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Abstract. We address the problem of estimating the expected influence curves
with good accuracy from a single observed information diffusion sequence, for
both the asynchronous independent cascade (AsIC) model and the asynchronous
linear threshold (AsLT) model. We solve this problem by first learning the model
parameters and then estimating the influence curve using the learned model. Since
the length of the observed diffusion sequence may vary from a very long one to
a very short one, we evaluate the proposed method by simulation using artificial
diffusion sequence of various lengths and show that the proposed method can
estimate the expected influence curve robustly from a single diffusion sequence
with various lengths.

1 Introduction

The rise of the Internet and the World Wide Web accelerates the creation of various
large-scale social networks, and considerable attention has been brought to social net-
works as an important medium for the spread of information [1–5]. Innovation, topics
and even malicious rumors can diffuse through social networks in the form of so-called
“word-of-mouth” communications. Such social interaction processes are usually char-
acterized by highly distributed phenomena over a social network, but the high com-
plexity and distributed nature of these processes do not necessarily imply that these
evolutions are chaotic or unpredictable. Just as natural scientists discover laws and cre-
ate models for their fields, so can one, in principle, find empirical regularities and de-
velop explanatory accounts of evolution in a social network. Especially, such predictive
knowledge would be valuable for market opportunities. In this paper, as a piece of such
predictive knowledge, we focus on acquiring the expected influence curve of each in-
formation source node by using information diffusion models.
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Widely used information diffusion models in recent studies are the independent
cascade (IC) [6–8] and the linear threshold (LT) [9, 10]. They have been used to solve
such problems as the influence maximization problem [7, 11]. These two models fo-
cus on different information diffusion aspects. The IC model is sender-centered and an
active node influences its inactive neighbors independently with diffusion probabilities
assigned to links. On the other hand, the LT model is receiver-centered and a node is
influenced by its active neighbors if the sum of their weights exceeds the threshold for
the node. Both models have parameters that need be specified in advance: diffusion
probabilities for the IC model, and weights for the LT model. However, their true val-
ues are not known in practice. This poses yet another problem of estimating them from
a set of information diffusion results that are observed as time-sequences of influenced
(activated) nodes. To the best of our knowledge, there are only a few methods that can
estimate the parameter values for the IC and LT models and their variants that incor-
porate asynchrnous time delay (referred to as the AsIC model and the AsLT model) [3,
12–14]. We follow the methods in [13, 14] in this paper.

Now assume that we observed a single information diffusion sequence for an infor-
mation source node. How can we acquire the expected influence curve from this single
instance of observation? This is the problem we want to solve. In a sence, this sequence
can be regarded as a piece of crude knowledge about the expected influence curve be-
cause we can count the number of nodes that have been influenced (activated) by any
time point t which we specify. However, due to its stochastic nature, such a sequence
varies in a quite wide range each time we observe it, even if we know which of the two
models (AsIC and AsLT) the information diffusion follows. Thus, it is undesirable to
approximate the expected influence curve by a single instance of observed sequence.

In this paper, we assume that information diffuses over a network by either the
AsIC model or the AsLT model, and propose a novel method for estimating the ex-
pected influence curve by first estimating parameters for the assumed models from a
single observed informaition diffusion sequence and use the learned model to estimate
the expected curve. In another word, our method can be viewed as a knowledge refine-
ment method from the observed single information diffusion sequence to the expected
influence curve based on the information diffusion model. We performed extensive ex-
periments to evaluate whether the proposed method can estimate the influence curve
much more accurately than the observed diffusion curve itself. The results cleary show
the advantage of our method.

