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Abstract. We define the notions of a canonical inference rule and a
canonical constructive system in the framework of strict single-conclusion
Gentzen-type systems (or, equivalently, natural deduction systems), and
develop a corresponding general non-deterministic Kripke-style seman-
tics. We show that every strict constructive canonical system induces a
class of non-deterministic Kripke-style frames, for which it is strongly
sound and complete. This non-deterministic semantics is used for prov-
ing a strong form of the cut-elimination theorem for such systems, and
for providing a decision procedure for them. These results identify a large
family of basic constructive connectives, including the standard intuition-
istic connectives, together with many other independent connectives.

1 Introduction

The standard intuitionistic connectives (⊃,∧,∨, and ⊥) are of great importance
in theoretical computer science, especially in type theory, where they correspond
to basic operations on types (via the formulas-as-types principle and Curry-
Howard isomorphism). Now a natural question is: what is so special about these
connectives? The standard answer is that they are all constructive connectives.
But then what exactly is a constructive connective, and can we define other basic
constructive connectives beyond the four intuitionistic ones? And what does the
last question mean anyway: how do we “define” new (or old) connectives?

Concerning the last question there is a long tradition starting from [11] (see
e.g. [15] for discussions and references) according to which the meaning of a
connective is determined by the introduction and elimination rules which are
associated with it. Here one usually has in mind natural deduction systems of an
ideal type, where each connective has its own introduction and elimination rules,
and these rules should meet the following conditions: in a rule for some connective
this connective should be mentioned exactly once, and no other connective should
be involved. The rule should also be pure in the sense of [1] (i.e., there should
be no side conditions limiting its application), and its active formulas should
be immediate subformulas of its principal formula. Now an n-ary connective ⋄
that can be defined using such rules may be taken as constructive if in order to
prove the logical validity of a sentence of the form ⋄(ϕ1, . . . , ϕn), it is necessary
to prove first the premises of one of its possible introduction rules (see [8]).
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Unfortunately, already the handling of negation requires rules which are not
ideal in the sense described above. For intuitionistic logic this problem is usually
solved by not taking negation as a basic constructive connective, but defining it
instead in terms of more basic connectives that can be characterized by “ideal”
rules (¬ϕ is defined as ϕ →⊥). In contrast, for classical logic the problem was
solved by Gentzen himself by moving to what is now known as Gentzen-type
systems or sequential calculi. These calculi employ single-conclusion sequents
in their intuitionistic version, and multiple-conclusion sequents in their classical
version. Instead of introduction and elimination rules they use left introduction
rules and right introduction rules. The intuitive notions of an “ideal rule” can be
adapted to such systems in a straightforward way, and it is well known that the
usual classical connectives and the basic intuitionistic connectives can indeed be
fully characterized by “ideal” Gentzen-type rules. Moreover: although this can
be done in several ways, in all of them the cut-elimination theorem obtains. This
immediately implies that the connectives of intuitionistic logic are constructive
in the sense explained above, because without using cuts the only way to derive
⇒ ⋄(ϕ1, . . . , ϕn) in single conclusion systems of this sort is to prove first the
premises of one of its introduction rules (and then apply that introduction rule).
Note that the only formulas that can occur in such premises are ϕ1, . . . , ϕn.

For the multiple-conclusion framework the above-mentioned facts about the
classical connectives were considerably generalized in [5, 6] by defining “multiple-
conclusion canonical propositional Gentzen-type rules and systems” in precise
terms. A constructive necessary and sufficient coherence criterion for the non-
triviality of such systems was then provided, and it was shown that a system of
this kind admits cut-elimination iff it is coherent. It was further proved that the
semantics of such systems is provided by two-valued non-deterministic matrices
(two-valued Nmatrices) — a natural generalization of the classical truth-tables.
In fact, a characteristic two-valued Nmatrix was constructed for every coherent
canonical propositional system. That work shows that there is a large family of
what may be called semi-classical connectives (which includes all the classical
connectives), each of which has both a proof-theoretical characterization in terms
of a coherent set of canonical (= “ideal”) rules, and a semantic characterization
using two-valued Nmatrices.

In this paper we develop a similar theory for the constructive propositional
framework. We define the notions of a canonical rule and a canonical system in
the framework of strict single-conclusion Gentzen-type systems (or, equivalently,
natural deduction systems). We prove that here too a canonical system is non-
trivial iff it is coherent (where coherence is a constructive condition, defined like
in the multiple-conclusion case). We develop a general non-deterministic Kripke-
style semantics for such systems, and show that every constructive canonical
system (i.e. coherent canonical single-conclusion system) induces a class of non-
deterministic Kripke-style frames for which it is strongly sound and complete.
We use this non-deterministic semantics to show that all constructive canoni-
cal systems admit a strong form of the cut-elimination theorem. We also use it
for providing decision procedures for all such systems. These results again iden-



tify a large family of basic constructive connectives, each having both a proof-
theoretical characterization in terms of a coherent set of canonical rules, and a
semantic characterization using non-deterministic frames. The family includes
the standard intuitionistic connectives (⊃,∧,∨, and ⊥), as well as many other
independent connectives, like the semi-implication which has been introduced
and used by Gurevich and Neeman in [12].

2 Strict Canonical Constructive Systems

In what follows L is a propositional language, F is its set of wffs, p, q, r denote
atomic formulas, ψ, ϕ, θ denote arbitrary formulas (of L), T, S denote subsets
of F , and Γ,∆,Σ,Π denote finite subsets of F . We assume that the atomic
formulas of L are p1, p2, . . . (in particular: {p1, p2, . . . , pn} are the first n atomic
formulas of L).

Definition 1. A Tarskian consequence relation (tcr for short) for L is a binary
relation ⊢ between sets of formulas of L and formulas of L that satisfies the
following conditions:

strong reflexivity: if ϕ ∈ T then T ⊢ ϕ.
monotonicity: if T ⊢ ϕ and T ⊆ T ′ then T ′ ⊢ ϕ.
transitivity (cut): if T ⊢ ψ and T, ψ ⊢ ϕ then T ⊢ ϕ.

Definition 2. A substitution in L is a function σ from the atomic formulas to
the set of formulas of L. σ is extended to formulas and sets of formulas in the
obvious way.

Definition 3. A tcr ⊢ for L is structural if for every substitution σ and every
T and ϕ, if T ⊢ ϕ then σ(T ) ⊢ σ(ϕ). ⊢ is finitary if the following condition holds
for all T and ϕ: if T ⊢ ϕ then there exists a finite Γ ⊆ T such that Γ ⊢ ϕ. ⊢ is
consistent (or non-trivial) if p1 6⊢ p2.

It is easy to see (see [6]) that there are exactly two inconsistent structural
tcrs in any given language 1. These tcrs are obviously trivial, so we exclude them
from our definition of a logic:

Definition 4. A propositional logic is a pair 〈L,⊢〉, where L is a propositional
language, and ⊢ is a tcr for L which is structural, finitary, and consistent.

