $(*)_1$ and $(*)_2$ holds, is $(1-q_{l_0})(q_{l_0})^2(q_{l_1})^4(q_{l_2})^4$. Denote the event that $(*)_1$ and $(*)_2$ holds by $E^{y_0, z_0}(l_1, l_2)$. Note that if $(l_1, l_2), (l'_1, l'_2) \in L^{y_0, z_0}$ are such that (l_1, l_2, l'_1, l'_2) is without repetitions and $l_1 + l_2 \neq l'_1 + l'_2$ then the events $E^{y_0, z_0}(l_1, l_2)$ and $E^{y_0, z_0}(l'_1, l'_2)$ are independent. Now recall that $m := |\{l > 0 : \epsilon < q_l < 1 - \epsilon\}|$. Hence we have some $L' \subseteq L^{y_0, z_0}$ such that: $|L'| = \lfloor m/2 - 1 \rfloor$, and if $(l_1, l_2), (l'_1, l'_2) \in L'$ then the events $E^{y_0, z_0}(l_1, l_2)$ and $E^{y_{0, z_0}}(l'_1, l'_2)$ are independent. We conclude that

$$Pr[M_{\bar{q}}^{n} \models \neg \phi_{0,3}^{2}[y_{0}, z_{0}] | M_{\bar{q}}^{n} \models y_{0} \sim z_{0}] \leq (1 - (1 - q_{l_{0}})(q_{l_{0}})^{2}(q_{l_{1}})^{4}(q_{l_{2}})^{4})^{m/2 - 1} \leq (1 - \epsilon^{11})^{m/2 - 1}.$$

This is a common bound for all $z_0 = y_0 + l_0$, and the same bound holds for all $z_0 = y_0 - l_0$ (whenever it belongs to [n]). We conclude that the expected number of $z_0 \in [n]$ such that: $|z_0 - y_0| \neq l^*$, $M_{\bar{q}}^n \models y_0 \sim z_0$ and $M_{\bar{q}}^n \models \neg \phi_{0,3}^2[y_0, z_0]$ is at most $(\sum_{\{y \in [n]: |y_0 - y| \neq l^*\}} q_{|y_0 - y|})(1 - \epsilon^{11})^{m/2 - 1}$. Now by (3) in Observation 5.3, $M_{\bar{q}}^n \models \phi_{0,3}^2[y_0, y_0 + l^*]$. By Markov's inequality and the definition of $\phi_{0,3}^3(x)$ we are done.

We now prove two lemmas which allow us to construct a sequence \bar{q} such that for $\varphi := \exists x \phi_{0,3}^3(x)$ both φ and $\neg \varphi$ will hold infinitely often in $M_{\bar{q}}^n$.

Lemma 5.5. Assume \bar{p} satisfy $\sum_{l>0} p_l = \infty$, and let $\bar{q} \in Gen_1^r(\bar{p})$ be nice. Let $\zeta > 0$ be some rational number. Then there exists some r' > r and $\bar{q}' \in Gen_1^{r'}(\bar{p})$ such that: \bar{q}' is nice, $\bar{q} \triangleleft \bar{q}'$ and $Pr[M_{\bar{q}'}^{n_{\bar{q}'}} \models \varphi] \leq \zeta$.

Proof. Define $p^1 := (\prod_{l \in [n_{\bar{q}}] \setminus \{l^*\}} (1 - p_l))^2$, and choose r' > r large enough such that $\sum_{r < l < r'} p_l \ge 2l^* \cdot p^1/\zeta$. Now define $\bar{q}' \in Gen_1^{r'}(\bar{p})$ in the following way:

$$q'_{l} = \begin{cases} q_{l} & 0 < l < n_{\bar{q}} \\ 0 & n_{\bar{q}} \le l < (r' - r) \cdot n_{\bar{q}} \\ p_{r+i} & l = (r' - r + i) \cdot n_{\bar{q}} \text{ for some } 0 < i \le (r' - r) \\ 0 & (r' - r) \cdot n_{\bar{q}} \le l < 2(r' - r) \cdot n_{\bar{q}} \text{ and } l \ne 0 \pmod{n_{\bar{q}}}. \end{cases}$$

Note that indeed \bar{q}' is nice and $\bar{q} \triangleleft \bar{q}'$. Denote $n := n_{\bar{q}'} = 2(r'-r) \cdot n_{\bar{q}}$. Note further that every member of $M^n_{\bar{q}'}$ have at most one neighbor of distance more more than n/2, and all the rest of its neighbors are of distance at most $n_{\bar{q}}$. We now bound from above the probability of $M^n_{\bar{q}'} \models \exists x \phi^3_{0,3}(x)$. Let x be in $[1, l^*]$. For each $0 < i \leq (r'-r)$ denote $y_i := x + (r'-r+i) \cdot n_{\bar{q}}$ (hence $y_i \in [n/2, n]$) and let E_i be the following event: " $M^n_{\bar{q}'} \models y_i \sim z$ iff $z \in \{x, y_i + l^*, y_i - l^*\}$ ". By the definition of \bar{q}' , each y_i can only be connected to either x of to members of $[y - n_{\bar{q}}, y + n_{\bar{q}}]$, hence we have

$$Pr[E_i] = q'_{(r'-r+i) \cdot n_{\bar{a}}} \cdot p^1 = p_{r+i} \cdot p^1.$$

As $i \neq j \Rightarrow n/2 > |y_i - y_j| > n_{\bar{q}}$ we have that the E_i -is are independent events. Now if E_i holds then by the definition of $\phi_{0,3}^2$ we have $M_{\bar{q}'}^n \models \neg \phi_{0,3}^2[x, y_i]$, and as $M_{\bar{q}'}^n \models \neg \phi_{0,3}^2[x, x + l^*]$ this implies $M_{\bar{q}'}^n \models \neg \phi_{0,3}^3[x]$. Let the random variable X denote the number of $0 < i \leq (r' - r)$ such that E_i holds in $M_{\bar{q}'}^n$. Then by Chebyshev's inequality we have:

$$\Pr[M^n_{\bar{q}'} \models \phi^3_{0,3}[x]] \le \Pr[X=0] \le \frac{Var(X)}{Exp(X)^2} \le \frac{1}{Exp(X)} \le \frac{p^1}{\sum_{0 < i \le (r'-r)} p_{r+i}} \le \frac{\zeta}{2l^*}$$

This is true for each $x \in [1, l^*]$ and the symmetric argument gives the same bound for each $x \in (n - l^*, n]$. Finally note that if $x, x + l^*$ both belong to [n] then $M^n_{\bar{q}'} \models \neg \phi^2_{0,3}[x, x + l^*]$ (see 5.3(4)). Hence if $x \in (l^*, n - l^*]$ then $M^n_{\bar{q}'} \models \neg \phi^3_{0,3}[x]$. We conclude that:

$$Pr[M^n_{\bar{q}'} \models \exists x \phi^3_{0,3}(x)] = Pr[M^n_{\bar{q}'} \models \phi] \le \zeta$$

as desired.

Lemma 5.6. Assume \bar{p} satisfy $0 < p_l < 1 \Rightarrow \epsilon < p_l < 1 - \epsilon$ for some $\epsilon > 0$, and $\sum_{n=1}^{\infty} p_n = \infty$. Let $\bar{q} \in Gen_1^r(\bar{p})$ be nice, and $\zeta > 0$ be some rational number.

Then there exists some r' > r and $\bar{q}' \in \operatorname{Gen}_1^{r'}(\bar{p})$ such that: \bar{q}' is nice, $\bar{q} \triangleleft \bar{q}'$ and $\Pr[M_{\bar{q}'}^{n_{\bar{q}'}} \models \varphi] \ge 1 - \zeta$.

Proof. This is a direct consequence of Claim 5.4. For each r' > r denote $m(r') := |\{0 < l \le r' : 0 < p_l < 1\}|$. Trivially we can choose r' > r such that $m(r')(1 - \epsilon^{11})^{m(r')/2-1} \le \zeta$. As \bar{q} is nice there exists some nice $\bar{q}' \in Gen_1^{r'}(\bar{p})$ such that $\bar{q} \triangleleft \bar{q}'$. Note that

$$\sum_{\in [n]: |1-y| \neq l^*\}} q'_{|1-y|} \le \sum_{\{0 < l < n_{\bar{q}'}: l \neq l^*\}} q'_l \le m(r')$$

and hence by 5.4 we have:

 $\{y$

$$Pr[M^{n}_{\bar{q}'} \models \neg \phi] \le Pr[M^{n}_{\bar{q}'} \models \neg \phi^{3}_{2,0}[1]] \le m(r')(1 - \epsilon^{11})^{m(r')/2 - 1} \le \zeta$$

as desired.

From the last two lemmas we conclude:

Conclusion 5.7. Assume that \bar{p} satisfy $0 < p_l < 1 \Rightarrow \epsilon < p_l < 1 - \epsilon$ for some $\epsilon > 0$, and $\sum_{n=1}^{\infty} p_n = \infty$. Then \bar{p} does not satisfy the 1-hereditary weak convergence law for L.

The proof is by inductive construction of $\bar{q} \in Gen_1(\bar{p})$ such that for $\varphi := \exists x \phi_{0,3}^3(x)$ both φ and $\neg \varphi$ hold infinitely often in $M_{\bar{q}}^n$, using Lemmas 5.5, 5.6 as done on previous proofs.

From Conclusion 5.7 we have a necessary condition on \bar{p} for the 1-hereditary weak convergence law. We now find a sufficient condition on \bar{p} for the (not necessarily 1-hereditary) 0-1 law. Let us start with definitions of distance in graphs and of local properties in graphs.

