Three Paths to Effectiveness

Udi Boker!"* and Nachum Dershowitz2**

1 School of Engineering and Computer Science, Hebrew University,
Jerusalem 91904, Israel
udiboker@cs.huji.ac.il
2 School of Computer Science, Tel Aviv University, Ramat Aviv 69978, Israel
nachum.dershowitz@cs.tau.ac.il

For Yuri, profound thinker, esteemed expositor, and treasured friend.

Abstract. Over the past two decades, Gurevich and his colleagues have
developed axiomatic foundations for the notion of algorithm, be it clas-
sical, interactive, or parallel, and formalized them in a new framework of
abstract state machines. Recently, this approach was extended to suggest
axiomatic foundations for the notion of effective computation over arbi-
trary countable domains. This was accomplished in three different ways,
leading to three, seemingly disparate, notions of effectiveness. We show
that, though having taken different routes, they all actually lead to pre-
cisely the same concept. With this concept of effectiveness, we establish
that there is — up to isomorphism — exactly one maximal effective model
across all countable domains.

Keywords: ASM, Church, Turing, effectiveness, Church, Turing, ef-
fectiveness, Church, Turing, effectiveness, Church, Turing, effectiveness,
Church, Turing, effectiveness

1 Introduction

Church’s Thesis asserts that the recursive functions are the only numeric func-
tions that can be effectively computed. Similarly, Turing’s Thesis stakes the
claim that any function on strings that can be mechanically computed can be
computed, in particular, by a Turing machine. For models of computation that
operate over arbitrary data structures, however, these two standard notions of
what constitutes effectiveness may not be directly applicable; as Richard Mon-
tague asserts [9, pp. 430-431]:

Now Turing’s notion of computability applies directly only to functions
on and to the set of natural numbers. Even its extension to functions
defined on (and with values in) another denumerable set S cannot be ac-
complished in a completely unobjectionable way. One would be inclined
to choose a one-to-one correspondence between S and the set of natural

* Supported in part by a Lady Davis postdoctoral fellowship.
** Supported in part by the Israel Science Foundation (grant no. 250/05).

numbers, and to call a function f on S computable if the function of
natural numbers induced by f under this correspondence is computable
in Turing’s sense. But the notion so obtained depends on what corre-
spondence between S and the set of natural numbers is chosen; the sets
of computable functions on S correlated with two such correspondences
will in general differ. The natural procedure is to restrict consideration
to those correspondences which are in some sense ‘effective’, and hence
to characterize a computable function on S as a function f such that, for
some effective correspondence between S and the set of natural numbers,
the function induced by f under this correspondence is computable in
Turing’s sense. But the notion of effectiveness remains to be analyzed,
and would indeed seem to coincide with computability.

One may ask, for example: What are the computable functions over the alge-
braic numbers? Does one obtain different sets of computable functions depending
on which representation (“correspondence”) one chooses for them?

Before we can answer such questions, we need a most-general notion of al-
gorithm. Sequential algorithms — that is, deterministic algorithms without un-
bounded parallelism or (intra-step) interaction with the outside world — have
been analyzed and formalized by Gurevich in [6]. There it was proved that any
algorithm satisfying three natural formal postulates (given below) can be emu-
lated, step by step, by a program in a very general model of computation, called
“abstract state machines” (ASMs). This formalization was recently extended in
[1] to handle partial functions. But an algorithm, or abstract state machine pro-
gram, need not yield an effective function. Gaussian elimination, for example, is
a perfectly well-defined algorithm over the real numbers, even though the reals
cannot all be effectively represented and manipulated.

We adopt the necessary point of view that effectiveness is a notion applicable
to collections of functions, rather than to single functions (cf. [I0]). A single
function over an arbitrary domain cannot be classified as effective or ineffective
[914], since its effectiveness depends on the context. A detailed discussion of
this issue can be found in [3].

To capture what it is that makes a sequential algorithm mechanically com-
putable, three different generic formalizations of effectiveness have recently been
suggested:

— In [3], the authors base their notion of effectivity on finite constructibility.
Initial data are inductively defined to be effective if they only contain a
Herbrand universe, in addition to finite data and functions that can be shown
constructible in the same way.

— In [5], Dershowitz and Gurevich require an injective mapping between the
arbitrary domain and the natural numbers. Initial data are effective if they
are tracked — under that representation — by recursive functions, as in the
traditional definition of “computable” algebras [15].