Since a finitary consequence relation ⊢ is determined by the set of pairs 〈Γ, ϕ〉
such that Γ ⊢ ϕ, it is natural to base proof systems for logics on the use of such
pairs. This is exactly what is done in natural deduction systems and in (strict)
single-conclusion Gentzen-type systems (both introduced in [11]). Formally, such
systems manipulate objects of the following type:

1 In one T ⊢ ϕ for every T and ϕ, in the other T ⊢ ϕ for every nonempty T and ϕ.



Definition 5. A sequent is an expression of the form Γ ⇒ ∆ where Γ and ∆
are finite sets of formulas, and ∆ is either a singleton or empty. A sequent of the
form Γ ⇒ {ϕ} is called definite, and we shall denote it by Γ ⇒ ϕ. A sequent
of the form Γ ⇒ {} is called negative, and we shall denote it by Γ ⇒. A Horn
clause is a sequent which consists of atomic formulas only.

Note. Natural deduction systems and the strict single-conclusion Gentzen-type
systems investigated in this paper manipulate only definite sequents in their
derivations. However, negative sequents may be used in the formulations of their
rules (in the form of negative Horn clauses).

The following definitions formulate in exact terms the idea of an “ideal rule”
which was described in the introduction:

Definition 6.

1. A strict canonical introduction rule is an expression of the form:

{Πi ⇒ Σi}1≤i≤m/ ⇒ ⋄(p1, p2, . . . , pn)

where m ≥ 0, ⋄ is a connective of arity n, and for all 1 ≤ i ≤ m, Πi ⇒ Σi is
a definite Horn clause such that Πi ∪Σi ⊆ {p1, p2, . . . , pn}.

2. A strict canonical elimination rule 2 is an expression of the form

{Πi ⇒ Σi}1≤i≤m/ ⋄ (p1, p2, . . . , pn) ⇒

where m ≥ 0, ⋄ is a connective of arity n, and for all 1 ≤ i ≤ m, Πi ⇒ Σi is a
Horn clause (either definite or negative) such that Πi∪Σi ⊆ {p1, p2, . . . , pn}.

3. An application of the rule {Πi ⇒ Σi}1≤i≤m/ ⇒ ⋄(p1, p2, . . . , pn) is any
inference step of the form:

{Γ, σ(Πi) ⇒ σ(Σi)}1≤i≤m

Γ ⇒ ⋄(σ(p1), . . . , σ(pn))

where Γ is a finite set of formulas and σ is a substitution in L.

4. An application of the rule {Πi ⇒ Σi}1≤i≤m/ ⋄ (p1, p2, . . . , pn) ⇒ is any
inference step of the form:

{Γ, σ(Πi) ⇒ σ(Σi), Ei}1≤i≤m

Γ, ⋄(σ(p1), . . . , σ(pn)) ⇒ θ

where Γ and σ are as above, θ is a formula, and for all 1 ≤ i ≤ m: Ei = {θ}
in case Σi is empty, and Ei is empty otherwise.

2 The introduction/elimination terminology comes from the natural deduction con-
text. For the Gentzen-type context the names “right introduction rule” and “left
introduction rule” might be more appropriate, but we prefer to use a uniform ter-
minology.



Note. We formulated the definition above in terms of Gentzen-type systems.
However, we could have formulated them instead in terms of natural deduction
systems. The definition of an application of an introduction rule is defined in this
context exactly as above, while an application of an elimination rule of the form
{Πi ⇒ Σi}1≤i≤m/ ⋄ (p1, p2, . . . , pn) ⇒ is in the context of natural deduction
any inference step of the form:

{Γ, σ(Πi) ⇒ σ(Σi), Ei}1≤i≤m Γ ⇒ ⋄(σ(p1), . . . , σ(pn))
Γ ⇒ θ

where Γ , σ, θ and Ei are as above.

Here are some examples of well-known strict canonical rules:

Conjunction The two usual rules for conjunction are:

{p1, p2 ⇒ } / p1 ∧ p2 ⇒ and { ⇒ p1 , ⇒ p2} / ⇒ p1 ∧ p2

In the Gentzen-type context applications of these rules have the form:

Γ, ψ, ϕ⇒ θ
Γ, ψ ∧ ϕ⇒ θ

Γ ⇒ ψ Γ ⇒ ϕ
Γ ⇒ ψ ∧ ϕ

In natural deduction systems applications of the first have the form:

Γ, ψ, ϕ⇒ θ Γ ⇒ ψ ∧ ϕ
Γ ⇒ θ

The above elimination rule can easily be shown to be equivalent to the
combination of the two more usual elimination rules for conjunction.

Disjunction The two usual introduction rules for disjunction are:

{ ⇒ p1} / ⇒ p1 ∨ p2 and { ⇒ p2} / ⇒ p1 ∨ p2

Applications of these rules have then the form:

Γ ⇒ ψ
Γ ⇒ ψ ∨ ϕ

Γ ⇒ ϕ
Γ ⇒ ψ ∨ ϕ

The usual elimination rule for disjunction is {p1 ⇒ , p2 ⇒} / p1 ∨ p2 ⇒

In the Gentzen-type context its applications have the form:

Γ, ψ ⇒ θ Γ, ϕ⇒ θ
Γ, ψ ∨ ϕ⇒ θ

In natural deduction systems its applications have the form:

Γ, ψ ⇒ θ Γ, ϕ⇒ θ Γ ⇒ ψ ∨ ϕ
Γ ⇒ θ



Implication The two usual rules for implication are:

{⇒ p1 , p2 ⇒} / p1 ⊃ p2 ⇒ and {p1 ⇒ p2} / ⇒ p1 ⊃ p2

In the Gentzen-type context applications of these rules have the form:

Γ ⇒ ψ Γ, ϕ⇒ θ
Γ, ψ ⊃ ϕ⇒ θ

Γ, ψ ⇒ ϕ
Γ ⇒ ψ ⊃ ϕ

In natural-deduction systems applications of the first have the form:

Γ ⇒ ψ Γ, ϕ⇒ θ Γ ⇒ ψ ⊃ ϕ
Γ ⇒ θ

Again this form of the rule is obviously equivalent to the more usual one
(from Γ ⇒ ψ and Γ ⇒ ψ ⊃ ϕ infer Γ ⇒ ϕ).

Absurdity In intuitionistic logic there is no introduction rule for the absurdity
constant ⊥, and there is exactly one elimination rule for it: {} / ⊥⇒ . In the
Gentzen-type context applications of this rule provide new axioms: Γ,⊥⇒ ϕ.
In natural-deduction systems applications of the same rule allow us to infer
Γ ⇒ ϕ from Γ ⇒⊥.