Definition 5.8. Let G be a graph on vertex set [n].

(1) For $x, y \in [n]$ let $dist^G(x, y) := \min\{k \in \mathbb{N} : G \text{ has a path of length } k \text{ from } x \text{ to } y\}$. Note that for each $k \in \mathbb{N}$ there exists some L-formula $\theta_k(x, y)$ such that for all G and $x, y \in [n]$:

$$G \models \theta_k[x, y] \quad iff \quad dist^G(x, y) \le k.$$

- (2) For $x \in [n]$ and $r \in \mathbb{N}$ let $B^G(r, x) := \{y \in [n] : dist^G(x, y) \leq r\}$ be the ball with radius r and center x in G.
- (3) An L-formula $\phi(x)$ is called r-local if every quantifier in ϕ is restricted to the set $B^G(r, x)$. Formally each appearance of the form $\forall y...$ in ϕ is of the form $(\forall y)\theta_r(x, y) \to ...$, and similarly for $\exists y$ and other variables. Note that for any $G, x \in [n], r \in \mathbb{N}$ and an r-local formula $\phi(x)$ we have:

$$G \models \phi[x]$$
 iff $G|_{B(r,x)} \models \phi[x].$

(4) An L-sentence is called local if it has the form

$$\exists x_1 \dots \exists x_m \bigwedge_{1 \le i \le m} \phi(x_i) \bigwedge_{1 \le i < j \le m} \neg \theta_{2r}(x_i, x_j)$$

where $\phi = \phi(x)$ is an r-local formula for some $r \in \mathbb{N}$.

(5) For $l, r \in \mathbb{N}$ and an L-formula $\phi(x)$ we say that the l-boundary of G is r-indistinguishable by $\phi(x)$ if for all $z \in [1, l] \cup (n - l, n]$ there exists some $y \in [n]$ such that $B^G(r, y) \cap ([1, l] \cup (n - l, n]) = \emptyset$ and $G \models \phi[z] \leftrightarrow \phi[y]$

We can now use the following famous result from [3]:

Theorem 5.9 (Gaifman's Theorem). Every L-sentence is logically equivalent to a boolean combination of local L-sentences.

We will use Gaifman's theorem to prove:

Lemma 5.10. Assume that for all $k \in \mathbb{N}$ and k-local L-formula $\varphi(z)$ we have:

 $\lim_{n\to\infty} \Pr[\text{The } l^*\text{-boundary of } M^n_{\bar{p}} \text{ is }k\text{-indistinguishable by } \varphi(z)] = 1.$

Then the 0-1 law for L holds in $M_{\bar{n}}^n$.

Proof. By Gaifman's theorem it is enough if we prove that the 0-1 law holds in $M_{\bar{p}}^n$ for local L-sentences. Let

$$\psi := \exists x_1 \dots \exists x_m \bigwedge_{1 \le i \le m} \phi(x_i) \bigwedge_{1 \le i < j \le m} \neg \theta_{2r}(x_i, x_j)$$

be some local L-sentence, where $\phi(x)$ is an r-local formula.

Define \mathfrak{H} to be the set of all 4-tuples (l, U, u_0, H) such that: $l \in \mathbb{N}, U \subseteq [l], u_0 \in U$ and H is a graph with vertex set U. We say that some $(l, U, u_0, H) \in \mathfrak{H}$ is r-proper for \bar{p} (but as \bar{p} is fixed we usually omit it) if it satisfies:

- (*1) For all $u \in U$, $dist^H(u_0, u) \leq r$.
- (*2) For all $u \in U$, if $dist^{H}(u_0, u) < r$ then $u + l^*, u l^* \in U$.
- $(*_3) Pr[M^l_{\bar{p}}|_U = H] > 0.$

We say that a member of \mathfrak{H} is proper if it is *r*-proper for some $r \in \mathbb{N}$.

Let *H* be a graph on vertex set $U \subseteq [l]$ and *G* be a graph on vertex set [n]. We say that $f: U \to [n]$ is a strong embedding of *H* in *G* if:

- f in one-to one.
- For all $u, v \in U$, $H \models u \sim v$ iff $G \models f(u) \sim f(v)$.
- For all $u, v \in U$, f(u) f(v) = u v.
- If $i \in Im(f)$, $j \in [n] \setminus Im(f)$ and $|i j| \neq l^*$ then $G \models \neg i \sim j$.

We make two observations which follow directly from the definitions:

- (1) If $(l, U, u_0, H) \in \mathfrak{H}$ is *r*-proper and $f : U \to [n]$ is a strong embedding of H in G then $Im(f) = B^G(r, f(u_0))$. Furthermore for any *r*-local formula $\phi(x)$ and $u \in U$ we have, $G \models \phi[f(u)]$ iff $H \models \phi[u]$.
- (2) Let G be a graph on vertex set [n] such that $Pr[M_{\bar{p}}^n = G] > 0$, and $x \in [n]$ be such that $B^G(r-1,x)$ is disjoint to $[1,l^*] \cup (n-l^*,n]$. Denote by m and M the minimal and maximal elements of $B^G(r,x)$ respectively. Denote by U the set $\{i m + 1 : i \in B^G(r,x)\}$ and by H the graph on U defined by $H \models u \sim v$ iff $G \models (u + m 1) \sim (v + m 1)$. Then the 4-tuple (M m + 1, U, x m + 1, H) is an r-proper member of \mathfrak{H} . Furthermore for any r-local formula $\phi(x)$ and $u \in U$ we have, $G \models \phi[u m + 1]$ iff $H \models \phi[u]$.

We now show that for any proper member of \mathfrak{H} there are many disjoint strong embeddings into $M_{\overline{p}}^n$. Formally:

Claim 5.11. Let $(l, U, u_0, H) \in \mathfrak{H}$ be proper, and c > 1 be some fixed real. Let E_c^n be the following event on $M_{\overline{p}}^n$: "For any interval $I \subseteq [n]$ of length at least n/c there exists some $f: U \to I$ a strong embedding of H in $M_{\overline{p}}^n$ ". Then

$$\lim_{n \to \infty} \Pr[E_c^n \text{ holds in } M_{\bar{p}}^n] = 1.$$

We skip the proof of this claim an almost identical lemma is proved in [1] (see Lemma at page 8 there).

We can now finish the proof of Lemma 5.10. Recall that $\phi(x)$ is am r-local formula. We consider two possibilities. First assume that for some r-proper $(l, U, u_0, H) \in \mathfrak{H}$ we have $H \models \phi[u_0]$. Let $\zeta > 0$ be some real. Then by the claim above, for n large enough, with probability at least $1-\zeta$ there exists f_1, \ldots, f_m strong embeddings of H into $M_{\bar{p}}^n$ such that $\langle Im(f_i) : 1 \leq i \leq m \rangle$ are pairwise disjoint. By observation (1) above we have:

- For $1 \le i < j \le m$, $B^{M_{\bar{p}}^n}(r, f_i(u_0)) \cap B^{M_{\bar{p}}^n}(r, f_j(u_0)) = \emptyset$. For $1 \le i \le m$, $M_{\bar{p}}^n \models \phi[f_i(u_0)]$.

Hence $f_1(u_0), ..., f_m(u_0)$ exemplifies ψ in $M_{\bar{p}}^n$, so $Pr[M_{\bar{p}}^n \models \psi] \ge 1 - \zeta$ and as ζ was arbitrary we have $\lim_{n\to\infty} Pr[M^n_{\bar{p}} \models \psi] = \hat{1}$ and we are done.

Otherwise assume that for all r-proper $(l, U, u_0, H) \in \mathfrak{H}$ we have $H \models \neg \phi[u_0]$. We will show that $\lim_{n\to\infty} \Pr[M^n_{\bar{n}} \models \psi] = 0$ which will finish the proof. Towards contradiction assume that for some $\epsilon > 0$ for unboundedly many $n \in \mathbb{N}$ we have $Pr[M_{\bar{p}}^n \models \psi] \geq \epsilon$. Define the *L*-formula:

$$\varphi(z) := (\exists x)(\theta_{r-1}(x, z) \land \phi(x)).$$

Note that $\varphi(z)$ is equivalent to a k-local formula for k = 2r - 1. Hence by the assumption of our lemma for some (large enough $n \in \mathbb{N}$) we have with probability at least $\epsilon/2$: $M_{\bar{p}}^n \models \psi$ and the *l*^{*}-boundary of $M_{\bar{p}}^n$ is *k*-indistinguishable by $\varphi(z)$. In particular for some $n \in \mathbb{N}$ and G a graph on vertex set [n] we have:

- $(\alpha) \ Pr[M_{\bar{p}}^n = G] > 0.$
- $(\beta) \ G \models \psi.$
- (γ) The *l*^{*}-boundary of *G* is *k*-indistinguishable by $\varphi(z)$.

By (β) for some $x_0 \in [n]$ we have $G \models \phi[x_0]$. If x_0 is such that $B^G(r-1, x_0)$ is disjoint to $[1, l^*] \cup (n - l^*, n]$ then by (α) and observation (2) above we have some r-proper $(l, U, u_0, H) \in \mathfrak{H}$ such that $H \models \phi[u_0]$ in contradiction to our assumption. Hence assume that $B^G(r-1, x_0)$ is not disjoint to $[1, l^*] \cup (n-l^*, n]$ and let $z_0 \in [n]$ belong to their intersection. So by the definition of $\varphi(z)$ we have $G \models \varphi[z_0]$ and by (γ) we have some $y_0 \in [n]$ such that $B^G(k, y_0) \cap ([1, l^*] \cup (n - l^*, n]) = \emptyset$ and $G \models \varphi[y_0]$. Again by the definition of $\varphi(z)$, and recalling that k = 2r - 1 we have some $x_1 \in [n]$ such that $B^G(r-1, x_1) \cap ([1, l^*] \cup (n-l^*, n]) = \emptyset$ and $G \models \phi[x_1]$. So again by (α) and observation (2) we get a contradiction.