— In [12], Reisig bases effectiveness on the natural congruence relation between
vocabulary terms that arises in the theory of ASMs. Initial data are effective
if the induced congruence between terms is Turing-computable.

Properly extending these approaches to handle partial functions, and to refer
to a set of algorithms, it turns out that these three notions are essentially one
and the same.

2 Algorithms

We work within the abstract-state-machine framework of [6], modified to make
terminal states explicit and to allow partial operation to “hang”, as in [1]. We
begin by recalling Gurevich’s Sequential Postulates, formalizing the following
intuitions: (I) we are dealing with discrete deterministic state-transition systems;
(IT) the information in states suffices to determine future transitions and may be
captured by logical structures that respect isomorphisms; and (III) transitions
are governed by the values of a finite and input-independent set of (variable-free)
terms. See [5] for historical support for these postulates.

Postulate I (Sequential Time). An algorithm determines the following:

1. A nonempty set S of states and a nonempty subset Sy C S of initial states.
2. A partial next-state transition function 7:S — S.

A terminal state is one for which no transition is defined. Let O C S denote
the (possibly empty) set of terminal states. We write © ~, ¢’ when 2’ = 7(z).
A computation is a finite or infinite chain xg ~», 1 ~, --- of states.

Since transitions are functions, the states of an algorithm must contain all
the information necessary to determine the future of a computation, a full “in-
stantaneous description” of all relevant aspects of the computation’s current
status.

(It may appear that a recursive function is not a state-transition system, but
in fact the definition of a recursive function comes together with a computation
rule for evaluating it. As Rogers [I3] p. 7] writes, for instance, “We obtain the
computation uniquely by working from the inside out and from left to right”.)

Logical structures are ideal for capturing all the salient information stored in
a state. All structures in this paper are over first-order finite vocabularies, have
countably many elements in their domains (base sets), and interpret symbols
as partial operations. All relations are viewed as truth-valued functions, so we
refer to structures as (partial) algebras (with partial functions). We assume that
structures include Boolean truth values, standard Boolean operations, and that
vocabularies include symbols for these.

Postulate IT (Abstract State). The states S of an algorithm are partial al-
gebras over a finite vocabulary F, such that the following hold:

1. If x € S is a state of the algorithm, then any algebra y isomorphic to x
is also a state in S, and y is initial or terminal if x is initial or terminal,
respectively.

2. Transitions T preserve the domain; that is, Dom 7(x) = Dom « for every
non-terminal state x € S\ O.

3. Transitions respect isomorphisms, so, if ¢ : © = y is an isomorphism of
non-terminal states z,y € S\ O, then ¢ : 7(x) = 7(y).

Such states are “abstract”, because the isomorphism requirement means that
transitions do not depend in any essential way on the specific representation of
the domain embodied in a given state.

Since a state z is an algebra, it interprets function symbols in F, assigning
a value ¢ € Dom z to the “location” f(aq,...,ax) in = for every k-ary symbol
f € F and values aq,...,a; in Dom z. For location ¢ = f(aq,...,ax), we write
[€]. for the value f*(aq,...,ax) that = assigns to ¢. Similarly, for term ¢, [t].
is its value under the interpretations given to all the symbols in ¢ by x. If the
interpretation of any subterm is undefined, then so is the whole term. We use L
to denote an undefined value for a location or term. All terms in this paper are
ground terms, that is, terms without variables.

We shall assume that all elements of the domain are accessible via terms in
initial states (or else the superfluous elements may be removed with no ill effect).
But note that a transition may cause accessible elements to become inaccessible,
as explained in [12].

It is convenient to view each state as a collection of the graphs of its opera-
tions, given in the form of a set of location-value pairs, each written convention-
ally as f(a) — ¢, for a € Dom z, ¢ € Dom z. Define the update set A(x) of state
x as the changed location-value pairs, 7(z) \ . When z is a terminal state and
7(z) is undefined, we will indicate that by setting A(z) = L.

The transition function of an algorithm must be describable in a finite fash-
ion, so its description can only refer to finitely many locations in the state by
means of finitely many terms over its vocabulary.

Postulate III (Effective Transition). An algorithm with states S over vo-
cabulary F determines a finite set T of critical terms over F, such that states
that agree on the values of the terms in T also share the same update sets. That
18,

if © =p y then A(z) = Ay) ,
for any two states x,y € S.

Here, © =1 y, for a set of terms T', means that [t], = [¢], for all t € T..
Whenever we refer to an “algorithm” below, we mean an object satisfying
the above three postulates, what we like to call a “classical algorithm”.