Semi-implication In [12] a “semi-implication” ; was introduced using the
following two rules:

{⇒ p1 , p2 ⇒} / p1 ; p2 ⇒ and {⇒ p2} / ⇒ p1 ; p2

In the Gentzen-type context applications of these rules have the form:

Γ ⇒ ψ Γ, ϕ⇒ θ
Γ, ψ ; ϕ⇒ θ

Γ ⇒ ϕ
Γ ⇒ ψ ; ϕ

Again in natural-deduction systems applications of the first rule are equiva-
lent to MP for ; (from Γ ⇒ ψ and Γ ⇒ ψ ; ϕ infer Γ ⇒ ϕ).

From now on we shall concentrate on single-conclusion Gentzen-type systems
(translating our notions and results to natural deduction systems is easy).

Definition 7. A single-conclusion Gentzen-type system is called strict canonical
system if its axioms are the sequents of the form ϕ ⇒ ϕ, cut (from Γ ⇒ ϕ and
∆,ϕ ⇒ ψ infer Γ,∆ ⇒ ψ) and weakening (from Γ ⇒ ψ infer Γ,∆ ⇒ ψ) are
among its rules, and each of its other rules is either a strict canonical introduction
rule or a strict canonical elimination rule.

Definition 8. Let G be a strict canonical Gentzen-type system.

1. S ⊢seq
G

s (where s is a sequent and S is a set of sequents) if there is a
derivation in G of s from S.



2. The tcr ⊢G between formulas which is induced by G is defined by: T ⊢G ϕ
iff there exists a finite Γ ⊆ T such that ⊢seq

G
Γ ⇒ ϕ.

Proposition 1. T ⊢G ϕ iff {⇒ ψ | ψ ∈ T } ⊢seq
G

⇒ ϕ.

Proposition 2. If G is strict canonical then ⊢G is a structural and finitary tcr.

The last proposition does not guarantee that every strict canonical system in-
duces a logic (see Definition 4). For this the system should satisfy one more
condition:

Definition 9. A set R of strict canonical rules for an n-ary connective ⋄ is
called coherent if S1 ∪S2 is classically inconsistent (and so the empty clause can
be derived from it using cuts) whenever R contains both S1/⋄(p1, p2, . . . , pn) ⇒
and S2/ ⇒ ⋄(p1, p2, . . . , pn).

Examples.

– All the sets of rules for the connectives ∧,∨,⊃,⊥, and ; which were intro-
duced in the examples above are coherent. For example, for the two rules for
conjunction we have S1 = {p1, p2 ⇒ }, S2 = { ⇒ p1 , ⇒ p2}, and S1∪S2 is
the classically inconsistent set {p1, p2 ⇒ , ⇒ p1 , ⇒ p2} (from which the
empty sequent can be derived using two cuts).

– In [14] Prior introduced a “connective” T (which he called “Tonk”) with the
following rules: {p1 ⇒ } / p1Tp2 ⇒ and { ⇒ p2} / ⇒ p1Tp2. Prior then
used “Tonk” to infer everything from everything (trying to show by this that
rules alone cannot define a connective). Now the union of the sets of premises
of these two rules is {p1 ⇒ , ⇒ p2}, and this is a classically consistent set
of clauses. It follows that Prior’s set of rules for Tonk is incoherent.

Definition 10. A strict canonical single-conclusion Gentzen-type system G is
called coherent if every primitive connective of the language of G has in G a
coherent set of rules.

Theorem 1. Let G be a strict canonical Gentzen-type system. 〈L,⊢G〉 is a logic
(i.e. ⊢G is structural, finitary and consistent) iff G is coherent.

Proof. Proposition 2 ensures that ⊢G is a structural and finitary tcr.
That the coherence of G implies the consistency of the multiple conclusion

consequence relation which is naturally induced by G was shown in [5, 6]. That
consequence relation extends ⊢G, and therefore also the latter is consistent.

For the converse, assume that G is incoherent. This means that G includes
two rules S1/ ⋄ (p1, . . . , pn) ⇒ and S2/ ⇒ ⋄(p1, . . . , pn), such that the set of
clauses S1 ∪ S2 is classically satisfiable. Let v be an assignment in {t, f} that
satisfies all the clauses in S1 ∪ S2. Define a substitution σ by:

σ(p) =

{

pn+1 v(p) = f
p v(p) = t



Let Π ⇒ q ∈ S1 ∪ S2. Then ⊢seq
G p1, . . . , pn, σ(Π) ⇒ σ(q). This is trivial in case

v(q) = t, since in this case σ(q) = q ∈ {p1, . . . , pn}. On the other hand, if v(q) = f
then v(p) = f for some p ∈ Π (since v satisfies the clause Π ⇒ q). Therefore in
this case σ(p) = σ(q) = pn+1, and so again p1, . . . , pn, σ(Π) ⇒ σ(q) is trivially
derived from an axiom. We can similarly prove that ⊢seq

G
p1, . . . , pn, σ(Π) ⇒ pn+1

in case Π ⇒ ∈ S1 ∪ S2. Now by applying the rules S1/ ⋄ (p1, . . . , pn) ⇒ and
S2/ ⇒ ⋄(p1, . . . , pn) to these provable sequents we get proofs in G of the sequent
p1, . . . , pn ⇒ ⋄(σ(p1), . . . , σ(pn)) and of p1, . . . , pn, ⋄(σ(p1), . . . , σ(pn)) ⇒ pn+1.
That ⊢seq

G
p1, . . . , pn ⇒ pn+1 then follows using a cut. This easily entails that

p1 ⊢G p2, and hence ⊢G is not consistent. ⊓⊔

Note. The last theorem implies that coherence is a minimal demand from any
acceptable strict canonical system G. It follows that not every set of such rules
is legitimate for defining constructive connectives - only coherent ones do (and
this is what is wrong with “Tonk”). Accordingly we define:

Definition 11. A strict canonical constructive system is a coherent strict canon-
ical single-conclusion Gentzen-type system.

The following definition will be needed in the sequel:

Definition 12. Let S be a set of sequents.

1. A cut is called an S-cut if the cut formula occurs in S.
2. We say that there exists in a system G an S-(cut-free) proof of a sequent s

from a set of sequents S iff there exists a proof of s from S in G where all
cuts are S-cuts.

3. ([2]) A system G admits strong cut-elimination iff whenever S ⊢seq
G

s, there
exists an S-(cut-free) proof of s from S. 3

3 Semantics for Strict Canonical Constructive Systems

The most useful semantics for propositional intuitionistic logic (the paradigmatic
constructive logic) is that of Kripke frames. In this section we generalize this
semantics to arbitrary strict canonical constructive systems. For this we should
introduce non-deterministic Kripke frames. 4

Definition 13. A generalized L-frame is a triple W = 〈W,≤, v〉 such that:

1. 〈W,≤〉 is a nonempty partially ordered set.