Remark 5.12. Lemma 5.10 above gives a sufficient condition for the 0-1 law. If we are only interested in the convergence law, then a weaker condition is sufficient, all we need is that the probability of any local property holding in the l^* -boundary converges. Formally:

Assume that for all $r \in \mathbb{N}$ and r-local L-formula, $\phi(x)$, and for all $1 \leq l \leq l^*$ we have: Both $\langle Pr[M_{\bar{p}}^n \models \phi[l] : n \in \mathbb{N} \rangle$ and $\langle Pr[M_{\bar{p}}^n \models \phi[n-l+1] : n \in \mathbb{N} \rangle$ converge to a limit. Then $M_{\bar{p}}^n$ satisfies the convergence law.

The proof is similar to the proof of Lemma 5.10. A similar proof on the convergence law in graphs with the successor relation is Theorem 2(i) in [1].

We now use 5.10 to get a sufficient condition on \bar{p} for the 0-1 law holding in $M_{\bar{p}}^n$. Our proof relays on the assumption that $M^n_{\bar{n}}$ contains few circles, and only those that are "unavoidable". We start with a definition of such circles:

Definition 5.13. Let $n \in \mathbb{N}$.

- (1) For a sequence $\bar{x} = (x_0, x_1, ..., x_k) \subseteq [n]$ and $0 \leq i < k$ denote $l_i^{\bar{x}} := x_{i+1} x_i$.
- (2) A sequence $(x_0, x_1, ..., x_k) \subseteq [n]$ is called possible for \bar{p} (but as \bar{p} is fixed we omit it and similarly below) if for each $0 \leq i < k$, $p_{|l_{\bar{x}}^{\bar{x}}|} > 0$.
- (3) A sequence $(x_0, x_1, ..., x_k)$ is called a circle of length k if $x_0 = x_k$ and $\langle \{x_i, x_{i+1}\} : 0 \le i < k \rangle$ is without repetitions.
- (4) A circle of length k, is called simple if $(x_0, x_1, ..., x_{k-1})$ is without repetitions.
- (5) For $\bar{x} = (x_0, x_1, ..., x_k) \subseteq [n]$, a pair $(S \cup A)$ is called a symmetric partition of \bar{x} if:
 - $S \cup A = \{0, ..., k 1\}.$
 - If $i \neq j$ belong to A then $l_i^{\bar{x}} + l_j^{\bar{x}} \neq 0$.
 - The sequence $\langle l_i^{\bar{x}} : i \in S \rangle$ can be partitioned into two sequences of length r = |S|/2: $\langle l_i : 0 \leq i < r \rangle$ and $\langle l'_i : 0 \leq i < r \rangle$ such that $l_i + l'_i = 0$ for each $0 \leq i < r$.
- (6) For $\bar{x} = (x_0, x_1, ..., x_k) \subseteq [n]$ let $(Sym(\bar{x}), Asym(\bar{x}))$ be some symmetric partition of \bar{x} (say the first in some prefixed order). Denote $Sym^+(\bar{x}) := \{i \in Sym(\bar{x}) : l_i^{\bar{x}} > 0\}.$
- (7) We say that \bar{p} has no unavoidable circles if for all $k \in \mathbb{N}$ there exists some $m_k \in \mathbb{N}$ such that if \bar{x} is a possible circle of length k then for each $i \in Asym(\bar{x}), |l_i^{\bar{x}}| \leq m_k$.

Theorem 5.14. Assume that \bar{p} has no unavoidable circles, $\sum_{l=1}^{\infty} p_l = \infty$ and $\sum_{l=1}^{\infty} (p_l)^2 < \infty$. Then $M_{\bar{p}}^n$ satisfies the 0-1 law for L.

Proof. Let $\phi(x)$ be some *r*-local formula, and *j*^{*} be in {1, 2, ..., *l*^{*}}∪{-1, -2, ..., -*l*^{*}}. For *n* ∈ N let $z_n^* = z^*(n, j^*)$ equal *j*^{*} if *j*^{*} > 0 and *n*−*j*^{*}+1 if *j*^{*} < 0 (so z_n^* belongs to $[1, l^*] \cup (n - l^*, n]$). We will show that with probability approaching 1 as $n \to \infty$ there exists some $y^* \in [n]$ such that $B^{M_p^n}(r, y^*) \cap ([1, l^*] \cup (n - l^*, n]) = \emptyset$ and $M_p^n \models \phi[z_n^*] \leftrightarrow \phi[y^*]$. This will complete the proof by Lemma 5.10. For simplicity of notation assume *j*^{*} = 1 hence $z_n^* = 1$ (the proof of the other cases is similar). We use the notations of the proof of 5.10. In particular recall the definition of the set \mathfrak{H} and of an *r*-proper member of \mathfrak{H} . Now if for two *r*-proper members of \mathfrak{H} , (l^1, x^1, U^1, H^1) and (l^2, x^2, U^2, H^2) we have $H^1 \models \phi[x^1]$ and $H^2 \models \neg \phi[x^2]$ then by Claim 5.11 we are done. Otherwise all *r*-proper members of \mathfrak{H} give the same value to $\phi[x]$ and without loss of generality assume that if $(l, x, U, H) \in \mathfrak{H}$ is a *r*-proper then $H \models \phi[x]$ (the dual case is identical). If $\lim_{n\to\infty} Pr[M_p^n \models \phi[1]] = 1$ then again we are done by 5.11. Hence we may assume that:

 \odot For some $\epsilon > 0$, for an unbounded set of $n \in \mathbb{N}$, $Pr[M_{\bar{n}}^n \models \neg \phi[1]] \ge \epsilon$.

In the construction below we use the following notations: 2 denotes the set $\{0, 1\}$. ^k2 denotes the set of sequences of length k of members of 2, and if η belongs to ^k2 we write $|\eta| = k$. $\leq k_2$ denotes $\bigcup_{0 \leq i \leq k} k_2$ and similarly $\leq k_2$. $\langle \rangle$ denotes the empty sequence, and for $\eta, \eta' \in \leq k_2$, $\hat{\eta}\eta'$ denotes the concatenation of η and η' . Finally for $\eta \in k_2$ and k' < k, $\eta|_{k'}$ is the initial segment of length k' of η .

Call \bar{y} a saturated tree of depth k in [n] if:

- $\bar{y} = \langle y_\eta \in [n] : \eta \in {}^{\leq k}2 \rangle.$
- \bar{y} is without repetitions.

- $\{y_{\langle 0 \rangle}, y_{\langle 1 \rangle}\} = \{y_{\langle \rangle} + l^*, y_{\langle \rangle} l^*\}.$
- If 0 < l < k and $\eta \in {}^{l}2$ then $\{y_{\eta} + l^{*}, y_{\eta} l^{*}\} \subseteq \{y_{\hat{\eta}(0)}, y_{\hat{\eta}(1)}, y_{\eta|_{l-1}}\}.$

Let G be a graph with set of vertexes [n], and $i \in [n]$. We say that \bar{y} is a circle free saturated tree of depth k for i in G if:

- (i) \bar{y} is a saturated tree of depth k in [n].
- (ii) $G \models i \sim y_{\langle \rangle}$ but $|i y_{\langle \rangle}| \neq l^*$.
- (iii) For each $\eta \in {}^{< k}2$, $G \models y_{\eta} \sim y_{\hat{\eta}(0)}$ and $G \models y_{\eta} \sim y_{\hat{\eta}(1)}$.
- (iv) None of the edges described in (ii), (iii) belongs to a circle of length $\leq 6k$ in G.
- (v) Recalling that \bar{p} have no unavoidable circles let m_{2k} be the one from definition 5.13(7). For all $\eta \in {}^{\leq k}2$ and $y \in [n]$ if $G \models y_{\eta} \sim y$ and $y \notin \{y_{\eta \langle 0 \rangle}, y_{\eta \langle 1 \rangle}, y_{\eta | l-1}, i\}$ then $|y y_{\eta}| > m_{2k}$.

For $I \subseteq [n]$ we say that $\langle \bar{y}^i : i \in I \rangle$ is a circle free saturated forest of depth k for I in G if:

- (a) For each $i \in I$, \bar{y}^i is a circle free saturated tree of depth k for i in G.
- (b) As sets $\langle \bar{y}^i : i \in I \rangle$ are pairwise disjoint.
- (c) If $i_1, i_2 \in I$ and \bar{x} is a path of length $k' \leq k$ in G from $y_{\langle\rangle}^{i_1}$ to i_2 , then for some $j < k', (x_j, x_{j+1}) = (y_{\langle\rangle}^{i_1}, i_1)$.

Claim 5.15. For $n \in \mathbb{N}$ and G a graph on [n] denote by $I_k^*(G)$ the set $([1, l^*] \cup (n - l^*, n]) \cap B^G(1, k)$. Let $E^{n,k}$ be the event: "There exists a circle free saturated forest of depth k for $I_k^*(G)$ ". Then for each $k \in \mathbb{N}$:

$$\lim_{n \to \infty} \Pr[E^{n,k} \text{ holds in } M^n_{\bar{p}}] = 1.$$

Proof. Let $k \in \mathbb{N}$ be fixed. The proof proceeds in six steps:

Step 1. We observe that only a bounded number of circles starts in each vertex of $M_{\bar{p}}^n$. Formally For $n, m \in \mathbb{N}$ and $i \in [n]$ let $E_{n,m,i}^1$ be the event: "More than m different circles of length at most 12k include i". Then for all $\zeta > 0$ for some $m = m(\zeta)$ (m depends also on \bar{p} and k but as those are fixed we omit them from the notation and similarly below) we have:

 \circledast_1 For all $n \in \mathbb{N}$ and $i \in [n]$, $Pr_{M^n_{\overline{p}}}[E^1_{n,m,i}] \leq \zeta$.