The paper is organized as follows. We revisit the information diffusion models and
briefly explain the independent cascade model, the linear threshold model, and their
asynchronous time delay versions (the models we use in this paper) : AsIC and AsLT in
section 2, and revisit parameter learning algorithms for AsIC and AsLT in section 3. We
then describe the estimation method of the expected influence curve in section 4, and
explain the experimental results in detail in section 5, followed by some discussions in
section 6. We summarize our conlcusion in section 7.
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2 Information Diffusion Models

We first define the IC model according to [7], and then introduce the asynchronous
IC model (AsIC). After that, we do the same for the LT model and the asynchronous
LT model (AsLT). We mathematically model the spread of information over a directed
network G = (V, E) without self-links, where V and E (⊂ V×V) stands for the sets of all
the nodes and links, respectively. We call nodes active if they have been influenced with
the information. It is assumed that nodes can switch their states only from inactive to
active, but not from active to inactive. Given an initial set S of active nodes, we assume
that the nodes in S have first become active at an initial time, and all the other nodes
are inactive at that time. Node u is called a child node of node v if (v, u) ∈ E, and node
u is called a parent node of node v if (u, v) ∈ E. For each node v ∈ V , let F(v) and B(v)
denote the set of child nodes of v and the set of parent nodes of v, respectively,

F(v) = {w ∈ V; (v,w) ∈ E}, B(v) = {u ∈ V; (u, v) ∈ E}.

2.1 Independent Cascade Model

The IC model is a fundamental probabilistic model for the spread of a disease. In this
model, we specify a real value κu,v with 0 < κu,v < 1 for each link (u, v) in advance. Here
κu,v is referred to as the diffusion probability through link (u, v). The diffusion process
unfolds in discrete time-steps t ≥ 0, and proceeds from a given information source node
in the following way. When a node u becomes active at time-step t, it is given a single
chance to activate each currently inactive child node v, and succeeds with probability
κu,v. If u succeeds, then v will become active at time-step t + 1. If multiple parent nodes
of v become active at time-step t, then their activation attempts are sequenced in an
arbitrary order, but all performed at time-step t. Whether or not u succeeds, it cannot
make any further attempts to activate v in subsequent rounds. The process terminates if
no more activations are possible.

2.2 Asynchronous Independent Cascade Model

Next, we extend the IC model so as to allow continuous-time delays, and refer to the
extended model as the Asynchronous independent cascade (AsIC) model. In the AsIC
model, we specify a real value ru,v with ru,v > 0 for each link (u, v) ∈ E in advance
together with diffusion probability κu,v. We refer to ru,v as the time-delay parameter
through link (u, v).

The diffusion process unfolds in continuous-time t, and proceeds from a given in-
formation source node in the following way. Suppose that a node u becomes active at
time t. Then, node u is given a single chance to activate each currently inactive child
node v. We choose a delay-time δ from the exponential distribution with parameter ru,v.
If node v is not active before time t+δ, then node u attempts to activate node v, and suc-
ceeds with probability κu,v. If u succeeds, then v will become active at time t + δ. Under
the continuous time framework, it is unlikely that multiple parent nodes of v attempt to
activate v at exactly the same time t + δ. So we ignore this possibility. Whether or not
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u succeeds, it cannot make any further attempts to activate v in subsequent rounds. The
process terminates if no more activations are possible.

For an information source node v, let ϕ(t; v) denote the number of active nodes at
a specified time t, i.e. the number of nodes that have become activated by t. Note that
ϕ(t; v) is a random variable. Let σ(t; v) denote the expected value of ϕ(t; v). We call
σ(t; v) the expected influence curve of v for the AsIC model.

2.3 Linear Threshold Model

The LT model is a fundamental probabilistic model for the spread of innovation. In this
model we specify a weight (ωu,v > 0) for every node v ∈ V from its parent node u in
advance such that

∑
u∈B(v)ωu,v ≤ 1. The diffusion process from a given initial active set

S proceeds according to the following randomized rule. First, for any node v ∈ V , a
threshold θv is chosen uniformly at random from the interval [0, 1]. At time-step t, an
inactive node v is influenced by each of its active parent nodes, u, according to weight
ωu,v. If the total weight from active parent nodes of v is no less than threshold θv, that
is,
∑

u∈Bt(v) ωu,v ≥ θv, then v will become active at time-step t + 1. Here, Bt(v) stands for
the set of all the parent nodes of v that are active at time-step t. The process terminates
if no more activations are possible.