Definition 1. An algorithm A with states S computes a partial function f :
D* — D if there is a subset T of its initial states, with locations for input
values, such that running the algorithm yields the correct output values of f.
Specificially:

1. The domain of each state in T is D.

2. There are k distinct locations {1, ..., such that all possible input values
are covered. That is, {([¢1],- .-, [lx]z) : © € T} = D*.
3. All states in I agree on the values of all locations other than {1, ..., 0.

4. There is a term t (in the vocabulary of the algorithm) such that for all

ap,...,ax € D, if f(ay,...,ar) = ¢, then there is some initial state xg € T,
with [U]leq = a; (5 = 1,...,k), initiating a terminating computation
Xg~rp e~ Ty, where xy, € O and such that [t],, = c.

5. Whenever f(ai,...,ar) is L, there is an initial state o € I, with
ilee = a; (5 = 1,...,k), initiating an infinite computation o ~> 1
~r

T

A (finite or infinite) set of algorithms, all with the same domain, will be
called a model (of computation).

3 Effective Models

We turn now to examine the three different approaches to understanding effec-
tiveness. Informally, they each add a postulate along the following lines:

Postulate IV (Effective Initial State). The initial states Sy of an effective
algorithm are finitely representable.

3.1 Distinguishing Models

Every state x induces a congruence on all terms, under which terms are congruent
whenever the state assigns them the same value:

st & [s]e = [t]x -

Isomorphic states clearly induce the same congruence.

We call a state “distinguishing” if its induced congruence is semi-decidable in
the standard sense. That is, a state is distinguishing if there is a Turing machine
(or similar device) that can act as “state manager”, receiving two terms as
input and returning true whenever both terms are defined and congruent, false
when both are defined but not congruent, and diverging otherwise. This is the
effectiveness notion explored in [I2] (which, however, considers only a single state
and total functions).

Definition 2 (Distinguishing Model).

— A state is distinguishing if its induced congruence is semi-decidable.

— An algorithm is distinguishing if all its initial states are.

— A model is distinguishing if every congruence induced by a finite set of initial
states (across different algorithms) is semi-decidable.

3.2 Computable Models

We say that an algebra A over (a possibly infinite) vocabulary F with domain
D simulates an algebra B over (a possibly infinite) vocabulary G with domain
E if there exists an injective “encoding” p: EE — D such that for every partial
function f : E¥ — E of B there is a partial function f : DF — D of A, such
that f(x) is defined exactly when (f o p)(x) is defined, for every x € E, and that
flx) = (p7! ofo p)(z) whenever f(z) is defined. In that case, we say that 7
tracks f under p.

Definition 3 (Computable Model).

— A state is computable if it is simulated by the partial recursive functions.
— An algorithm is computable if all its initial states are.
— A model is computable if all its algorithms are, via the same encoding.

This is a standard notion of “computable algebra” [SIITI7I5], adopted by [5]
(which, however, considers only a single algorithm and total functions).

The choice of the partial recursive functions as the starting point for defining
effective algorithms over arbitrary domains is natural, considering the Church-
Turing Thesis. The main question that one may raise is whether the allowance
of an injective representation between the arbitrary domain and the natural
numbers is sensible. We show, in the following lemma, that as long as all domain
elements are reachable by ground terms, the required injective representation
implies the existence of a bijection between the domain and the natural numbers.
Hence, the initial functions of a computable algorithm are isomorphic to some
partial-recursive functions, which makes their effectiveness hard to dispute.

Lemma 1. Let M be a computable model over domain D. Then there is a bijec-
tion m : D < N such that, for each partial function f : D¥ — D of each initial
state of each algorithm in M, there is a partial-recursive function f : N¥ —~ N
that tracks f under .

Proof. Let p be the injective representation from D to N, via which all initial
functions of M are partial recursive. For each initial function f, we denote its
partial recursive counterpart by f. That is, f = p~'o fop.

Consider one specific algorithm A of M with vocabulary F. By definition,
all elements of D are reachable in each initial state by terms of F. Therefore,
all elements of Im p C N are reachable by terms of F, as interpreted by the
partial-recursive tracking fiunctions.