To see this note that if $\bar{x} = (x_0, ..., x_{k'})$ is a possible circle in [n], then

$$Pr[\bar{x} \text{ is a weak circle in } M^n_{\bar{p}}] := p(\bar{x}) = \prod_{i \in Asym(\bar{x})} p_{|l^{\bar{x}}_i|} \cdot \prod_{i \in Sym^+(\bar{x})} (p_{l^{\bar{x}}_i})^2.$$

Now as \bar{p} has no unavoidable, circles let m_{12k} be as in 5.13(7). Then the expected number of circles of length $\leq 12k$ starting in $i = x_0$ is

$$\sum_{\substack{k' \le 12k, \bar{x} = (x_0, \dots, x_{k'}) \\ \text{is a possible circle}}} p(\bar{x}) \le (m_{12k})^{12k} \cdot \sum_{\substack{0 < l_1, \dots, l_{6k} < n \\ i = 1}} \prod_{i=1}^{6k} (p_{l_i})^2 \le (m_1 2k)^{12k} \cdot (\sum_{\substack{0 < l < n \\ 0 < l < n}} (p_l)^2)^{6k} \cdot (\sum_{\substack{0 < l < n \\ 0 < l < n}} (p_l)^2)^{6k} \cdot (\sum_{\substack{0 < l < n \\ 0 < l < n}} (p_l)^2)^{6k} \cdot (\sum_{\substack{0 < l < n \\ 0 < l < n}} (p_l)^2)^{6k} \cdot (\sum_{\substack{0 < l < n \\ 0 < l < n}} (p_l)^2)^{6k} \cdot (\sum_{\substack{0 < l < n \\ 0 < l < n}} (p_l)^2)^{6k} \cdot (\sum_{\substack{0 < l < n \\ 0 < l < n}} (p_l)^2)^{6k} \cdot (\sum_{\substack{0 < l < n \\ 0 < l < n}} (p_l)^2)^{6k} \cdot (\sum_{\substack{0 < l < n \\ 0 < l < n}} (p_l)^2)^{6k} \cdot (\sum_{\substack{0 < l < n \\ 0 < l < n}} (p_l)^2)^{6k} \cdot (\sum_{\substack{0 < l < n \\ 0 < l < n}} (p_l)^2)^{6k} \cdot (\sum_{\substack{0 < l < n \\ 0 < l < n}} (p_l)^2)^{6k} \cdot (\sum_{\substack{0 < l < n \\ 0 < l < n}} (p_l)^2)^{6k} \cdot (\sum_{\substack{0 < l < n \\ 0 < l < n \\ 0 < l < n}} (p_l)^2)^{6k} \cdot (\sum_{\substack{0 < l < n \\ 0 < n$$

But as $\sum_{0 < l < n} (p_l)^2$ is bounded by $\sum_{l=1}^{\infty} (p_l)^2 := c^* < \infty$, if we take $m = (m_{12k})^{12k} \cdot (c^*)^{6k} / \zeta$ then we have \circledast_1 as desired.

Step 2. We show that there exists a positive lower bound on the probability that a circle passes through a given edge of $M_{\bar{p}}^n$. Formally: Let $n \in \mathbb{N}$ and $i, j \in [n]$ be such that $p_{|i-j|} > 0$. Denote By $E_{n,i,j}^2$ the event: "There does not exists a circle

of length $\leq 6k$ containing the edge $\{i, j\}$ ". Then there exists some $q_2 > 0$ such that:

⊕2 For any n ∈ N and i, j ∈ [n] such that p_{|i-j|} > 0, Pr_{Mⁿ_p}[E²_{n,i,j}|i ~ j] ≥ q₂.
 To see this call a path x̄ = (x₀,...,x_{k'}) good for i, j ∈ [n] if x₀ = j, x_{k'} = i, x̄
 does not contain the edge {i, j} and does not contain the same edge more than
 once. Let E^{'2}_{n,i,j} be the event: "There does not exists a path good for i, j of length
 < 6k". Note that for i, j ∈ [n] and G a graph on [n] such that G ⊨ i ~ j we have:
 (i, j, x₂, ..., x_{k'}) is a circle in G iff (j, x₂, ..., k_{k'}) is a path in G good for i, j. Hence
 for such G we have: E²_{n,i,j} holds in G iff E^{'2}_{n,i,j} holds in G. Since the events i ~ j
 and E^{'2}_{n,i,j} are independent in Mⁿ_p we conclude:

$$Pr_{M_{\bar{p}}^{n}}[E_{n,i,j}^{2}|i \sim j] = Pr_{M_{\bar{p}}^{n}}[E_{n,i,j}^{\prime 2}|i \sim j] = Pr_{M_{\bar{p}}^{n}}[E_{n,i,j}^{\prime 2}].$$

Next recalling Definition 5.13(7) let m_k be as there. Since $\sum_{l>0} (p_l)^2 < \infty$, $(p_l)^2$ converges to 0 as l approaches infinity, and hence so does p_l . Hence for some $m^0 \in \mathbb{N}$ we have $l > m^0$ implies $p_l < 1/2$. Let $m_k^* := \max\{m_{6k}, m^0\}$. We now define for a possible path $\bar{x} = (x_0, \dots x_{k'})$, $Large(\bar{x}) = \{0 \leq r < k' : |l_r^{\bar{x}}| > m_k^*\}$. Note that as \bar{p} have no unavoidable circles we have for any possible circle \bar{x} of length $\leq 6k$, $Large(\bar{x}) \subseteq Sym(\bar{x})$, and $|Large(\bar{x})|$ is even. We now make the following claim: For each $0 \leq k^* \leq \lfloor k/2 \rfloor$ let $E'_{n,i,j}^{2,k^*}$ be the event: "There does not exists a path, \bar{x} , good for i, j of length < 6k with $|Large(\bar{x})| = 2k^*$ ". Then there exists a positive probability q_{2,k^*} such that for any $n \in \mathbb{N}$ and $i, j \in [n]$ we have:

$$Pr_{M_{\bar{p}}^{n}}[E_{n,i,j}^{\prime 2,k^{*}}] \ge q_{2,k^{*}}.$$

Then by taking $q_2 = \prod_{0 \le k^* \le \lfloor k/2 \rfloor} q_{2,k^*}$ we will have \circledast_2 . Let us prove the claim. For $k^* = 0$ we have (recalling that no circle consists only of edges of length l^*):

$$Pr_{M_{\bar{p}}^{n}}[E_{n,i,j}^{\prime 2,0}] = \prod_{\substack{k' \le 6k, \ \bar{x} = (i=x_{0}, j=x_{1}, \dots, x_{k'})\\ \text{is a possible circle, } |Large(\bar{x})| = 0}} (1 - \prod_{r=1}^{k'-1} p_{|l_{r}^{\bar{x}}|})$$
$$\geq (1 - \max\{p_{l}: 0 < l \le m_{k}^{*}, l \neq l^{*}\})^{6k \cdot (m_{k}^{*})^{6k-1}}$$

But as the last expression is positive and depends only on \bar{p} and k we are done. For $k^* > 0$ we have:

$$Pr_{M_{\bar{p}}^{n}}[E_{n,i,j}^{\prime 2,k^{*}}] = \prod_{\substack{k' \leq 6k, \ \bar{x}=(i=x_{0},j=x_{1},...,x_{k'})\\ \text{ is a possible circle, } |Large(\bar{x})|=k^{*}}} (1 - \prod_{m=1}^{k'-1} p_{|l_{\bar{m}}^{\bar{x}}}|)$$

