
Flexible Working Architectures: Agile
Architecting Using PPCs

Jennifer Pérez, Jessica Diaz, Juan Garbajosa, and Pedro P. Alarcón

Technical University of Madrid (UPM), E.U. Informática, Madrid, Spain
Jenifer .perezQeui.upm.es, yesica.diaz@upm.es,

{jgs.pedrop.alarcon}@eui.upm.es

Abs t r ac t . Software systems need software architectures to improve their
scalability and maintenance. However, many agile practitioners claim
that the upfront design of software architectures is an investment that
does not pay off, since customers can rarely appreciate the value deliv­
ered by architectures. Furthermore, conventional architectural practices
may be considered unacceptable from the Agile values and principles
perspective. In this paper, the development of working architectures in
agile iterations is presented as an attempt to solve the problem of de­
signing software architectures in Agile. This contribution is based on the
new concept of Plastic Partial Component (PPC). PPCs are highly mal­
leable components that can be partially described, what increases the
flexibility of architecture design. PPCs based architectures let reinforce
some of the agile values and principles. Our experience of putting this
contribution into practice is illustrated through the agile development of
a Testing Framework for Biogas Plants.

1 Introduction

It is a well accepted fact in Software Engineering tha t architectures make soft­
ware systems simpler and more understandable. Software architectures describe
the structure of a software system by hiding the low-level details and abstract­
ing the high level important features [1]. Software architectures also accommo­
date non-functional requirements. The design, specification, and analysis of the
structure of software-intensive systems have become critical issues in software
development [2]. As a result, software architectures emerged as a solution for the
design and development of large and complex software systems.

The Agile Manifesto [3] is the basis of agile methodologies. It establishes the
following two principles: "Working software is the primarg measure of progress"
and "Delivering working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale". These two agile principles
imply that , the limited time tha t the development of a working product takes
the developers, should be mostly invested in coding to satisfy the delivery dead­
line. Therefore, agile practitioners often consider tha t the upfront design and
definition of software architectures is an investment in time and effort tha t is
not paid off.

http://upm.es
mailto:yesica.diaz@upm.es

Literature is full of references tha t advocates against architecture in Agile, as
customers rarely can appreciate the value tha t architecture delivers. A common
belief is tha t "If you are sufficiently agile, you don't need an architecture - you
can always refactor it on the fly". However, it has been argued tha t an inaccu­
rate architectural design leads to the failure of large software systems and large
refactoring might create significant defects [4]. As it is illustrated by Dybá and
Dings0yr in [5], several authors advocate tha t the lack of focus on architecture
is bound to engender suboptimal design-decisions. This lack is in contradiction
with an Agile principle tha t establishes tha t "Continuous attention to techni­
cal excellence and good design enhances agility". In addition, according to Babar
and Abrahamsson [6] software architectures may be also essential to improve and
scale up Agile Software Development1 in large software-intensive systems. Cock-
burn [7] claims tha t the issue with architecture in Agile is not either architecture
yes or architecture no: he thinks tha t the issue is how much effort should be in­
vested in architecture, assuming tha t (architecture) practices can be valuable for
the customer. Kruchten concludes in [8] tha t in software architectures there are
cost and value, also for agile. Then, the key question is: "Are we able to avoid the
obstacles that hamper agile practitioners to design software architectures without
renouncing their values and principles?". There are some works [7,8,9,10,11] tha t
intend to harmonize Agile and architecture by outlining high level approaches or
organizational guidelines, but do not provide specific techniques or practices to
design architectures tha t favor agile values and principles. Our understanding is
tha t having flexibility at the t ime of denning software architectures is essential,
so that , practices can be aligned with Agile values and principles.

In this paper, we deal with the problem of designing software architectures in
Agile. Prom the wide-scope of tasks tha t software architectures comprise: (i) to
analyze and describe the properties of systems at a high level of abstraction; (ii)
to validate software requirements; (iii) to estimate the cost of the development
and maintenance processes; (iv) to reuse software; and (v) to establish the bases
and guidelines for the design of large complex software systems [1]. Our contri­
bution is focused on the structural viewpoint of software architectures, i.e. the
description of software architectures.