3 By cut-elimination we mean here just the existence of proofs without (certain forms
of) cuts, rather than an algorithm to transform a given proof to a cut-free one (for
the assumptions-free case the term “cut-admissibility” is sometimes used).

4 Another type of non-deterministic (intuitionistic) Kripke frames, based on 3-valued
and 4-valued non-deterministic matrices, was used in [3, 4]. Non-deterministic modal
Kripke frames were recently used in [10].



2. v is a function from F to the set of persistent functions from W into {t, f}
(A function h : W → {t, f} is persistent if h(a) = t implies that h(b) = t for
every b ∈ W such that a ≤ b).

Notation: We shall usually write v(a, ϕ) instead of v(ϕ)(a).

Definition 14. A generalized L-frame 〈W,≤, v〉 is a model of a formula ϕ if
v(ϕ) = λa ∈ W.t (i.e.: v(a, ϕ) = t for every a ∈ W ). It is a model of a theory T
if it is a model of every ϕ ∈ T .

Definition 15. Let W = 〈W,≤, v〉 be a generalized L-frame, and let a ∈ W .

1. A sequent Γ ⇒ ϕ is locally true in a if either v(a, ψ) = f for some ψ ∈ Γ , or
v(a, ϕ) = t.

2. A sequent Γ ⇒ ϕ is true in a if it is locally true in every b ≥ a.
3. A sequent Γ ⇒ is (locally) true in a if v(a, ψ) = f for some ψ ∈ Γ .
4. W is a model of a sequent s (either of the form Γ ⇒ ϕ or Γ ⇒) if s is true

in every a ∈ W (iff s is locally true in every a ∈ W ). It is a model of a set
of sequents S if it is a model of every s ∈ S.

Note. W is a model of a formula ϕ iff it is a model of the sequent ⇒ ϕ.

Definition 16. Let 〈W,≤, v〉 be a generalized L-frame. A substitution σ in L
satisfies a Horn clause Π ⇒ Σ in a ∈W if σ(Π) ⇒ σ(Σ) is true in a.

Note. Because of the persistence condition, a definite Horn clause of the form
⇒ q is satisfied in a by σ iff v(a, σ(q)) = t.

Definition 17. Let W = 〈W,≤, v〉 be a generalized L-frame, and let ⋄ be an
n-ary connective of L.

1. W respects an introduction rule r for ⋄ if v(a, ⋄(ψ1, . . . , ψn)) = t whenever all
the premises of r are satisfied in a by a substitution σ such that σ(pi) = ψi

for 1 ≤ i ≤ n (The values of σ(q) for q 6∈ {p1, . . . , pn} are immaterial here).
2. W respects an elimination rule r for ⋄ if v(a, ⋄(ψ1, . . . , ψn)) = f whenever all

the premises of r are satisfied in a by a substitution σ such that σ(pi) = ψi

(1 ≤ i ≤ n).
3. Let G be a strict canonical Gentzen-type system for L. W is G-legal if it

respects all the rules of G.

Examples.

– By definition, a generalized L-frame W = 〈W,≤, v〉 respects the rule (⊃⇒)
iff for every a ∈ W , v(a, ϕ ⊃ ψ) = f whenever v(b, ϕ) = t for every b ≥ a
and v(a, ψ) = f . Because of the persistence condition, this is equivalent to:
v(a, ϕ ⊃ ψ) = f whenever v(a, ϕ) = t and v(a, ψ) = f . Again by the persis-
tence condition, v(a, ϕ ⊃ ψ) = f iff v(b, ϕ ⊃ ψ) = f for some b ≥ a. Hence,
we get: v(a, ϕ ⊃ ψ) = f whenever there exists b ≥ a such that v(b, ϕ) = t
and v(b, ψ) = f . W respects (⇒⊃) iff for every a ∈W , v(a, ϕ ⊃ ψ) = t when-
ever for every b ≥ a, either v(b, ϕ) = f or v(b, ψ) = t. Hence the two rules
together impose exactly the well-known Kripke semantics for intuitionistic
implication ([13]).



– A generalized L-frame W = 〈W,≤, v〉 respects the rule (;⇒) under the
same conditions it respects (⊃⇒). W respects (⇒;) iff for every a ∈ W ,
v(a, ϕ ; ψ) = t whenever v(a, ψ) = t (recall that this is equivalent to:
v(b, ψ) = t for every b ≥ a). Note that in this case the two rules for ; do
not always determine the value assigned to ϕ ; ψ: if v(a, ψ) = f , and there
is no b ≥ a such that v(b, ϕ) = t and v(b, ψ) = f , then v(a, ϕ ; ψ) is free to
be either t or f . So the semantics of this connective is non-deterministic.

– A generalized L-frame W = 〈W,≤, v〉 respects the rule (T ⇒) (see second
example after Definition 9) if v(a, ϕTψ) = f whenever v(a, ϕ) = f . It re-
spects (⇒ T ) if v(a, ϕTψ) = t whenever v(a, ψ) = t. The two constraints
contradict each other in case both v(a, ϕ) = f and v(a, ψ) = t. This is a
semantic explanation why Prior’s “connective” T (“Tonk”) is meaningless.

Definition 18. Let G be a strict canonical constructive system.

1. S |=seq
G

s (where S is a set of sequents and s is a sequent) iff every G-legal
model of S is also a model of s.

2. The semantic tcr |=G between formulas which is induced by G is defined by:
T |=G ϕ if every G-legal model of T is also a model of ϕ.

Again we have:

Proposition 3. T |=G ϕ iff {⇒ ψ | ψ ∈ T } |=seq
G

⇒ ϕ.

4 Soundness, Completeness, Cut-elimination

In this section we show that the two logics induced by a strict canonical con-
structive system G (⊢G and |=G) are identical. Half of this identity is given in
the following theorem:

Theorem 2. Every strict canonical constructive system G is strongly sound
with respect to the semantics of G-legal generalized frames. In other words:

1. If T ⊢G ϕ then T |=G ϕ.
2. If S ⊢seq

G
s then S |=seq

G
s.

Proof. We prove the second part first. Assume that S ⊢seq
G

s, and W = 〈W,≤, v〉
is a G-legal model of S. We show that s is locally true in every a ∈W . Since
the axioms of G and the premises of S trivially have this property, and the cut
and weakening rules obviously preserve it, it suffices to show that the property
of being locally true is preserved also by applications of the logical rules of G.