$$= \prod_{\substack{k' \leq 6k, \ \bar{x}=(i=x_{0},j=x_{1},...,x_{k'})\\ \text{ is a possible circle, } \\ |Large(\bar{x})|=k^{*}, 0 \notin Large(\bar{x})}} (1 - \prod_{m=1}^{k'-1} p_{|l_{\bar{m}}^{\bar{x}}}|) \cdot \prod_{\substack{k' \leq 6k, \ \bar{x}=(i=x_{0},j=x_{1},...,x_{k'})\\ \text{ is a possible circle, } \\ |Large(\bar{x})|=k^{*}, 0 \notin Large(\bar{x})}} (1 - \prod_{m=1}^{k'-1} p_{|l_{\bar{m}}^{\bar{x}}}|) \cdot \prod_{\substack{k' \leq 6k, \ \bar{x}=(i=x_{0},j=x_{1},...,x_{k'})\\ \text{ is a possible circle, } \\ |Large(\bar{x})|=k^{*}, 0 \in Large(\bar{x})}} (1 - \prod_{m=1}^{k'-1} p_{|l_{\bar{m}}^{\bar{x}}}|) \cdot \prod_{\substack{k' \leq 6k, \ \bar{x}=(i=x_{0},j=x_{1},...,x_{k'})\\ \text{ is a possible circle, } \\ |Large(\bar{x})|=k^{*}, 0 \in Large(\bar{x})}} (1 - \prod_{m=1}^{k'-1} p_{|l_{\bar{m}}^{\bar{x}}}|) \cdot \prod_{\substack{k' \leq 6k, \ \bar{x}=(i=x_{0},j=x_{1},...,x_{k'})\\ \text{ is a possible circle, } \\ |Large(\bar{x})|=k^{*}, 0 \in Large(\bar{x})}} (1 - \prod_{m=1}^{k'-1} p_{|l_{\bar{m}}^{\bar{x}}}|) \cdot \prod_{\substack{k' \leq 6k, \ \bar{x}=(i=x_{0},j=x_{1},...,x_{k'})\\ \text{ is a possible circle, } \\ |Large(\bar{x})|=k^{*}, 0 \in Large(\bar{x})}} (1 - \prod_{m=1}^{k'-1} p_{|l_{\bar{m}}^{\bar{x}}}|) \cdot \prod_{\substack{k' \leq 6k, \ \bar{x}=(i=x_{0},j=x_{1},...,x_{k'})\\ \text{ is a possible circle, } \\ |Large(\bar{x})|=k^{*}, 0 \in Large(\bar{x})} (1 - \prod_{m=1}^{k'-1} p_{|l_{\bar{m}}^{\bar{x}}}|) \cdot \prod_{\substack{k' \leq 6k, \ \bar{x}=(i=x_{0},j=x_{1},...,x_{k'})\\ \text{ is a possible circle, } \\ |Large(\bar{x})|=k^{*}, 0 \in Large(\bar{x})} (1 - \prod_{m=1}^{k'-1} p_{|l_{\bar{m}}^{\bar{x}}}|) \cdot \prod_{\substack{k' \leq 6k, \ \bar{x}=(i=x_{0},j=x_{1},...,x_{k'})\\ \text{ is a possible circle, } \\ |Large(\bar{x})|=k^{*}, 0 \in Large(\bar{x})} (1 - \prod_{m=1}^{k'-1} p_{|l_{\bar{m}}^{\bar{x}}}|) \cdot \prod_{\substack{k' \leq 6k, \ \bar{x}=(i=x_{0},j=x_{1},...,x_{k'})\\ \text{ is a possible circle, } \\ |Large(\bar{x})|=k^{*}, 0 \in Large(\bar{x})} (1 - \prod_{m=1}^{k'-1} p_{|l_{\bar{m}}^{\bar{x}}}|) \cdot \prod_{\substack{k' \leq 6k, \ \bar{x}=(i=x_{0},j=x_{1},...,x_{k'})\\ (1 - \prod_{m=1}^{k'-1} p_{|l_{\bar{m}}^{\bar{x}}}|) \cdot \prod_{\substack{k' \leq 6k, \ \bar{x}=(i=x_{0},j=x_{1},...,x_{k'})\\ (1 - \prod_{m=1}^{k'-1} p_{|l_{\bar{m}}^{\bar{x}}}|) \cdot \prod_{\substack{k' \in Ck, \ \bar{x}=(i=x_$$

But the product on the left of the last line is at least

$$[\prod_{l_1,\ldots,l_k^*>m_k^*}(1-\prod_{m=1}^{k^*}(p_{l_m})^2)]^{(m_k^*)^{(6k-2k^*)}\cdot(6k)^{2k^*}},$$

and as $\sum_{l>m_k^*} (p_l)^2 \leq c^* < \infty$ we have $\sum_{l_1,\ldots,l_{k^*}>m_k^*} \prod_{m=1}^{k^*} (p_{l_m})^2 \leq (c^*)^{k^*} < \infty$ and hence $\prod_{l_1,\ldots,l_{k^*}>m_k^*} (1-\prod_{m=1}^{k^*} (p_{l_m})^2) > 0$ and we have a bound as desired. Similarly the product on the right is at least

$$\left[\prod_{l_1,\dots,l_{k^*-1}>m_k^*} (1-\prod_{m=1}^{k^*-1} (p_{l_m})^2) \cdot 1/2\right]^{(m_k^*)^{(6k-2k^*-1)} \cdot (6k)^{2k^*}}$$

and again we have a bound as desired.

Step 3. Denote

$$E_{n,i,j}^3 := E_{n,i,j}^2 \wedge \bigwedge_{r=1,\dots,k} (E_{n,j+(r-1)l^*,j+rl^*}^2 \wedge E_{n,j,j-(r-1)l^*,j-rl^*}^2)$$

and let $q_3 = q_2^{(2l^*+1)}$. We then have:

 \circledast_3 For any $n \in \mathbb{N}$ and $i, j \in [n]$ such that $p_{|i-j|} > 0$ and $j + kl^*, j - kl^* \in [n],$ $Pr_{M_n^n}[E_{n,i,j}^3|i \sim j] ≥ q_3.$

This follows immediately from \circledast_2 , and the fact that if i, i', j, j' all belong to [n] then the probability $Pr_{M_{\bar{p}}^n}[E_{n,i,j}^2|E_{n,i',j'}^2]$ is no smaller then the probability $Pr_{M_{\bar{p}}^n}[E_{n,i,j}^2]$.

Step 4. For $i, j \in [n]$ such that $j + kl^*, j - kl^* \in [n]$ denote by $E_{n,i,j}^4$ the event: " $E_{n,i,j}^3$ holds and for $x \in \{j + rl^* : r \in \{-k, -k + 1, ..., k\}\}$ and $y \in [n] \setminus \{i\}$ we have $x \sim y \Rightarrow (|x - y| = l^* \lor |x - y| > m_{2k})$ ". Then for some $q_4 > 0$ we have:

 $𝔅_4$ For any *n* ∈ N and *i*, *j* ∈ [*n*] such that $p_{|i-j|} > 0$ and $j + kl^*, j - kl^* \in [n]$, $Pr_{M_n^n}[E_{n,i,j}^4|i \sim j] \ge q_4.$

To see this simply take $q_4 = q_3 \cdot (\prod_{l \in \{1,...,m_{2k}\} \setminus \{l^*\}} (1-p_l))^{2k+1}$, and use \circledast_3 .

Step 5. For $n \in \mathbb{N}$, $S \subseteq [n]$, and $i \in [n]$ let $E_{n,S,i}^5$ be the event: "For some $j \in [n] \setminus S$ we have $i \sim j$, $|i - j| \neq l^*$ and $E_{n,i,j}^4$." Then for each $\delta > 0$ and $s \in \mathbb{N}$, for $n \in \mathbb{N}$ large enough (depending on δ and s) we have:

 \circledast_5 For all $i \in [n]$ and $S \subseteq [n]$ with $|S| \leq s$, $Pr_{M_{\bar{n}}^n}[E_{n,S,i}^5] \geq 1 - \delta$.

First let $\delta > 0$ and $s \in \mathbb{N}$ be fixed. Second for $n \in \mathbb{N}$, $S \subseteq [n]$ and $i \in [n]$ denote by $J_i^{n,S}$ the set of all possible candidates for j, namely $J_i^{n,S} := \{j \in (kl^*, n - kl^*] \setminus S : |i - j| \neq l^*\}$. For $j \in J_i^{n,\emptyset}$ let $U_j := \{j + rl^* : r \in \{-k, -k + 1, ..., k\}\}$. For $m \in \mathbb{N}$ and G a graph on [n] call $j \in J_i^{n,S}$ a candidate of type (n, m, S, i) in G, if each $j' \in U(j)$, belongs to at most m different circles of length at most 6k in G. Denote the set of all candidates of type (n, m, S, i) in G by $J_i^{n,S}(G)$. Now let $X_i^{n,m}$ be the random variable on $M_{\overline{p}}^n$ defined by:

$$X_i^{n,m}(M_{\bar{p}}^n) = \sum \{ p_{|i-j|} : j \in J_i^{n,S}(M_{\bar{p}}^n) \}.$$

Denote $R_i^{n,S} := \sum \{p_{|i-j|} : j \in J_i^{n,S}\}$. Trivially for all n, m, S, i as above, $X_i^{n,m} \leq R_i^{n,S}$. On the other hand, by \circledast_1 and the definition of a candidate, for all $\zeta > 0$ we can find $m = m(\zeta) \in \mathbb{N}$ such that for all n, S, i as above and $j \in J_i^{n,S}$, the probability that j is a candidate of type (n, m, S, i) in $M_{\bar{p}}^n$ is at least $1 - \zeta$. Then for such m we have: $Exp(X_i^{n,m}) \geq R_i^{n,S}(1-\zeta)$. Hence we have $Pr_{M_{\bar{p}}^n}[X_i^{n,m} \leq R_i^{n,S}/2] \leq 2\zeta$. Recall that $\delta > 0$ was fixed, and let $m^* = m(\delta/4)$. Then for all n, S, i as above we have with probability at least $1 - \delta/2$, $X_i^{n,m^*}(M_{\bar{p}}^n) \geq R_i^{n,S}/2$. Now denote $m^{**} := (2l^* + 1)(m^* + 2m_{2k})6k(m^* + 1)$, and fix $n \in \mathbb{N}$ such that $\sum_{0 < l < n} p_l > 2 \cdot ((m^{**}/(q_4 \cdot \delta) \cdot 2m_{2k}(2l^* + 1) + (s + 2kl^* + 2))$. Let $i \in [n]$ and $S \subseteq [n]$ be such that

 $|S| \leq s$. We relatives our probability space $M_{\bar{p}}^n$ to the event $X_i^{n,m^*}(M_{\bar{p}}^n) \geq R_i^{n,S}/2$, and all probabilities until the end of Step 5 will be conditioned to this event. If we show that under this assumption we have, $Pr_{M_{\bar{n}}}[E_{n,S,i}^5] \geq 1 - \delta/2$ then we will have \circledast_5 .