2.4 Asynchronous Linear Threshold Model

We make a similar extention to the LT model so as to allow continuous-time delays, and
refer to the extended model as the Asynchronous linear threshold (AsLT) model. In the
AsLT model, in addition to the weight set {ωu,v}, we specify real values rv with rv > 0
in advance for each node v ∈ V . We refer to rv as the time-delay parameter on node v.
Note that rv depends only on v, which means that it is the node v’s decision when to
receive the information once the activation condition has been satisfied.

The diffusion process unfolds in continuous-time t, and proceeds from a given initial
active set S in the following way. Suppose that the total weight from active parent nodes
of v became no less than the threshold θv at time t for the first time. Then, v will become
active at time t + δ, where we choose a delay-time δ from the exponential distribution
with parameter rv. Further, note that even though some other non-active parent nodes
of v become active during the time period between t and t + δ, the activation time of
v, t + δ, still remains the same. The other diffusion mechanisms are the same as the LT
model. Similarly to the AsIC model, we can also define the expected influence curve
σ(t; v) of an information source node v for the AsIC model.

3 Learning Algorithms

We define the time-delay parameter vector r and the diffusion parameter vector κ by r =
(ru,v)(u,v)∈E and κ = (κu,v)(u,v)∈E for the AsIC model. Similarly, we define the parameter
vectorsω and r by ω = (ωu,v)(u,v)∈E and r = (rv)v∈V for the AsLT model. In practice, the
true values of these parameters are not available. Thus, we must learn them from past
information diffusion histories.
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We consider an observed data set of M independent information diffusion results,
{Dm; m = 1, · · · ,M}. Here, each Dm is a set of pairs of active nodes and their activation
times in the mth information diffusion result, Dm = {(u, tm,u), (v, tm,v), · · · }. For each
Dm, we denote the observed initial time by tm = min{tm,v; (v, tm,v) ∈ Dm}, and the
observed final time by Tm ≥ max{tm,v; (v, tm,v) ∈ Dm}. Note that Tm is not necessarily
equal to the final activation time. Hereafter, we express our observation data by DM =

{(Dm, Tm); m = 1, · · · ,M}. For any t ∈ [tm, Tm], we set Cm(t) = {v; (v, tm,v) ∈ Dm, tm,v <
t}. Namely, Cm(t) is the set of active nodes before time t in the mth information diffusion
result. For convenience sake, we use Cm as referring to the set of all the active nodes
in the mth information diffusion result. Moreover, we define a set of non-active nodes
with at least one active parent node for each by ∂Cm = {v; (u, v) ∈ E, u ∈ Cm, v � Cm}.
For each node v ∈ Cm ∪ ∂Cm, we define the following subset of parent nodes, each of
which has a chance to activate v.

Bm,v =

{
B(v) ∩Cm(tm,v) if v ∈ Cm(tm,v),
B(v) ∩Cm if v ∈ ∂Cm.

In oder to learn the values of r and κ for the AsIC model, and the values of r and ω
for the AsLT model for the givenDM , we adopt the method proposed in [13] and [14],
respectively, each of which is only briefly explained here.