– Suppose Γ ⇒ ⋄(ψ1, . . . , ψn) is derived from {Γ, σ(Πi) ⇒ σ(qi)}1≤i≤m us-
ing the introduction rule r = {Πi ⇒ Σi}1≤i≤m/ ⇒ ⋄(p1, p2, . . . , pn) (σ is
a substitution such that σ(pj) = ψj for 1 ≤ j ≤ n). Assume that all the
premises of this application have the required property. We show that so
does its conclusion. Let a ∈W . If v(a, ψ) = f for some ψ ∈ Γ , then obviously



Γ ⇒ ⋄(ψ1, . . . , ψn) is locally true in a. Assume otherwise. Then the persis-
tence condition implies that v(b, ψ) = t for every ψ ∈ Γ and b ≥ a. Hence our
assumption concerning {Γ, σ(Πi) ⇒ σ(qi)}1≤i≤m entails that for every b ≥ a
and 1 ≤ i ≤ m, either v(b, ψ) = f for some ψ ∈ σ(Πi), or v(b, σ(qi)) = t. It
follows that for 1 ≤ i ≤ m, Πi ⇒ qi is satisfied in a by σ. Since W respects
r, it follows that v(a, ⋄(ψ1, . . . , ψn)) = t, as required.

– Now we deal with the elimination rules of G. Suppose Γ, ⋄(ψ1, . . . , ψn) ⇒ θ is
derived from {Γ, σ(Πi) ⇒ σ(Σi)}1≤i≤m1

and {Γ, σ(Πi) ⇒ θ}m1+1≤i≤m, us-
ing the elimination rule r = {Πi ⇒ Σi}1≤i≤m/ ⋄ (p1, p2, . . . , pn) ⇒ (where
Σi is empty for m1 + 1 ≤ i ≤ m, and σ is a substitution such that σ(pj) = ψj

for 1 ≤ j ≤ n). Assume that all the premises of this application have the re-
quired property. Let a ∈ W . If v(a, ψ) = f for some ψ ∈ Γ or v(a, θ) = t,
then we are done. Assume otherwise. Then v(a, θ) = f , and (by the persis-
tence condition) v(b, ψ) = t for every ψ ∈ Γ and b ≥ a. Hence our assump-
tion concerning {Γ, σ(Πi) ⇒ σ(Σi)}1≤i≤m1

entails that for every b ≥ a and
1 ≤ i ≤ m1, either v(b, ψ) = f for some ψ ∈ σ(Πi), or v(b, σ(Σi)) = t. This
immediately implies that every definite premise of the rule is satisfied in a
by σ. Since v(a, θ) = f , our assumption concerning {Γ, σ(Πi) ⇒ θ}m1+1≤i≤m

entails that for everym1 + 1 ≤ i ≤ m, v(a, ψ) = f for some ψ ∈ σ(Πi). Hence
the negative premises of the rule are also satisfied in a by σ. Since W respects
r, it follows that v(a, ⋄(ψ1, . . . , ψn)) = f , as required.

The first part follows from the second by Propositions 1 and 3. ⊓⊔

For the converse, we first prove the following key result.

Theorem 3. Let G be a strict canonical constructive system in L, and let S ∪
{s} be a set of sequents in L. Then either there is an S-(cut-free) proof of s from
S, or there is a G-legal model of S which is not a model of s.

Proof. Assume that s = Γ0 ⇒ ϕ0 does not have an S-(cut-free) proof in G. Let
F ′ be the set of subformulas of S ∪ {s}. Given a formula ϕ ∈ F ′, call a theory
T ⊆ F ′ ϕ-maximal if there is no finite Γ ⊆ T such that Γ ⇒ ϕ has an S-(cut-
free) proof from S, but every proper extension T ′ ⊆ F ′ of T contains such a
finite subset Γ . Obviously, if Γ ⊆ F ′, ϕ ∈ F ′ and Γ ⇒ ϕ has no S-(cut-free)
proof from S, then Γ can be extended to a theory T ⊆ F ′ which is ϕ-maximal.
In particular: Γ0 can be extended to a ϕ0-maximal theory T0.

Now let W = 〈W,⊆, v〉, where:

– W is the set of all extensions of T0 in F ′ which are ϕ-maximal for some
ϕ ∈ F ′.

– v is defined inductively as follows. For atomic formulas:

v(T , p) =

{

t p ∈ T
f p 6∈ T

Suppose v(T , ψi) has been defined for all T ∈ W and 1 ≤ i ≤ n. We let
v(T , ⋄(ψ1, . . . , ψn)) = t iff at least one of the following holds:



1. There exists an introduction rule for ⋄ whose set of premises is satisfied
in T by a substitution σ such that σ(pi) = ψi (1 ≤ i ≤ n).

2. ⋄(ψ1, . . . , ψn) ∈ T and there does not exist T ′ ∈W , T ⊆ T ′, and an elim-
ination rule for ⋄ whose set of premises is satisfied in T ′ by a substitution
σ such that σ(pi) = ψi (1 ≤ i ≤ n).5

First we prove that W is a generalized L-frame:

– W is not empty because T0 ∈ W .
– We prove by structural induction that v is persistent:

For atomic formulas v is trivially persistent since the order is ⊆.
Assume that v is persistent for ψ1 , . . . , ψn. We prove its persistence for
⋄(ψ1, . . . , ψn). So assume that v(T , ⋄(ψ1, . . . , ψn)) = t and T ⊆ T ∗. By v’s
definition there are two possibilities:
1. There exists an introduction rule for ⋄ whose set of premises is satisfied

in T by a substitution σ such that σ(pi) = ψi (1 ≤ i ≤ n). In such a case,
the premises are all definite Horn clauses. Hence by definition, σ satisfies
the same rule’s premises also in T ∗, and so v(T ∗, ⋄(ψ1, . . . , ψn)) = t.

2. ⋄(ψ1, . . . , ψn) ∈ T and there does not exist T ′ ∈W , T ⊆ T ′, and an
elimination rule for ⋄ whose set of premises is satisfied in T ′ by a sub-
stitution σ such that σ(pi) = ψi (1 ≤ i ≤ n). Then ⋄(ψ1, . . . , ψn) ∈ T ∗

(since T ⊆ T ∗), and there surely does not exist T ′ ∈ W , T ∗ ⊆ T ′, and
an elimination rule for ⋄ whose set of premises is satisfied in T ′ by a sub-
stitution σ such that σ(pi) = ψi (1 ≤ i ≤ n) (otherwise the same would
hold for T ). It follows that v(T ∗, ⋄(ψ1, . . . , ψn)) = t in this case too.

Next we prove that W is G-legal:

1. The introduction rules are directly respected by the first condition in v’s
definition.

2. Let r be an elimination rule for ⋄, and suppose all its premises are satisfied
in some T ∈ W by a substitution σ such that σ(pi) = ψi. Then neither of
the conditions under which v(T , ⋄(ψ1, . . . , ψn)) = t can hold:
(a) The second condition explicitly excludes the option that all the premises

are satisfied (in any T ′ ∈W , T ⊆ T ′, so also in T itself).
(b) The first condition cannot be met because of G’s coherence, which

doesn’t allow the two sets of premises (of an introduction rule and an
elimination rule) to be satisfied together. To see this, assume for contra-
diction that S1 is the set of premises of an elimination rule for ⋄, S2 is
the set of premises of an introduction rule for ⋄, and there exists T ∈W
in which both sets of premises are satisfied by a substitution σ such
that σ(pi) = ψi (1 ≤ i ≤ n). Let u be an assignment in {t, f} in which
u(pi) = v(T , ψi). Since σ satisfies in T both sets of premises, u classi-
cally satisfies S1 and S2. But, G is coherent, i.e. S1 ∪ S2 is classically
inconsistent. A contradiction.