Let {c¢; }; be a computable enumeration of all terms over F. One can construct
a computable enumeration of all the F-terms that are defined in the tracking
interpretations by interleaving the computations of the {c;}; terms in the stan-
dard (Cantor’s) zigzag fashion (a computation step for the first term, followed by
one for the second term and two for the first, then one for the third, two for the
second and three for the first, etc.). Accordingly, an enumeration {d;}; can be
set up, assigning a unique F-term for every number in Im p, by enumerating the

defined F-terms, as above, and ignoring those terms that evaluate to a number
already obtained.

In this fashion, we can define a recursive bijection 1 : Im p < N, letting
n(n) be the unique j such that [d;] = n. Note that n~! is also recursive, as
i (m) = [l o

Let m : D < N be the bijection m = nop, and, for each function f € F,
define the partial recursive function f to be no fon~!. Then, for each function
f : D¥ — D of each initial state of each algorithm in M,

~

f=p"ofop=ptontonofon tonep=ntonofon tom=n1""ofom.

3.3 Constructive Models

Let x be an algebra over vocabulary F, with domain D. A finite vocabulary
C C F constructs D if x assigns each value in D to exactly one term over C.

Definition 4 (Constructive Model).

— A state is constructive if it includes constructors for its domain, plus opera-
tions that are almost everywhere “blank”, meaning that all but finitely-many
locations have the same default value (say undef).

— An algorithm is constructive if its initial states are.

— A model is constructive if all its algorithms are, via the same constructors.

Moreover, constructive algorithms can be bootstrapped: Any state over vocabulary
F with domain D is constructive if F can be extended to CWG so that C constructs
Dsubsect and every g € G has a constructive algorithm over C that computes it.

This is the approach advocated in [3] (which, however, considers only total func-
tions).
As expected:

Theorem 1 ([3, Thm. 3]). The partial recursive functions form a constructive
model.

Conversely:

Theorem 2 (cf. [3, Thm. 4]). FEvery constructive model can be simulated by
the partial recursive functions via a bijective encoding.

Though this theorem in [3] does not speak of a bijective encoding, its proof
therein in point of fact uses a bijective encoding. That proof refers only to total
functions; however, partial functions can be handled similarly. Also, one needs
to show, inductively, that constructive initial functions used in bootstrapped
constructive algorithms are tracked by partial-recursive functions.

4 Equivalence of Definitions of Effectiveness

The following equivalence is demonstrated in the remainder of this section.

Theorem 3. A model of computation is computable if and only if it is construc-
tive if and only if it is distinguishing.

Returning to the example of algebraic numbers, this means that one obtains
the same set of effectively-computable (partial) functions over the domain of
algebraic numbers, regardless of which definition of effectiveness one adopts. In
particular, the effective partial functions over algebraic numbers — obtained in
any of these ways — are isomorphic to the partial recursive functions over the
natural numbers, and, by results in [2], no representation can yield additional
functions.

4.1 Computable and Distinguishing
Theorem 3a. Computable models are distinguishing.

Proof. Given a computable model M over domain D, there is, by definition,
an injective representation p : D — N such that, for every function f in an
initial state of one of the algorithms in M, there is a partial recursive function
f over N that tracks f under p. Since every finite subset M’ of algorithms in
M can have only finitely many initial functions, it follows that a single partial
computable function can check for equality of the values of two terms in the
initial states of any such M " by using partial computable implementations of
the f’s to compute the numerical counterparts of the terms and — if and when
that computation terminates — testing equality of the resultant numerals. Hence,
M is distinguishing. O

Theorem 3b. Distinguishing models are computable.

Proof. Let M be a distinguishing model over domain D and consider some spe-
cific algorithm A € M with vocabulary F. Let {¢;};, be any computable enu-
meration of terms over F, and let ~ be the partial computable function that
semi-decides the congruence relation of terms in A. One can define a computable
enumeration {c; }; of all F-terms that are defined in M by interleaving the com-
putations of ¢; ~ ¢; for all terms ¢;, in the standard zigzag fashion. A term ¢; is
added to the enumeration once the corresponding congruence computation ends.
Define the injective representation p : D — N by

ple) = min{e;] = o}
For any initial function f of A, define the partial recursive function

f(n) :==minc; = f(cn)

where f(c,) is the term obtained by enclosing the term ¢, with the symbol f.
These numerical f track their original counterparts f over D, as follows:

~

Flp(a)) = Flmin{le;] = 23)
— min {ci = f(@)} where k = min{[¢;] = v}
= min {[ei] = [/(e)]}
= min {[ei] = /([ex])}
= min {[e] = f()}
= ().

Similarly for operators of other arities.