Let G be a graph on [n] such that, $X_i^{n,m^*}(G) \ge R_i^{n,S}/2$. For $j \in J_i^{n,S}$ let $C_j(G)$ denote the set of all the pairs of vertexes which are relevant for the event $E_{n,i,j}^4$. Namely $C_j(G)$ will contain: $\{i, j\}$, all the edges $\{u, v\}$ such that $: u \in U(j), v \neq i$ and $|u-v| < m_{2k}$, and all the edges that belong to a circle of length $\leq 6k$ containing some member of U(j). We make some observations:

- (1) $X_i^{n,m^*}(G) \ge (m^{**}/(q_4 \cdot \delta)) \cdot 2m_{2k}(2l^* + 1).$ (2) There exists $J^1(G) \subseteq J_i^{n,S}$ such that:
- - (a) The sets U(j) for $j \in J^1(G)$ are pairwise disjoint. Moreover if $j_1, j_2 \in$ $J^{1}(G), u_{l} \in U(j_{l}) \text{ for } l \in \{1, 2\} \text{ and } j_{1} \neq j_{2} \text{ then } |u_{1} - u_{2}| > m_{2k}.$
 - (b) Each $j \in J^1(G)$ is a candidate of type (n, m^*, S, i) in G.
 - (c) The sum $\sum \{p_{|i-j|} : j \in J^1(G)\}$ is at least $m^{**}/(q_4 \cdot \delta)$.

To see this use (1) and construct J^1 by adding the candidate with the largest $p_{|i-j|}$ that satisfies (a). Note that each new candidate excludes at most $m_{2k}(2l^*+1)$ others.]

- (3) Let j belong to $J^1(G)$. Then the set $\{j' \in J^1(G) : C_j(G) \cap C_{j'}(G) \neq \emptyset\}$ has size at most m^{**} . [To see this use (2)(b) above, the fact that two circles of length $\leq 6k$ that intersect in an edge give a circle of length $\leq 12k$ and similar trivial facts.]
- (4) From (3) we conclude that there exists $J^2(G) \subseteq j^1(G)$ and $\langle j_1, ..., j_r \rangle$ and enumeration of $J^2(G)$ such that:
 - (a) For any $1 \le r' \le r$ the sets $C(j_{r'})$ and $\bigcup_{1 \le r'' \le r'} C(j_{r''})$ are disjoint.
 - (b) The sum $\sum \{p_{|i-j|} : j \in J^2(G)\}$ is greater or equal $1/(q_4 \cdot \delta)$.

Now for each $j \in J_i^{n,S}$ let E_i^* be the event: " $i \sim j$ and $E_{n,i,j}^4$ ". By \circledast_4 we have for each $j \in J_i^{n,S}$, $Pr_{M_{\tilde{p}}^n}[E_j^*] \ge q_4 \cdot p_{|i-j|}$. Recall that we condition the probability space $M_{\bar{p}}^n$ to the event $X_i^{n,m^*}(M_{\bar{p}}^n) \ge R_i^{n,S}/2$, and let $\langle j_1, ..., j_r \rangle$ be the enumeration of $J^2(M_{\bar{p}}^n)$ from (4) above. (Formally speaking r and each $j_{r'}$ is a function of $M_{\bar{p}}^{n}$). We then have for $1 \leq r' < r'' \leq r$, $Pr_{M_{\bar{p}}^{n}}[E_{j_{r'}}^{*}|E_{j_{r''}}^{*}] \geq Pr_{M_{\bar{p}}^{n}}[E_{j_{r'}}^{*}]$, and $Pr_{M_{\bar{p}}^{n}}[E_{j_{r'}}^{*}|\neg E_{j_{r''}}^{*}] \geq Pr_{M_{\bar{p}}^{n}}[E_{j_{r'}}^{*}].$ To see this use (2)(a) and (4)(a) above and the definition of $C_j(G)$.

Let the random variables X and X' be defined as follows. X is the number of $j \in J^2(M^n_{\overline{p}})$ such that E^*_j holds in $M^n_{\overline{p}}$. In other words X is the sum of r random variables $\langle Y_1, ..., Y_r \rangle$, where for each $1 \leq r' \leq r$, $Y_{r'}$ equals 1 if $E_{j_{r'}}^*$ holds, and 0 otherwise. X' is the sum of r independent random variables $\langle Y'_1, ..., Y'_r \rangle$, where for each $1 \leq r' \leq r Y'_{r'}$ equals 1 with probability $q_4 \cdot p_{|i-j_{r'}|}$ and 0 with probability $1 - q_4 \cdot p_{|i-j_{r'}|}$. Then by the last paragraph for any $0 \le t \le r$,

$$Pr_{M^n_{\overline{p}}}[X \ge t] \ge Pr[X' \ge t].$$

But $Exp(X') = Exp(X) = q_4 \cdot \sum_{1 \le r' \le r} p_{|i-j_{r'}|}$ and by (4)(b) above this is grater or equal $1/\delta$. Hence by Chebyshev's inequality we have:

$$Pr_{M_{\bar{p}}^{n}}[\neg E_{n,S,i}^{5}] \le Pr_{M_{\bar{p}}^{n}}[X=0] \le Pr[X'=0] \le \frac{Var(X')}{Exp(X')^{2}} \le \frac{1}{Exp(X')} \le \delta$$

as desired.

Step 6. We turn to the construction of the circle free saturated forest. Let $\epsilon > 0$, and we will prove that for $n \in \mathbb{N}$ large enough we have $Pr[E^{n,k}$ holds in $M_{\bar{p}}^n] \geq 1-\epsilon$. Let $\delta = \epsilon/(l^*2^{k+2})$ and $s = 2l^*((k+2^k)(2l^*k+1))$. Let $n \in \mathbb{N}$ be large enough such that \circledast_5 holds for n, k, δ and s. We now choose (formally we show that with probability at least $1 - \epsilon$ such a choice exists) by induction on $(i, \eta) \in I_k^*(M_{\bar{p}}^n) \times \mathbb{1}^{k}$ (ordered by the lexicographic order) $y_{\eta}^{i} \in [n]$ such that:

- (1) $\langle y^i_\eta \in [n] : (i,\eta) \in I^*_k(M^n_{\bar{p}}) \times {}^{\leq k}2 \rangle$ is without repetitions.
- (2) If $\eta = \langle \rangle$ then $M_{\bar{p}}^n \models i \sim y_{\eta}^i$, but $|i y_{\eta}^i| \neq l^*$.
- (2) If $\eta \neq \langle \rangle$ then $M_{\bar{p}}^n \models y_{\eta}^i \sim y_{\eta|_{|\eta|-1}}^i$. (4) If $\eta = \langle \rangle$ then $M_{\bar{p}}^n$ satisfies $E_{n,i,y_{\eta}^i}^4$ else, denoting $\rho := \eta|_{|\eta|-1}, M_{\bar{p}}^n$ satisfies $E_{n,y_o^i,y_n^i}^4$.

Before we describe the choice of y_n^i , we need to define sets $S_n^i \subseteq [n]$. For a graph G on [n] and $i \in I_k^*(G)$ let $S_i^*(G)$ be the set of vertexes in the first (in some pre fixed order) path of length $\leq k$ from 1 to i in G. Now let $S^*(G) = \bigcup_{i \in I_k^*(G)} S_i^*(G)$. For $(i,\eta) \in I_k^*(M_{\bar{p}}^n) \times {}^{\leq k}2$ and $\langle y_{\eta'}^{i'} \in [n] : (i',\eta') <_{lex} (i,\eta) \rangle$ define:

$$S_{\eta}^{i}(G) = S^{*}(G) \cup \{ [y_{\eta'}^{i'} - kl^{*}, y_{\eta'}^{i'} + kl^{*}] : (i'\eta') <_{lex} (i, \eta) \}.$$

Note that indeed $|S^*(G)| \leq s$ for all G. In the construction below when we write S^i_{η} we mean $S^i_{\eta}(M^n_{\bar{p}})$ where $\langle y^{i'}_{\eta'} \in [n] : (i', \eta') <_{lex} (i, \eta) \rangle$ were already chosen. Now the choice of y_n^i is as follows:

- If $\eta = \langle \rangle$ by \circledast_5 with probability at least 1δ , $E_{n,S_i,i}^5$ holds in $M_{\bar{p}}^n$ hence we can choose y_{η}^{i} that satisfies (1)-(4).
- If $\eta = \langle 0 \rangle$ (resp. $\eta = \langle 1 \rangle$) choose $y^i_{\eta} = y^i_{\langle \rangle} l^*$ (resp. $y^i_{\eta} = y^i_{\langle \rangle} + l^*$). By the induction hypothesis and the definition of $E_{n,i,j}^4$ this satisfies (1)-(4) above.
- If $|\eta| > 1$, $|y_{\eta|_{|\eta|-1}}^i y_{\eta|_{|\eta|-2}}^i| \neq l^*$ and $\eta(|\eta|) = 0$ (resp. $\eta(|\eta|) = 1$) then
- $\begin{array}{l} \text{ for } |\eta| > 1, \ |y_{\eta||\eta|-1} y_{\eta||\eta|-2} + i \quad \text{ out } \eta_{(|\eta|)} = 0 \ (\text{torp } |\eta_{(|\eta|)} i) \\ \text{ choose } y_{\eta}^{i} = y_{\eta||\eta|-1}^{i} l^{*} \ (\text{resp. } y_{\eta}^{i} = y_{\eta||\eta|-1}^{i} + l^{*}). \ \text{Again by the induction} \\ \text{ hypothesis and the definition of } E_{n,i,j}^{4} \ \text{this satisfies } (1)-(4). \\ \text{ If } |\eta| > 1, \ y_{\eta||\eta|-1}^{i} y_{\eta||\eta|-2}^{i} = l^{*} \ (\text{resp. } y_{\eta||\eta|-1}^{i} y_{\eta||\eta|-2}^{i} = -l^{*}) \ \text{and} \\ \eta(|\eta|) = 0, \ \text{then choose } y_{\eta}^{i} = y_{\eta||\eta|-1}^{i} l^{*} \ (\text{resp. } y_{\eta}^{i} = y_{\eta||\eta|-1}^{i} + l^{*}). \\ \text{ If } |\eta| > 1, \ |y_{\eta||\eta|-1}^{i} y_{\eta||\eta|-2}^{i}| = l^{*} \ \text{and} \ \eta(|\eta|) = 1. \ \text{ Then by } \circledast_{5} \ \text{with} \\ \text{ probability at least } 1 \delta, \ E_{n,S_{\eta}^{i},y_{\eta||\eta|-1}}^{5} \ \text{holds in } M_{p}^{n}, \ \text{and hence we can} \\ \end{array}$ choose y_n^i that satisfies (1)-(4).