3.1 Learning Parameters of AsIC Model

To learn the values of r and κ from DM for the AsIC model, we revisit the likelihood
functionL(r, κ;DM) with respect to r and ω to use as the objective function [13]. First,
we consider any node v ∈ Cm with tm,v > tm for the mth information diffusion result. Let
Φm,u,v denote the probability density that a node u ∈ B(v) ∩ Cm(tm,v) activates the node
v at time tm,v, that is,

Φm,u,v = κu,vru,v exp(−ru,v(tm,v − tm,u)). (1)

Let Ψm,u,v denote the probability that the node v is not activated from a node u ∈ B(v) ∩
Cm(tm,v) during the time-period [tm,u, tm,v], that is,

Ψm,u,v = 1 − κu,v
∫ tm,v

tm,u
ru,v exp(−ru,v(t − tm,u))dt

= κu,v exp(−ru,v(tm,v − tm,u)) + (1 − κu,v). (2)

As explained in 2.2, it is not necessary to consider simultaneous activations by multiple
active parents even if η = |B(v) ∩ Cm(tm,v)| > 1. Thus, the probability density that the
node v is activated at time tm,v, denoted by h(IC)

m,v , can be expressed as

h(IC)
m,v =

∑
u∈B(v)∩Cm(tm,v)

Φm,u,v

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∏

x∈B(v)∩Cm(tm,v)\{u}
Ψm,x,v

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

∏
x∈B(v)∩Cm(tm,v)

Ψm,x,v

∑
u∈B(v)∩Cm(tm,v)

Φm,u,v(Ψm,u,v)−1. (3)
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Note that we are not able to know which node u actually activated the node v. This can
be regarded as a hidden structure.

Next, for the mth information diffusion result, we consider any link (v,w) ∈ E
such that v ∈ Cm and w � Cm. Let g(IC)

m,v,w denote the probability that the node w is not
activated by the node v during the observed time period [tm, Tm]. We can easily derive
the following equation:

g(IC)
m,v,w = κv,w exp(−rv,w(Tm − tm,v)) + (1 − κv,w). (4)

Therefore, by using equations (3), (4), and the independence properties, we can define
the likelihood functionL(r, κ;DM) with respect to r and κ by

L(r, κ;DM) =
M∏

m=1

∏
v∈Cm

⎛⎜⎜⎜⎜⎜⎜⎝h(IC)
m,v

∏
w∈F(v)\Cm

g(IC)
m,v,w

⎞⎟⎟⎟⎟⎟⎟⎠ , (5)

Thus, our problem is to obtain the time-delay parameter vector r and the diffusion pa-
rameter2. vector κ, which together maximize Equation (5). To obtain the values of r and
κ, we can employ a learning method based on the Expectation-Maximization algorithm
in order to stably obtain its solutions [13].

3.2 Learning Parameters of AsLT Model

To learn the values of r and ω from DM for the AsLT model, we also revisit the like-
lihood function L(r,ω;DM) with respect to r and ω to use as the objective function
[14]. For the sake of technical convenience, we introduce a slack weight ωv,v for each
node v ∈ V such that ωv,v +

∑
u∈B(v) ωu,v = 1. Here note that such a slack weight ωv,v

never contributes to the activation of v and that for each node v, since a threshold θv is
chosen uniformly at random from the interval [0, 1], we can regard each weight ω∗,v as
a multinomial probability.

Suppose that a node v became active at time tm,v for the mth result. Then, we know
that the total weight from active parent nodes of v became no less than the threshold
θv at the time when one of these active parent nodes, u ∈ Bm,v, became first active.
However, in case of |Bm,v| > 1, there is no way of exactly knowing the actual nodes
due to the continuous time-delay. Suppose that a node v was actually activated when
a node ζ ∈ Bm,v became activated. Then θv is between

∑
u∈B(v)∩Cm(tm,ζ ) ωu,v and ωζ,v +∑

u∈B(v)∩Cm(tm,ζ ) ωu,v. Namely, the probability that θv is chosen from this range is ωζ,v.
Here note that such events with respect to different active parent nodes are mutually
disjoint. Thus, the probability density that the node v is activated at time tm,v, denoted
by h(LT )

m,v , can be expressed as

h(LT )
m,v =

∑
u∈Bm,v

ωu,vrv exp(−rv(tm,v − tm,u)). (6)

Here we define h(LT )
m,v = 1 if tm,v = tm.