5 This inductive definition isn’t absolutely formal, since satisfaction by a substitution
is defined for a generalized L-frame, which we are in the middle of constructing, but
the intention should be clear.



It follows that v(T , ⋄(ψ1, . . . , ψn)) = f , as required.

It remains to prove that W is a model of S but not of s. For this we first prove
that the following hold for every T ∈W and every formula ψ ∈ F ′:

(a) If ψ ∈ T then v(T , ψ) = t.
(b) If T is ψ-maximal then v(T , ψ) = f .

We prove (a) and (b) together by a simultaneous induction on the complexity
of ψ. For atomic formulas they easily follow from v’s definition, and the fact
that p⇒ p is an axiom. For the induction step, assume that (a) and (b) hold
for ψ1, . . . , ψn ∈ F ′. We prove them for ⋄(ψ1, . . . , ψn) ∈ F ′.

– Assume that ⋄(ψ1, . . . , ψn) ∈ T , but v(T , ⋄(ψ1, . . . , ψn)) = f . By v’s defi-
nition, since ⋄(ψ1, . . . , ψn) ∈ T there should exist T ′ ∈ W , T ⊆ T ′, and an
elimination rule for ⋄, r, whose set of premises is satisfied in T ′ by a substitu-
tion σ such that σ(pi) = ψi (1 ≤ i ≤ n). Let {Πi ⇒}1≤i≤m1

be the negative
premises of r, and {Πi ⇒ qi}m1+1≤i≤m — the definite ones. Since σ satisfies
in T ′ every sequent in {Πi ⇒}1≤i≤m1

, then for all 1 ≤ i ≤ m1 there exists
ψji

∈ σ(Πi) such that v(T ′, ψji
) = f . By the induction hypothesis this im-

plies that for all 1 ≤ i ≤ m1, there exists ψji
∈ σ(Πi) such that ψji

/∈ T ′.
Let ϕ be the formula for which T ′ is maximal. Then for all 1 ≤ i ≤ m1

there is a finite ∆i ⊆ T ′ such that ∆i, ψji
⇒ ϕ has an S-(cut-free) proof

from S, and so ∆i, σ(Πi) ⇒ ϕ has such a proof. This in turn implies that
there must exist m1 + 1 ≤ i0 ≤ m such that Γ, σ(Πi0 ) ⇒ σ(qi0 ) has no S-
(cut-free) proof from S for any finite Γ ⊆ T ′. Indeed, if such a proof exists
for every m1 + 1 ≤ i ≤ m, we would use the m1 proofs of ∆i, σ(Πi) ⇒ ϕ for
1 ≤ i ≤ m1, the m−m1 proofs for Γ ′

i , σ(Πi) ⇒ σ(qi) for m1 + 1 ≤ i ≤ m,
some trivial weakenings, and the elimination rule r to get an S-(cut-free)
proof from S of the sequent ∪i=m1

i=1 ∆i,∪
i=m
i=m1+1Γi, ⋄(ψ1, . . . , ψn) ⇒ ϕ. Since

⋄(ψ1, . . . , ψn) ∈ T , this would contradict T ′’s ϕ-maximality. Using this i0,
we extend T ′ ∪ σ(Πi0 ) to a theory T ′′ which is σ(qi0 )-maximal. By the in-
duction hypothesis v(T ′′, ψ) = t for all ψ ∈ σ(Πi0 ) and v(T ′′, σ(qi0 )) = f .
Since T ′ ⊆ T ′′, this contradicts the fact that σ satisfies Πi0 ⇒ qi0 in T ′.

– Assume that T is ⋄(ψ1, . . . , ψn)-maximal, but v(T , ⋄(ψ1, . . . , ψn)) = t. Ob-
viously, ⋄(ψ1, . . . , ψn) /∈ T (because ⋄(ψ1, . . . , ψn) ⇒ ⋄(ψ1, . . . , ψn) is an ax-
iom). Hence by v’s definition there exists an introduction rule for ⋄, r, whose
set of premises is satisfied in T by a substitution σ such that σ(pi) = ψi

(1 ≤ i ≤ n). Let {Πi ⇒ qi}1≤i≤m be the premises of r. As in the previous
case, there must exist 1 ≤ i0 ≤ m such that Γ, σ(Πi0 ) ⇒ σ(qi0) has no S-
(cut-free) proof from S for any finite Γ ⊆ T (if such a proof exists for all
1 ≤ i ≤ m with finite Γi ⊆ T than we could have an S-(cut-free) proof from
S of ∪i=m

i=1 Γi ⇒ ⋄(ψ1, . . . , ψn) using the m proofs of Γi, σ(Πi) ⇒ σ(qi), some
weakenings, and r). Using this i0, we extend T ∪ σ(Πi0 ) to a theory T ′

which is σ(qi0)-maximal. By the induction hypothesis, v(T ′, ψ) = t for all
ψ ∈ σ(Πi0) and v(T ′, σ(qi0 )) = f . Since T ⊆ T ′, this contradicts the fact
that σ satisfies Πi0 ⇒ qi0 in T .



Next we note that (b) can be strengthened as follows:

(c) If ψ ∈ F ′, T ∈ W and there is no finite Γ ⊆ T such that Γ ⇒ ψ has an
S-(cut-free) proof from S, then v(T , ψ) = f .

Indeed, under these conditions T can be extended to a ψ-maximal theory T ′.
Now T ′ ∈W , T ⊆ T ′, and by (b), v(T ′, ψ) = f . Hence also v(T , ψ) = f .