At each step of the construction above the probability of "failure" is at most δ , hence with probability at least $1 - (l^* 2^{k+2})\delta = 1 - \epsilon$ we compleat the construction. It remains to show that indeed $\langle y_{\eta}^{i} : i \in I^{n}, \eta \in {}^{\leq k}2 \rangle$ is a circle free saturated forest of depth k for I_{k}^{*} in $M_{\bar{p}}^{n}$. This is straight forward from the definitions. First each $\langle y_n^i : \eta \in {}^{\leq k}2 \rangle$ is a saturated tree of depth k in [n] by its construction. Second (ii) and (iii) in the definition of a saturated tree holds by (2) and (3) above (respectively). Third note that by (4) each edge (y, y') of our construction satisfies $E_{n,y,y'}^2$ and $E_{n,y,y'}^4$ hence (iv) and (v) (respectively) in the definition of a saturated tree follows. Lastly we need to show that (c) in the definition of a saturated forest holds. To see this note that if $i_1, i_2 \in i_k^*(M_{\bar{p}}^n)$ then by the definition of $S^i_{\eta}(M_{\bar{p}}^n)$ there exists a path of length $\leq 2k$ from i_1 to i_2 with all its vertexes in $S^i_n(M^n_{\bar{p}})$.

Now if \bar{x} is a path of length $\leq k$ from $y_{\langle\rangle}^{i_1}$ to i_2 and $(y_{\langle\rangle}^{i_1}, i_1)$ is not an edge of \bar{x} , then necessarily $\{y_{\langle\rangle}^{i_1}, i_1\}$ is included in some circle of length $\leq 3k + 2$. A contradiction to the choice of $y_{\langle\rangle}^{i_1}$. This completes the proof of the claim.

By \odot and the claim above we conclude that, for some large enough $n \in \mathbb{N}$, there exists a graph $G = ([n], \sim)$ such that:

- (1) $G \models \neg \phi[1]$.
- (2) $Pr[M_{\bar{p}}^n = G] > 0.$
- (3) There exists $\langle \bar{y}^i : i \in I_r^*(G) \rangle$, a circle free saturated forest of depth r for $I_r^*(G)$ in G.

Denote $B = B^G(1, r)$, $I = I_r^*(G)$, and we will prove that for some *r*-proper $(l, u_0, U, H) \in \mathfrak{H}$ we have $(B, 1) \cong (H, u_0)$ (i.e. there exists a graph isomorphism from $G|_B$ to H mapping 1 to u_0). As ϕ is *r*-local we will then have $H \models \neg \phi[u_0]$ which is a contradiction of our assumption and we will be done. We turn to the construction of (l, u_0, U, H) . For $i \in I$ let $r(i) = r - dist^G(1, i)$. Denote

$$Y := \{y_n^i : i \in I, \eta \in {}^{$$

Note that by (ii)-(iii) in the definition of a saturated tree we have $Y \subseteq B$. We first define a one-to-one function $f: B \to \mathbb{Z}$ in three steps:

Step 1. For each $i \in I$ define

 $B_i := \{x \in B : \text{ there exists a path of length } \leq r(i) \text{ from } x \text{ to } i \text{ disjoint to } Y\}$

and $B^0 := I \cup \bigcup_{i \in I} B_i$. Now define for all $x \in B^0$, f(x) = x. Note that:

- $_1 f|_{B^0}$ is one-to-one (trivially).
- •2 If $x \in B^0$ and $dist^G(1, x) < r$ then $x + l^* \in [n] \Rightarrow x + l^* \in B^0$ and $x l^* \in [n] \Rightarrow x l^* \in B^0$ (use the definition of a saturated tree).

Step 2. We define $f|_Y$. We start by defining f(y) for $y \in \bar{y}^1$, so let $\eta \in {\leq r2}$ and denote $y = y_{\eta}^1$. We define f(y) using induction on η were ${\leq r2}$ is ordered by the lexicographic order. First if $\eta = \langle \rangle$ then define $f(y) = 1 - l^*$. If $\eta \neq \langle \rangle$ let $\rho : \eta|_{|\eta|-1}$, and consider $u := f(y_{\rho}^1)$. Denote $F = F_{\eta} := \{f(y_{\eta'}^1) : \eta' <_{lex} \eta\}$. Now if $u - l^* \notin F$ define $f(y) = u - l^*$. If $u - l^* \in F$ but $u + l^* \notin F$ define $f(y) = u + l^*$. Finally, if $u - l^*, u + l^* \in F$, choose some $l = l_{\eta}$ such that $p_l > 0$ and $u - l < \min F - rl^* - n$, and define f(y) = u - l. Note that by our assumptions $\{l : p_l > 0\}$ is infinite so we can always choose l as desired. Note further that we chose f(y) such that $f|_{\bar{y}^1}$ is one-to-one. Now for each $i \in I \cap [1, l^*]$ and $\eta \in {<r(i)2}$, define $f(y_{\eta}^i) = f(y_{\eta}^1) + (f(i) - 1)$ (recall that f(i) = i was defined in Step 1, and that $k(i) \leq k(1)$ so $f(y_{\eta}^i)$ is well defined). For $i \in I \cap (n - l^*, n]$ preform a similar construction in "reversed directions". Formally define $f(y_{\langle \rangle}^i) = i + l^*$, and the induction step is similar to the case i = 1 above only now choose l such that $u + l > \max F + rl^* + n$, and define f(y) = u + l. Note that:

- •₃ $f|_Y$ is one-to-one.
- •₄ $f(Y) \cap f(B^0) = \emptyset$. In fact:
- •⁺₄ $f(Y) \cap [n] = \emptyset.$
- •5 If $i \in I \cap [1, l^*]$ then $i l^* \in f(Y)$ (namely $i l^* = f(y_{\langle \rangle}^i)$).
- •'_5 If $i \in I \cap (n l^*, n]$ then $i + l^* \in f(Y)$ (namely $i + l^* = f(y^i_{\langle \rangle})$).

•₆ If $y \in Y \setminus \{y_{\langle\rangle}^i : i \in I\}$ and $dist^G(1, y) < r$ then $f(y) + l^*, f(y) - l^* \in f(Y)$. (Why? As if $dist^G(1, y_{\eta}^i) < r$ then $|\eta| < r(i)$, and the construction of **Step** 2).

Step 3. For each $i \in I$ and $\eta \in {}^{<r(i)}2$, define

 $B^i_{\eta} := \{ x \in B : \text{ there exists a path of length } \leq r(i) \text{ from } x \text{ to } y^i_{\eta} \text{ disjoint to } Y \setminus \{y^i_{\eta}\} \}$ and $B^1 := \bigcup_{i \in I, \eta \in {}^{<r(i)}2} B^i_{\eta}.$

We now make a few observations:

- (α) If $i_1, i_2 \in I$ then, in G there exists a path of length at most 2r from i_1 to i_2 disjoint to Y. Why? By the definition of I and (c) in the definition of a saturated forest.
- (β) B^0 and B^1 are disjoint and cover B. Why? Trivially they cover B, and by (α) and (iv) in the definition of a saturated tree they are disjoint.
- (γ) $\langle B_{\eta}^{i} : i \in I, \eta \in \langle r(i)2 \rangle$ is a partition of B^{1} . Why? Again trivially they cover B^{1} , and by (iv) in the definition of a saturated tree they are disjoint.
- (δ) If $\{x, y\}$ is an edge of $G|_B$ then either $x, y \in B^0$, $\{x, y\} = \{i, y_{\langle\rangle}^i\}$ for some $i \in I$, $\{x, y\} \subseteq Y$ or $\{x, y\} \subseteq B_{\eta}^i$ for some $i \in I$ and $\eta \in {}^{\langle r(i)}2$. (Use the properties of a saturated forest.)

We now define $f|_{B^1}$. Let $\langle (B_j, y_j) : j < j^* \rangle$ be some enumeration of $\langle (B_{\eta}^i, y_{\eta}^i) : i \in I, \eta \in {}^{< r(i)} 2 \rangle$. We define $f|_{B_j}$ by induction on $j < j^*$ so assume that $f|_{(\cup_{j' < j} B_{j'})}$ is already defined, and denote: $F = F_j := f(B^0) \cup f(Y) \cup f(\cup_{j' < j} B_{j'})$. Our construction of $f|_{B_j}$ will satisfy:

- $f|_{B_i}$ is one-to-one.
- $f(B_j)$ is disjoint to F_j .
- If $y \in B_j$ then either f(y) = y or $f(y) \notin [n]$.