2 We use “diffusion parameter” and “diffusion probability” interchangeably depending on the
contex
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Next, we consider any node w ∈ V belonging to ∂Cm = {w; (v,w) ∈ E ∧ v ∈
Cm(Tm) ∧ w � Cm(Tm)} for the mth result. Let gm,v denote the probability that the node
v is not activated during the observed time period [tm, Tm]. We can calculate gm,v as
follows:

g(LT )
m,v = 1 −

∑
u∈Bm,v

ωu,v

∫ Tm

tm,u
rv exp(−rv(t − tm,u))dt

= 1 −
∑

u∈Bm,v

ωu,v(1 − exp(−rv(Tm − tm,v)))

= ωv,v +
∑

u∈B(v)\Bm,v

ωu,v +
∑

u∈Bm,v

ωu,v exp(−rv(Tm − tm,v)). (7)

Therefore, by using Equations (6) and (7), and the independence properties, we can
define the likelihood functionL(r,ω;DM) with respect to r and ω by

L(r,ω;DM) =
M∏

m=1

⎛⎜⎜⎜⎜⎜⎜⎝∏
v∈Cm

h(LT )
m,v

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ ∏

v∈∂Cm

g(LT )
m,v

⎞⎟⎟⎟⎟⎟⎟⎠ . (8)

Thus, our problem is to obtain the time-delay parameter vector r and the diffusion pa-
rameter vector ω, which together maximize Equation (8). To obtain the values of r
and ω, we can also employ a learning method based on the Expectation-Maximization
algorithm in order to stably obtain its solutions [14].

4 Expected Influence Curve Acquisition

Thus far, we assumed that the time-delay and diffusion parameters can vary with respect
to nodes and links. However, as mentioned earlier, we address the problem of estimating
the influence curves from single observed diffusion sequences. Thus, in order to avoid
overfitting to the observed data, we place a constraint that the parameters are uniform
on nodes and links throughout the network G. Therefore, we set ru,v = r and κu,v = κ for
any link (u, v) ∈ E in case of the AsIC model and rv = r and ωu,v = κ|B(v)|−1 for any
node v ∈ V and link (u, v) ∈ E in case of the AsLT model, where note that 0 < κ < 1
and ωv,v = 1 − κ. Namely, since parameter κ of the AsLT model can be interpreted as a
kind of diffusion probability, we employ the same symbol as used in the AsIC model.
Without this constraint there is no way to learn the parameters since we only have one
sequence of observation that covers only a small part of existing links.

We describe our method for acquiring an expected influence curve under the AsIC
and AsLT model. Assume that we have observed the following single information dif-
fusion sequence from the information source node v0 at time t0.

d = {(v0, t0), (v1, t1), · · · , (vT , tT )}

First, by using the method described in Section 3.1 or 3.2, we can learn a pair of model
parameters, κ and r, from the observed diffusion sequence d. Next, by using the method
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described in Section 2.2 or 2.4, we obtain the following K sets of simulated diffusion
sequences

sk = {(v0, t0), (vk,1, tk,1), · · · , (vk,T , tk,T )}, k = 1, · · · , K.

Here note that the information source node v0 at time t0 is the same for all sequences, but
their final activation times {tk,T } as well as their numbers of activated nodes {|sk |} vary
in quite wide range, as shown later in our experiments. Finally, by using the generated
sequences S = {s1, · · · , sK }, we can estimate the expected influence curve σ(t, v0) as
follows:

σ(t; v0, d) =
1
K

K∑
k=1

|{(v, τ) ∈ sk ; τ ≤ t}| (9)

This method needs three kinds of input information, i.e., the single observed diffu-
sion sequence d, the topology of observed social network G, and the number of diffu-
sion simulation trials K; then it outputs the expected influence curve σ(t, v0). Below we
summarize the estimation algorithm.

step 1 Learn a pair of parameters κ and r from d.
step 2 Generate S = {s1, ..., sK} by simulating information diffusion K times with the

learned parameters κ and r.
step 3 Calculate the expected influence curve σ(t; v0, d) as the average of S .