Now (a) and (b) together imply that v(T0, ψ) = t for every ψ ∈ Γ0 ⊆ T0,
and v(T0, ϕ0) = f . Hence W is not a model of s. We end the proof by showing
that W is a model of S. So let ψ1, . . . , ψn ⇒ θ ∈ S and let T ∈ W , where T is
ϕ-maximal. Assume by way of contradiction that v(T , ψi) = t for 1 ≤ i ≤ n,
while v(T , θ) = f . By (c), for every 1 ≤ i ≤ n there is a finite Γi ⊆ T such
that Γi ⇒ ψi has an S-(cut-free) proof from S. On the other hand v(T , θ) = f
implies (by (a)) that θ /∈ T . Since T is ϕ-maximal, it follows that there is a finite
Σ ⊆ T such that Σ, θ ⇒ ϕ has an S-(cut-free) proof from S. Now from Γi ⇒ ψi

(1 ≤ i ≤ n), Σ, θ ⇒ ϕ, and ψ1, . . . , ψn ⇒ θ one can infer Γ1, . . . , Γn, Σ ⇒ ϕ by
n+1 S-cuts (on ψ1, . . . , ψn and θ). It follows that the last sequent has an S-(cut-
free) proof from S. Since Γ1, . . . , Γn, Σ ⊆ T , this contradicts the ϕ-maximality
of T . ⊓⊔

Theorem 4. (Soundness and Completeness) Every strict canonical con-
structive system G is strongly sound and complete with respect to the semantics
of G-legal generalized frames. In other words:

1. T ⊢G ϕ iff T |=G ϕ.
2. S ⊢seq

G
s iff S |=seq

G
s.

Proof. Immediate from Theorems 3 and 2, and Propositions 1, 3. ⊓⊔

Corollary 1. If G is a strict canonical constructive system in L then 〈L, |=G〉
is a logic.

Corollary 2. (Compactness) Let G be a strict canonical constructive system.

1. If S |=seq
G

s then there exists a finite S′ ⊆ S such that S′ |=seq
G

s.
2. |=G is finitary.

Theorem 5.

1. (General Strong Cut Elimination Theorem) Every strict canonical
constructive system G admits strong cut-elimination (see Definition 12).

2. (General Cut Elimination Theorem) A sequent is provable in a strict
canonical constructive system G iff it has a cut-free proof there.

Proof. The first part follows from Theorem 4 and Theorem 3. The second part
is a special case of the first, where the set S of premises is empty. ⊓⊔



Corollary 3. The following conditions are equivalent for a strict canonical single-
conclusion Gentzen-type system G:

1. 〈L,⊢G〉 is a logic (by Proposition 2, this means that ⊢G is consistent).
2. G is coherent.
3. G admits strong cut-elimination.
4. G admits cut-elimination.

Proof. 1 implies 2 by Theorem 1. 2 implies 3 by Theorem 5. 3 trivially implies 4.
Finally, without using cuts there is no way to derive p1 ⇒ p2 in a strict canonical
Gentzen-type system. Hence 4 implies 1. ⊓⊔

5 Analycity and Decidability

In general, in order for a denotational semantics of a propositional logic to be
useful and effective, it should be analytic. This means that to determine whether
a formula ϕ follows from a theory T , it suffices to consider partial valuations,
defined on the set of all subformulas of the formulas in T ∪ {ϕ}. Now we show
that the semantics of G-legal frames is analytic in this sense.

Definition 19. Let G be a strict canonical constructive system for L. A G-legal
semiframe is a triple W ′ = 〈W,≤, v′〉 such that:

1. 〈W,≤〉 is a nonempty partially ordered set.
2. v′ is a partial function from the set of formulas of L into the set of persistent

functions from W into {t, f} such that:
– F ′, the domain of v′, is closed under subformulas.
– v′ respects the rules of G on F ′ (e.g.: if r is an introduction rule for an
n-ary connective ⋄, and ⋄(ψ1, . . . , ψn) ∈ F ′, then v(a, ⋄(ψ1, . . . , ψn)) = t
whenever all the premises of r are satisfied in a by a substitution σ such
that σ(pi) = ψi (1 ≤ i ≤ n)).

Theorem 6. Let G be a strict canonical constructive system for L. Then the
semantics of G-legal frames is analytic in the following sense:
If W ′ = 〈W,≤, v′〉 is a G-legal semiframe, then v′ can be extended to a function
v so that W = 〈W,≤, v〉 is a G-legal frame.

Proof. Let W ′ = 〈W,≤, v′〉 be a G-legal semiframe. We recursively extend v′

to a total function v. For atomic p we let v(p) = v′(p) if v′(p) is defined, and
v(p) = λa ∈ W.t (say) otherwise. For ϕ = ⋄(ψ1, . . . , ψn) we let v(ϕ) = v′(ϕ)
whenever v′(ϕ) is defined, and otherwise we define v(ϕ, a) = f iff there exists an
elimination rule r with ⋄(p1, . . . , pn) ⇒ as its conclusion, and an element b ≥ a
of W , such that all premises of r are satisfied in b (with respect to 〈W,≤, v〉) by
a substitution σ such that σ(pj) = ψj (1 ≤ j ≤ n). Note that the satisfaction of
the premises of r by σ in elements of W depends only on the values assigned by
v to ψ1, . . . , ψn, so the recursion works, and v is well defined. From the definition
of v and the assumption that W ′ is a G-legal semiframe, it immediately follows



that v is an extension of v′, that v(ϕ) is a persistent function for every ϕ (so
W = 〈W,≤, v〉 is a generalized L-frame), and that W respects all the elimination
rules of G. Hence it only remains to prove that it respects also the introduction
rules of G. Let r = {Πi ⇒ qi}1≤i≤m/ ⇒ ⋄(p1, p2, . . . , pn) be such a rule, and
assume that for every 1 ≤ i ≤ m, σ(Πi) ⇒ σ(qi) is true in a with respect to
〈W,≤, v〉. We should show that v(a, ⋄(ψ1, . . . , ψn)) = t.

If v′(a, ⋄(ψ1, . . . , ψn)) is defined, then since its domain is closed under sub-
formulas, for every 1 ≤ i ≤ n and every b ∈ W v′(b, ψi) is defined. In this case,
our construction ensures that for every 1 ≤ i ≤ n and every b ∈W we have
v′(b, ψi) = v(b, ψi). Therefore, since for every 1 ≤ i ≤ m, σ(Πi) ⇒ σ(qi) is locally
true in every b ≥ a with respect to 〈W,≤, v〉, it is also locally true with respect to
〈W,≤, v′〉. Since v′ respects r, v′(a, ⋄(ψ1, . . . , ψn)) = t, so v(a, ⋄(ψ1, . . . , ψn)) = t
as well, as required.

Now, assume v′(a, ⋄(ψ1, . . . , ψn)) is not defined, and assume by way of con-
tradiction that v(a, ⋄(ψ1, . . . , ψn)) = f . So, there exists b ≥ a and an elimination
rule {∆j ⇒ Σj}1≤j≤k/ ⋄ (p1, p2, . . . , pn) ⇒ such that σ(∆j) ⇒ σ(Σj) is locally
true in b for 1 ≤ j ≤ k. Since b ≥ a, our assumption about a implies that
σ(Πi) ⇒ σ(qi) is locally true in b for 1 ≤ i ≤ m. It follows that by defining
u(p) = v(b, σ(p)) we get a valuation u in {t, f} which satisfies all the clauses
in the union of {Πi ⇒ qi | 1 ≤ i ≤ m} and {∆j ⇒ Σj | 1 ≤ j ≤ k}. This
contradicts the coherence of G. ⊓⊔

The following two theorems are now easy consequence of Theorem 6 and the
soundness and completeness theorems of the previous section: 6

Theorem 7. Let G be a strict canonical constructive system. Then G is strongly
decidable: Given a finite set S of sequents, and a sequent s, it is decidable whether
S ⊢seq

G
s or not. In particular: it is decidable whether Γ ⊢G ϕ, where ϕ is formula

and Γ is a finite set of formulas.