Let $\langle z_s^j : s < s(j) \rangle$ be some enumeration of the set $\{z \in B_j : G \models y_j \sim z\}$. For each s < s(j) choose l(j, s) such that $p_{l(j,s)} > 0$ and:

⊗ If $k \leq 4r$, $(m_1, ..., m_k)$ are integers with absolute value not larger than 4r and not all equal 0, and $(s_1, ..., s_k)$ is a sequence of natural numbers smaller than j(s) without repetitions. Then $|\sum_{1\leq i\leq m} (m_i \cdot l(j, s_i))| > n + \max\{|x| : x \in F_j\}$.

Again as $\{l : p_l > 0\}$ is infinite we can always choose such l(j, s). We now define $f|_{B_j}$. For each $y \in B_j$ let $\bar{x} = (x_0, ..., x_k)$ be a path in G from y to y_j , disjoint to $Y \setminus \{y_j\}$, such that k is minimal. So we have $x_0 = y$, $x_k = y_j$, $k \leq r$ and \bar{x} is without repetitions. Note that by the definition of B_j such a path exists. For each $0 \leq t < k$ define

$$l_t = l_t(\bar{x}) \begin{cases} l(j,s) & l_t^{\bar{x}} = |y_j - z_s^j| \text{ for some } s < s(j) \\ -l(j,s) & l_t^{\bar{x}} = -|y_j - z_s^j| \text{ for some } s < s(j) \\ l_t^{\bar{x}} & \text{ otherwise.} \end{cases}$$

Now define $f(y) = f(y_j) + \sum_{0 \le t < k} l_t$. We have to show that f(y) is well defined. Assume that both $\bar{x}_1 = (x_0, ..., x_{k_1})$ and $\bar{x}_2 = (x'_0, ..., x'_{k_1})$ are paths as above. Then $k_1 = k_2$ and $\bar{x} = (x_0, ..., x_{k_1}, x'_{k_2-1}, ..., x'_0)$ is a circle of length $k_1 + k_2 \le 2r$. By (v) in the definition of a saturated tree we know that for each $s < s(j), |y_j - z_s^j| > m_{2r}$. Hence as \bar{p} is without unavoidable circles we have for each s < s(j) and $0 \le t < k_1 + k_2$, if $|l_t^{\bar{x}}| = |y_j - z_s^j|$ then $t \in Sym(\bar{x})$. (see definition 5.13(6,7)).

Now put for $w \in \{1, 2\}$ and $s < s(j), m_w^+(s) := |\{0 \le t < k_w : l_t^{\bar{x}_w} = y_j - z_s^j\}|$ and similarly $m_w^-(s) := |\{0 \le t < k_w : -l_t^{\bar{x}_w} = y_j - z_s^j\}|$. By the definition of \bar{x} we have, $m_1^+(s) - m_1^-(s) = m_2^+(s) - m_2^-(s)$. But from the definition of $l_t(\bar{x})$ we have for $w \in \{1, 2\}$,

$$\sum_{0 \le t < k_w} l_t(\bar{x}_w) = \sum_{0 \le t < k_w} l_t^{\bar{x}_w} + \sum_{s < s(j)} (m_w^+(s) - m_w^-(s))(l(j,s) - (y_j - z_s^j)).$$

Now as $\sum_{0 \le t \le k_1} l_t^{\bar{x}_1} = \sum_{0 \le t \le k_2} l_t^{\bar{x}_2}$ we get $\sum_{0 \le t \le k_1} l_t(x_1) = \sum_{0 \le t \le k_2} l_t(x_2)$ as desired.

We now show that $f|_{B_i}$ is one-to-one. Let $y^1 \neq y^2$ be in B_j . So for $w \in \{1, 2\}$ we have a path $\bar{x}_w = (x_0^w, \dots, x_{k_w}^w)$ from y^w to y_j . as before, for s < s(j) denote $m_w^+(s) := |\{0 \le t < k_w : l_t^{\bar{x}_w} = y_j - z_s^j\}|$ and similarly $m_w^-(s)$. By the definition of f_{B_i} we have

$$f(y^{1}) - f(y^{2}) = y^{1} - y^{2} + \sum_{s < s(j)} \left[(m_{1}^{+}(s) - m_{1}^{-}(s)) - (m_{2}^{+}(s) - m_{2}^{-}(s)) \right] \cdot l(j,s).$$

Now if for each $s < s(j), m_1^+(s) - m_1^-(s) = m_2^+(s) - m_2^-(s)$ then we are done as $y^1 \neq z^2$ y². Otherwise note that for each s < s(j), $|m_1^+(s) - m_1^-(s) = m_2^+(s) - m_2^-(s)| \le 4r$. Note further that $|\{s < s(j) : m_1^+(s) - m_1^-(s) = m_2^+(s) - m_2^-(s) \neq 0\}| \leq 4r$. Hence by \otimes , and as $|y^1 - y^2| \leq n$ we are done.

Next let $y \in B_j$ and $\bar{x} = (x_0, ..., x_k)$ be a path in G from y to y_j . For each s < s(j)define $m^+(s)$ and $m^-(s)$ as above, hence we have $f(y) = y_j + \sum_{s \le s(j)} (m^+(s) - j_{s \le s(j)}) (m^+(s) - j_{s \ge s(j)$ $m^{-}(s)l(j,s)$. Consider two cases. First if $(m^{+}(s) - m^{-}(s)) = 0$ for each s < s(j)then f(y) = y. Hence $f(y) \notin f(B^0) = B^0$ (by (β) above), $f(y) \notin f(Y)$ (as $f(Y) \cap [n] = \emptyset$ and $f(y) \notin f(\bigcup_{j' < j} B_{j'})$ (by (γ) and the induction hypothesis). So $f(y) \notin F_j$. Second assume that for some $s < s(j), (m^+(s) - m^-(s)) \neq 0$. Then by the \otimes we have $f(y) \notin [n]$ and furthermore $f(y) \notin F_j$. In both cases the demands for $f|_{B_j}$ are met and we are done. After finishing the construction for all $j < j^*$ we have $f|_{B^1}$ such that:

- •7 $f|_{B^1}$ is one-to-one.
- •8 $f(B^1)$ is disjoint to $f(B^0) \cup f(Y)$. •9 If $y \in B^1$ and $dist^G(1, y) < r$ then $f(y) + l^*, f(y) l^* \in f(B^1)$. In fact $f(y+l^*) = f(y) + l^*$ and $f(y-l^*) = f(y) - l^*$. (By the construction of Step 3.)

Putting $\bullet_1 - \bullet_9$ together we have constructed $f: B \to \mathbb{Z}$ that is one-to-one and satisfies:

(•) If $y \in B$ and $dist^G(1, y) < r$ then $f(y) + l^*, f(y) - l^* \in f(B)$. Furthermore: (oo) $\{y, f^{-1}(f(y) - l^*)\}$ and $\{y, f^{-1}(f(y) + l^*)\}$ are edges of G.

For (00) use: \bullet_2 with the definition of $f|_{B^0}$, $\bullet_5 + \bullet'_5$ with the fact that $G \models i \sim y_{i_1}^i$ \bullet_6 with the construction of Step 2 and \bullet_9 .

We turn to the definition of (l, u_0, U, H) and the isomorphism $h: B \to H$. Let $l_{min} = \min\{f(b) : b \in B\}$ and $l_{max} = \max\{f(b) : b \in B\}$. Define:

- $l = l_{min} + l_{max} + 1.$
- $u_0 = l_{min} + 2.$
- $U = \{z + l_{min} + 1 : z \in Im(f)\}.$
- For $b \in B$, $h(b) = f(b) + l_{min} + 1$.
- For $u, v \in U$, $H \models u \sim v$ iff $G \models h^{-1}(u) \sim h^{-1}(v)$.

As f was one-to-one so is h, and trivially it is onto U and maps 1 to u_0 . Also by the definition of H, h is a graph isomorphism. So it remains to show that (l, u_0, U, H) is r-proper. First $(*)_1$ in the definition of proper is immediate from the definition of H. Second for $(*)_2$ in the definition of proper let $u \in U$ be such that $dist^H(u_0, u) < r$. Denote $y := h^{-1}(u)$ then by the definition of H we have $dist^G(1, y) < r$, hence by $(\circ), f(y) + l^*, f(y) - l^* \in f(B)$ and hence by the definition of h and $U, u + l^*, u - l^* \in U$ as desired. Lastly to see $(*)_3$ let $u, u' \in U$ and denote $y = h^{-1}(u)$ and $y' = h^{-1}(u')$. Assume $|u - u'| = l^*$ then by $(\circ \circ)$ we have $G \models y \sim y'$ and by the definition of $H, H \models u \sim u'$. Now assume that $H \models u \sim u'$ then $G \models y \sim y'$. Using observation (δ) above and rereading 1-3 we see that |u - u'| is either $l^*, |y - y'|, l_\eta$ for some $\eta \in {}^{<r}2$ (see Step 2) or l(j, s) for some $j < j^*, s < s(j)$ (see step 3). In all cases we have $P_{|u-u'|} > 0$. Together we have $(*)_3$ as desired. This completes the proof of Theorem 5.14.

References

- Tomasz Luczak and Saharon Shelah. Convergence in homogeneous random graphs. Random Structures Algorithms, 6 (1995), no. 4, 371–391.
- [2] Saharon Shelah. Hereditary convergence laws with successor. In preparation.
- [3] Haim Gaifman. On local and nonlocal properties. Proceedings of the Herbrand symposium (Marseilles, 1981), 105–135, Stud. Logic Found. Math., 107, North-Holland, Amsterdam, 1982.