In our experiments, the number of diffusion simulation trials is set to K = 100.

5 Experiments

We evaluate the feasibility of the proposed estimation method using the topologies of
two large real network data.

5.1 Evaluation Procedure

Below we describe a procedure to evaluate our proposed method.

proc. 1 Decide information diffusion model: AsIC or AsLT, and choose its true param-
eters κ∗ and r∗, and an information source node v0 at time t0.

proc. 2 Generate a set of N diffusion sequences D under the setting of proc. 1.
proc. 3 Calculate the expected influence curve σ(t; v0) from D (by Equation (9) with

S replaced by D) and the empirical influence curve ϕ(t; v0, dn) from each dn ∈ D.
proc. 4 Estimate the expected influence curve σ(t; v0, dn) from each dn ∈ D by the

proposed method in Section 4.
proc. 5 Calculate the RMSE curves EC and ED for evaluation.

In reality it is almost impossible to obtain the actual expected influence curve from
observation. Thus our evaluation resorts to experiments based on synthetic data by as-
suming an information diffusion model, AsIC or AsLT, with a pair of model parameters,
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κ∗ and r∗ which we assume to be true (proc. 1). Then, by performing simulation based
on the model with the true parameters, we can prepare a set of N synthetic diffusion
sequences denoted by D = {d1, · · · , dN} (proc. 2). Next, by applying Equation (9)
with respect to D (instead of S ), we can obtain a reasonably accurate expected influ-
ence curve σ(t; v0) (proc. 3). Here we can also obtain an empirical influence curve for
each of the generated sequence dn defined by ϕ(t; v0, dn) = |{(v, τ) ∈ dn ; τ ≤ t}| (proc.
3)3. On the other hand, by regarding each of the generated sequence dn as a single ob-
served diffusion sequence, we can estimate the expected influence curve σ(t; v0, dn) by
our method proposed in Section 4 (proc. 4). Finally, we evaluate the average accuracy
of the expected influence curves estimated by our method by means of the RMSE (Root
Mean Squered Error) curve EC(t) and compare it with that of the empirical influence
curves denoted by ED(t). Here these RMSE curves, EC(t) and ED(t), are defined as
follows.

EC(t) =

√√√
1
N

N∑
n=1

(σ(t; v0, dn) − σ(t; v0))2, ED(t) =

√√√
1
N

N∑
n=1

(ϕ(t; v0, dn) − σ(t; v0))2.

We can consider that the RMSE curve for ED(t) corresponds to the average accuracy
of the single observed diffusion sequence when we interprete it as a piece of crude
knowledge.

5.2 Experimental Settings

In our experiments, we employed two datasets of large real networks used in [8], which
exhibit many of the key features of social networks. The first one is a trackback network
of Japanese blogs. The network data were collected by tracing the trackbacks from one
blog in the site goo4 in May, 2005. We refer to this network data as the blog network.
The blog network was a strongly-connected bidirectional network, where a link created
by a trackback was regarded as a bidirectional link since blog authors establish mutual
communications by putting trackbacks on each other’s blogs. The blog network had
12, 047 nodes and 79, 920 directed links. The second one is a network of people that was
derived from the “list of people” within Japanese Wikipedia. We refer to this network
data as the Wikipedia network. The Wikipedia network was also a strongly-connected
bidirectional network, and had 9, 481 nodes and 245, 044 directed links.