Proof. Let F ′ be the set of subformulas of the formulas in S∪{s}. From Theorem
6 and the proof of Theorem 3 it easily follows that in order to decide whether
S ⊢seq

G
s it suffices to check all triples of the form 〈W,⊆, v′〉 where W ⊆ 2F

′

and
v′ : F ′ → (W → {t, f}), and see if any of them is a G-legal semiframe which is
a model of S but not a model of s. ⊓⊔

Theorem 8. Let G1 be a strict canonical constructive system in a language L1,
and let G2 be a strict canonical constructive system in a language L2. Assume
that L2 is an extension of L1 by some set of connectives, and that G2 is obtained
from G1 by adding to the latter strict canonical rules for connectives in L2−L1.
Then G2 is a conservative extension of G1 (i.e.: if all formulas in T ∪ {ϕ} are
in L1 then T ⊢G1

ϕ iff T ⊢G2
ϕ).

6 The two theorems can also be proved directly from the cut-elimination theorem for
strict canonical constructive systems.



Proof. Suppose that T 6⊢G1
ϕ. Then there is G1-legal model W of T which

is not a model of ϕ. Since the set of formulas of L1 is a subset of the set of
formulas of L2 which is closed under subformulas, Theorem 6 implies that W
can be extended to a G2-legal model of T which is not a model of ϕ. Hence
T 6⊢G2

ϕ. ⊓⊔

Note. Prior’s “connective” Tonk ([14]) has made it clear that not every com-
bination of “ideal” introduction and elimination rules can be used for defining
a connective. Some constraints should be imposed on the set of rules. Such a
constraint was indeed suggested by Belnap in his famous [7]: the rules for a con-
nective ⋄ should be conservative, in the sense that if T ⊢ ϕ is derivable using
them, and ⋄ does not occur in T ∪ ϕ, then T ⊢ ϕ can also be derived without
using the rules for ⋄. This solution to the problem has two problematic aspects:

1. Belnap did not provide any effective necessary and sufficient criterion for
checking whether a given set of rules is conservative in the above sense.
Without such criterion every connective defined by inference rules (without
an independent denotational semantics) is suspected of being a Tonk-like
connective, and should not be used until a proof is given that it is “innocent”.

2. Belnap formulated the condition of conservativity only with respect to the
basic deduction framework, in which no connectives are assumed. But noth-
ing in what he wrote excludes the possibility of a system G having two
connectives, each of them “defined” by a set of rules which is conservative
over the basic system B, while G itself is not conservative over B. If this
happens then it will follow from Belnap’s thesis that each of the two connec-
tives is well-defined and meaningful, but they cannot exist together. Such a
situation is almost as paradoxical as that described by Prior.

Now the first of these two objections is met, of course, by our coherence criterion
for strict canonical systems, since coherence of a finite set of strict canonical
rules can effectively be checked. The second is met by theorem 8. That theorem
shows that a very strong form of Belnap’s conservativity criterion is valid for
strict canonical constructive systems, and so what a set of strict canonical rules
defines in such systems is independent of the system in which it is included.

6 Related Works and Further Research

There have been several works in the past on conditions for cut-elimination.
Except for [6], the closest to the present one is [9]. The range of systems dealt
with there is in fact broader than ours, since it deals with various types of
structural rules, while in this paper we assume the standard structural rules of
minimal logic. On the other hand the results and characterization given in [9]
are less satisfactory than those given here. First, in the framework of [9] any
connective has essentially infinitely many introduction (and elimination) rules,
while our framework makes it possible to convert these infinite sets of rules into a
finite set. Second, our coherence criterion (for non-triviality and cut-elimination)



is simple and constructive. In contrast, its counterpart in [9] (called reductivity)
is not constructive. Third, our notion of strong cut-elimination simply limits the
set of possible cut formulas used in a derivation of a sequent from other sequents
to those that occur in the premises of that derivation. In contrast, reductive cut-
elimination, its counterpart in [9], imposes conditions on applications of the cut
rule in proofs which involve examining the whole proofs of the two premises of
that application. Finally, both works use non-deterministic semantic frameworks
(in [9] this is only implicit!). However, while we use the concrete framework of
intuitionistic-like Kripke frames, variants of the significantly more abstract and
complicated phase semantics are used in [9]. This leads to the following crucial
difference: our semantics leads to decision procedures for all the systems we
consider. This doesn’t seem to be the case for the semantics used in [9].

It should be noted that unlike the present work, [9] treats non-strict systems
(as is done in most presentations of intuitionistic logic as well as in Gentzen’s
original one), i.e. single-conclusion sequential systems which allow the use of
negative sequents in derivations. In addition to being widely used, the non-strict
framework makes it possible to define negation as a basic connective. It is natural
to try to extend our methods and results to the non-strict framework. However,
as the next observations show, doing it is not a straightforward matter:

– Consider a non-strict canonical system G containing only the following rules
for an unary connective, denoted by ◦:

{p1 ⇒} / ◦ p1 ⇒ and {p1 ⇒} / ⇒ ◦p1

Applications of these rules have the following form (where E is either empty
or a singleton):

Γ, ϕ⇒ E
Γ, ◦ϕ⇒ E

Γ,ϕ⇒
Γ ⇒ ◦ϕ

Obviously, G is not coherent. However, in G there is no way to derive a
negative sequent from no assumptions (this is proved by simple induction).
Hence, the introduction rule for ◦ can never be used in proofs without as-
sumptions. For this trivial reason, G is consistent. Hence, in this framework
coherence is no longer equivalent to consistency.

– For the same reason, G from the previous example admits cut-elimination
but does not admit strong cut-elimination. Hence, strong cut-elimination
and cut-elimination are also no longer equivalent.

– Consider the well-known rules for intuitionistic negation:

Γ ⇒ ϕ
Γ,¬ϕ⇒

Γ, ϕ⇒
Γ,⇒ ¬ϕ

If we naively extend our semantic definition to apply to this kind of rules,
we will obtain that in every legal frame v(a,¬ϕ) = t iff v(a, ϕ) = f (since
a negative sequent is true iff it is locally true). This is not the well-known
Kripke-style semantics for negation. Moreover, with this semantics we get
|=seq

G
ϕ ∨ ¬ϕ, which is obviously not provable in intuitionistic logic. Hence

some changes must be done in our semantic framework if we wish to directly
handle negation (and other negation-like connectives) in an adequate way.
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