It is left to show how the specific injective representation from D to N,
which was defined according to one algorithm of M, suits all other algorithms
of M. Consider any algorithm B € M with vocabulary F’ and let {0’7 }; be some
computable enumeration of all defined terms over F’. By the definition of distin-
guishing, there is a partial computable function semi-deciding the equivalence of
any two terms of the algorithms A and B. This allows one to translate between
the term enumerations of A and B and also have partial recursive functions that
track the initial functions of B. For any initial function g of B, define the partial
recursive function

g(n) = miin {ci ~g (Cining{c;:cn})})
These numerical g track their original counterparts g in B, as follows:
3(p(@) = glamin{e;] = o))

— ml_in {c; ~ g(¢}.)} where k = ming {Clz ~ Cminj{[[Cj]]:”f}}
= ming {[¢}] = [Cumin, {1c;1=0}] }
= min,{[¢}] = «}

= min {[e;] = [g(ci.)]}

= miin{[[Ci]] = g([¢.])}

= miin{[[ci]] =g(x)}

=p(9(x)) .

Similarly for operators of other arities.
It follows that M is computable under the auspices of p. a

4.2 Computable and Constructive

Computability is based on the recursiveness of the initial functions, under an
injective representation of the arbitrary domain D as natural numbers N. Fur-

thermore, the requirement that all domain elements are reachable by terms im-
plies that there is also a bijective mapping from D to N via which the initial
functions are partial recursive.

Theorem 3c. Constructive models are computable.

Proof. Let M be a constructive model over domain D and let M’ consist of
algorithms for all the constructive functions and all the almost-everywhere-blank
functions in M’s initial states. By Theorem [2] the set of functions computed by
M’ is simulatable by the partial recursive functions via some representation
p : D — N. Hence, all initial functions of M are tracked by partial recursive
functions, making M computable. a

Theorem 3d. Computable models are constructive.

Proof. For any computable model M over domain D, there is, by Lemma [I} a
bijection 7 : D < N such that every function f in the initial states of M’s algo-
rithms is tracked under m by some partial recursive function g. By Theorem
there is a constructive model that computes all the partial recursive functions
P over N. Since algorithms (according to Postulate [lI]) are closed under isomor-
phism, so are constructive models. Hence, there is a constructive model P over
7~ Y(N), with some set of constructors, that computes all functions mogom !
that are tracked by functions g € P, and — in particular — computes all initial
functions of M. Since all M’s initial functions are constructive, M is construc-
tive. a

Theorem [3]is the conjunction of Theorems [3a}3d]

5 Conclusions

Thanks to Theorem |3 it seems reasonable to just speak of “effectiveness”, with-
out distinguishing between the three equivalent notions discussed in the previous
sections. Having shown that three prima facie distinct definitions of effectiveness
over arbitrary domains comprise exactly the same functions strengthens the im-
pression that the essence of the underlying notion of computability has in fact
been captured.

Fixing the concept of an effective model of computation, the question natu-
rally arises as to whether there are “maximal” effective models, and if so, whether
they are really different or basically one and the same. Formally, we consider an
effective computational model M (consisting of a set of functions) over domain
D to be mazimal if adding any function f ¢ M over D to M gives an ineffective
model M U{f}. It turns out that there is exactly one effective model (regardless
of which of the three definitions one prefers), up to isomorphism.

Theorem 4. The set of partial recursive functions is the unique mazimal effec-
tive model, up to isomorphism, over any countable domain.

10

Proof. We first note that the partial recursive functions are a maximal effective
model. Their effectiveness was established in Theorem[I] As for their maximality,
the partial recursive functions are “interpretation-complete”, in the sense that
they cannot simulate a more inclusive model, as shown in [2/4]. By Theorem
they can simulate every effective model, leading to the conclusion that there is
no effective model more inclusive than the partial recursive functions.