We determined the values of r and κ of the two models which we assumed to be true
in the following way. In the AsIC model, we calculated the mean out-degree d̄ and set
two different values of κ in reference to 1/d̄, one smaller than 1/d̄ according to [7] and
the other larger than 1/d̄ to see how a different value affects the result. Since the values
of d̄ were about 6.63 and 25.85 for the blog and the Wikipedia networks, respectively,
the corresponding values of 1/d̄ were about 0.15 and 0.03. Thus, we decided to set
κ = 0.1 and 0.3 for the blog network and κ = 0.03 and 0.09 for the Wikipedia network
as the true values. As for the time-delay parameter r, we simply decided to set it to 1.0
because changing r is equivalent to changing the time scale accordingly. In the AsLT

3 Note that dn is not continuous but ϕ(t; v0, dn) is continuous with respect to t.
4 http://blog.goo.ne.jp/
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(a) Curves for generated sequences (b) Parameter estimation results

(c) Curves from estimated parameters (d) Accuracy comparison

Fig. 1: The result set of blog network under the AsIC model (κ∗ = 0.1)

model, we only chose one value for κ. This is because we found that the information
does not reach out far in the AsLT model and we needed to set a large value for κ to
realize a decent diffusion. A value of 0.9 was a proper choice for κ. The time-delay
parameter was set to r = 1.0, same as for the AsIC model.

5.3 Experimental results

blog network under the AsIC model Figure 1 is the results of blog network under the
AsIC model for the parameters κ = 0.1 and r = 1.0 (proc. 1). Figure 1(a) plots individ-
ual sequence data when the diffusion simulation was repeated N = 1000 times starting
from the same initial source node (proc. 2). The horizontal axis is the time and the verti-
cal axis is the number of active nodes. As shown in the figure, we observe a wide variety
of influence curves with respect to time (dipicted in grey) due to the stochastic nature
of the AsIC model. Here our task is to estimate the expected influence curve (depicted
in red (black)), which is approximated by the empirical mean of the 1000 gray curves
(proc. 3). Figure 1(b) is to show that it is possible to estimate the parameters of the
AsIC model, i.e. time-delay parameter r and diffusion probability κ even from a single
diffusion sequence. There are 1000 dots and each dot is the esitmated results (r, κ) from
the corresponding sequence (proc. 4). We observe that the parameter estimation results
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(a) Curves for generated sequences (b) Parameter estimation results

(c) Curves from estimated parameters (d) Accuracy comparison

Fig. 2: The result set of Wikipedia network under the AsIC model (κ∗ = 0.03)

are scatterd around the true values (r∗, κ∗) = (1.0, 0.1), which were used to generate
each sequence. The color (greyness) in the bar on the right indicates the lengh of the
sequence, and the results are not very sensitive to the length unless it is very short. Fig-
ure 1(c) shows the estimated influence curves (depicted in cyan (grey)), each of which is
obtained by performing simulation K = 100 times from the correspondng initial source
node using the AsIC model with the same parameters learned from the correspond-
ing original diffusion sequence. The target expected influence curve is the same as in
Figure 1(a). Figure 1(d) shows the RMSE (Root Mean Squared Error) curves for both
the original influence ϕ(t; v0, dn) (Figure 1(a)) and the estimated influence σ(t; v0, dn)
(Figure 1(c)) with respect to the target influence (proc. 5). As shown, we observe that
the RMSE for the estimated curve is much smaller (less than 1/3) than the one for the
original one. Thus, we can say that the estimated influence curve is much closer to the
expected influence curve than the original curve. Similar result is obtained for the case
of κ∗ = 0.3.