Next, we show that the partial recursive functions are the unique maximal
effective model, up to isomorphism. Consider some maximal effective model M
over domain D. By Theorem [2| the partial recursive functions can simulate
M via a bijection 7. Since effectiveness is closed under isomorphism, it follows
that there is an effective model M’ over D isomorphic to the partial recursive
functions via 7~!. Hence, M’ contains M, and by the maximality of M we get
that M’ = M. Therefore, M is isomorphic to the partial recursive functions, as
claimed. a

The Church-Turing Thesis, properly interpreted for arbitrary countable do-
mains (see [3]), asserts that the partial recursive functions (or Turing machines)
constitute the most inclusive effective model, up to isomorphism. However, this
claim only speaks about the extensional power of an effective computational
model, not about its internal mechanism. Turing, in his seminal work [16], jus-
tified the thesis by arguing that every “purely mechanical” human computation
can be represented by a Turing machine whose steps more or less correspond
to the manual computation. Indeed, Turing’s argument convinced most people
about the validity of the thesis, which had not been the case with Church’s
original thesis regarding the effectiveness of the recursive functions (let alone
Church’s earlier thoughts regarding the lambda calculus). Notwithstanding its
wide acceptance, neither the Church-Turing Thesis nor Turing’s arguments pur-
port to characterize the internal behavior of an effective computational model
over an arbitrary domain.

On the other hand, Gurevich’s abstract state machines are the most general
descriptive form for (sequential) algorithms known. As such, they can express
the precise step-by-step behavior of arbitrary algorithms operating over arbitrary
structures, whether for effective computations or for hypothetical ones. The work
in [3I5IT2] specializes this model by considering effective computations. The ad-
ditional effectiveness axiom proposed in [3] and adopted in our Definition |4 of
constructive models does not rely on the definition of Turing machines or of the
partial recursive functions, thereby providing a complete, generic, stand-alone
axiomatization of effective computation over any countable domain.

References

1. Blass, A., Dershowitz, N., Gurevich, Y.: Exact exploration. Technical Report
MSR-TR-2009-99, Microsoft Research, Redmond, WA (2010). Available at http://
research.microsoft.com/pubs/1015697/Partial.pdf. A short version to appear
as “Algorithms in a world without full equality” in the Proceedings of the 19th
EACSL Annual Conference on Computer Science Logic (Brno, Czech Republic),
Lecture Notes in Computer Science. Springer (Aug. 2010)

11

http://research.microsoft.com/pubs/101597/Partial.pdf
http://research.microsoft.com/pubs/101597/Partial.pdf

10.

11.

12.

13.

14.

15.

16.

. Boker, U., Dershowitz, N.: Comparing computational power. Logic Journal of the

IGPL 14 (2006) 633-648

Boker, U., Dershowitz, N.: The Church-Turing thesis over arbitrary domains. In:
Avron, A., Dershowitz, N., Rabinovich, A. (eds.): Pillars of Computer Science, Es-
says Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday.
Lecture Notes in Computer Science, Vol. 4800. Springer (2008) 199-229

Boker, U., Dershowitz, N.: The influence of domain interpretations on compu-
tational models. Journal of Applied Mathematics and Computation 215 (2009)
1323-1339

Dershowitz, N., Gurevich, Y.: A natural axiomatization of computability and proof
of Church’s Thesis. Bulletin of Symbolic Logic 14 (2008) 299-350

Gurevich, Y.: Sequential abstract state machines capture sequential algorithms.
ACM Transactions on Computational Logic 1 (2000) 77-111

Lambert, Jr., W.M.: A notion of effectiveness in arbitrary structures. The Journal
of Symbolic Logic 33 (1968) 577-602

Mal’tsev, A.: Constructive algebras I. Russian Mathematical Surveys 16 (1961)
77-129

Montague, R.: Towards a general theory of computability. Synthese 12 (1960)
429-438

Myhill, J.: Some philosophical implications of mathematical logic. Three classes of
ideas. The Review of Metaphysics 6 (1952) 165-198

Rabin, M.O.: Computable algebra, general theory and theory of computable fields.
Transactions of the American Mathematical Society 95 (1960) 341-360

Reisig, W.: The computable kernel of abstract state machines. Theoretical Com-
puter Science 409 (2008) 126-136

Rogers, Jr., H.: Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York (1966)

Shapiro, S.: Acceptable notation. Notre Dame Journal of Formal Logic 23 (1982)
14-20

Stoltenberg-Hansen, V., Tucker, J.V.: 4. In: Effective Algebra. Handbook of Logic
in Computer Science, Vol. 4. Oxford University Press (1995) 357-526

Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society 42 (1936—
37) 230-265. Corrections in vol. 43 (1937), pp. 544-546. Reprinted in M. Davis
(ed.), The Undecidable, Raven Press, Hewlett, NY, 1965. Available at: http:
//www.abelard.org/turpap2/tp2-ie.asp

12

http://www.abelard.org/turpap2/tp2-ie.asp
http://www.abelard.org/turpap2/tp2-ie.asp

	Three Paths to Effectiveness