Wikipedia network under the AsIC model Figures 2 and 3 are the results of Wikipedia
network under the AsIC model for κ∗ = 0.03 and κ∗ = 0.09, respectively. In both cases,
the RMSE for the estimated curve is much smaller (about 1/4 for κ∗ = 0.03 and about
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(a) Curves for generated sequences (b) Parameter estimation results

(c) Curves from estimated parameters (d) Accuracy comparison

Fig. 3: The result set of Wikipedia network under the AsIC model (κ∗ = 0.09)

1/2 for κ∗ = 0.09) in the proposed method. The results for κ∗ = 0.03 is similar to the re-
sults of blog network except that the shape of the RMSE curve is different. However, the
results for κ∗ = 0.09 reveal different behaviors. When the diffusion probability is large,
the information propagates far enough and individual sequence becomes similar to each
other. Note that the number of nodes is almost doubled. The accuracy becomes better
accordingly, especially for the original influence ϕ(t; v0, dn). In general the proposed
method is more effective when the diffusion probability is small and the observation
sequences are diversified.

blog network under the AsLT model Figure 4 shows the results of blog network under
the AsLT model for κ∗ = 0.9. Unlike the AsIC model, the information does not spread
far and wide and the sequences are short. Accordingly the number of active nodes are
much smaller (less than 500) and the errors in the parameter estimation are larger than
the AsIC model. But still, we can say that the parameters are estimated reasonably well
and the RMSE is much smaller (about 1/3) in the proposed method. Similar results are
obtained for Wikipedia network.
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(a) Curves for generated sequences (b) Parameter estimation results

(c) Curves from estimated parameters (d) Accuracy comparison

Fig. 4: The result set of blog network under the AsLT model (κ∗ = 0.9)

5.4 Visual Analyses

We saw that observation sequences are diverse in general due to the stochastic nature
of the diffusion process. The differences in diffusion patterns are best understood by
visualizing the active nodes. Figure 5 visualizes two extreme diffusion patterns for blog
network of Figure 2 by using Cross-entropy method [15]. The red dots indicate active
nodes and the gray dots non-active nodes. Figure 5(a) is the pattern for the longest se-
quence and Figure 5(b) is the one for the shortest sequence. We observe that dots are
not uniformly distributed but have some dense reagions forming communities. In Fig-
ure 5(a) the information diffuses across many communities and spread widely, whereas
in Figure 5(b) it is trapped within the same community of the initial source node and
does not spread. Consequently, the number of active nodes in Figure 5(a) is 1,789 and
that in Figure 5(b) is only 220. Simialr result is also observed in Wikipedia network.

6 Discussion

We note that the analysis we showed in this paper is the simplest case where κ and r
take a single value each for all the links in E. However, the method is very general. In a
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(a) Visualization of high diffusion result (b) Visualization of low diffusion result

Fig. 5: Visualization of blog network

more realistic setting we can divide E into subsets E1, E2, ..., EN and assign a different
value κn and rn for all the links in each En. For example, we may divide the nodes into
two groups: those that strongly influence others and those not, or we may divide the
nodes into another two groups: those that are easily influenced by others and those not.
We can further divide the nodes into multiple groups. In this setting we learn κn and rn

for n = 1, 2, ...,N from a single observation sequence.
We aimed to estimate the expected influence curve assuming two different infor-

mation diffusion models in this paper but the framework of the proposed method can
be applied to other models as well as other measures. For example, if we are inter-
ested in how different opinions spread [16], we can use the Voter model and estimate
the expected opiniton share curve under this framework. Which measure and model to
use depends on the problem we want to solve and the evaluation must be based on a
task-specific performance measure.

7 Conclusion

One of the challenges of social network analysis is to estimate the expected influence
degree with respect to time (expected influence curve). Because of the stochastic nature
of information diffusion, a single observation sequence is not reliable to use as an ap-
proximation of this curve. We proposed a novel method to estimate the expected influ-
ence curve with good accuracy from a single observed information diffusion sequence
assuming two types of information diffusion models: the asynchronous independent
cascade (AsIC) model and the asynchronous linear threshold (AsLT). The method first
learns the model parameters from a single observation sequence and next use the learned
model to estimate the expected influence curve. We showed that parameter learning
from a single sequence is feasible and practical, and the estimated influence curve is
much more accurate than using the observed sequence as its approximation by exten-
sive experiments using two real world networks.
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