We present our experience using Plastic Partial Components (PPCs) [12] to
specify software architectures in an Agile context. A Plastic Part ial Component
(PPC) is a new concept to support internal variation of architectural components
by hooking crosscutting and non-cross cutting concerns (aspects and features) tha t
are unaware of the linking context. Despite the fact tha t P P C s were originally
defined for Software Product Lines (SPLs) [13], we have taken advantage of their
extension mechanisms for designing software architectures in Agile. Using PPCs ,
architectural components can be iteratively and incrementally developed in each
iteration and, by extension, the software architecture tha t they make up. This ar­
chitecture is incrementally and iteratively designed in each iteration by adding/
removing: (i) aspects and /or features to/from its PPCs , and (ii) components and
connections to/from the architecture. From this proposal, a new concept in

1 In this article we will use the term Agile representing Agile Software Development.

software architectures emerges, called working architecture. A working architec­
ture is the architecture that is obtained along with each working product in each
agile iteration. We illustrate our proposal of using PPCs in Agile through our ex­
perience of developing a framework, in cooperation with industrial partners, for
monitoring, testing and operating biogas power production plants.

It is necessary to emphasize that our contribution is focused on the structural
viewpoint of software architecture, i.e. the description of software architectures.
Software architectures address: (i) the description of systems properties at a high
level of abstraction; (ii) validation of software requirements; (iii) estimation of
the cost of the development and maintenance processes; (iv) software reusability;
and (v) establish the bases and guidelines for the design of large complex software
systems [1].

The structure of the paper is as follows: Section 2 introduces the main no­
tions of agile and PPCs. In addition, it explains the agile methodology SCRUM.
Section 3 discusses related works about software architecture practices in Agile.
Section 4 explains why and how PPCs fit for use with Agile. It also explains our
proposal about how to specify working architectures. Section 5 presents
study that is used to illustrate our contribution, and exemplifies the use of PPCs
in Agile. Finally, conclusions and further work are presented in section 6.

2 Background

2.1 Agile Software Development

Agility is just an umbrella term for a variety of methods structured into values,
principles and practices, with a common reference in the Agile Manifesto [3].
Shore et al. [14] define values as ideals, principles as the application of these
ideals to the industry, and practices as principles applied to a specific type of
project. The relevance of values and principles is increasing as long as large orga­
nizations are requiring their application [15]. Some of these agile principles are:
customer satisfaction through early and continuous delivery of valuable software;
continuous attention to technical excellence; or welcome changing requirements,
even late in development. Some common Agile methods are eXtreme Program­
ming (XP) [16], Lean Development [17], and Scrum [18], the one used within
this work.

Scrum implements an iterative and incremental life cycle (see Figure 1). Three
roles, the Product Owner, Team, and ScrumMaster make up all together the
Scrum Team [18]. The Product Owner represents the key stakeholder interests.
The Team is in charge of developing the product functionality and the customer
is often a membership of the team. The Scrum process is responsibility of the
ScrumMaster. Requirements are captured as User Stories (USs) by the customer
together with the rest of the Scrum Team members during the pre-game phase,
at the beginning of the project. The list of USs is stored in the product backlog.
Later on in the process, USs are prioritized and divided into short time-framed
iterations called sprints. A sprint is a 2-4 weeks period of development time. The
scope and goals of each sprint are agreed at its beginning by the Product Owner

User Stor ies SPRINT
2-4 Weeks

¡.WgwUser Stories R e t r o s p e c t i v e Review

Fig. 1. Scrum Lifecycle

and the Team at the sprint planning meeting. The output from this meeting is
stored in the sprint backlog. Each sprint should deliver a valuable increment of
the final product functionality. During the execution of each sprint, the Team
will meet daily in a 15-minute meeting to track work progress. At the end of
each sprint, the sprint review and retrospective meetings will be held. In the
sprint review meeting the Product Owner will communicate whether goals were
met, and might introduce changes into the USs. In the retrospective meeting the
Team and ScrumMaster discuss what went well, and what could be improved
for the next sprint, and works as an estimation and tracking activity to put into
practice continuous improvement.

2.2 A n O v e r v i e w of P las t i c Part ia l C o m p o n e n t s (P P C s)

The notion of Plastic Partial Component (PPC)2 was originally defined for Soft­
ware Product Lines Engineering (SPLE) [13]. SPLE adoption requires explicitly
to specify the commonalities and variabilities of SPLs at the architectural level.
This implies not only to specify variants for modifying the configuration of soft­
ware architectures, but also to define variations inside components. P P C s are a
solution to support the internal variation of architectural components.

P P C s variability mechanisms are based on Invasive Software Composition
Principles [19]. Invasive Software Composition defines components as fragment
boxes tha t hook a set of reusable fragments of code. Specifically, these fragments
of reusable code can be aspects making components easier to be maintained
and by extension software architectures. The variability of a P P C is specified
using variability points, which hook fragments of code to the P P C . These frag­
ments of code are specific features of a software product, which can crosscut
the software architecture or not. For this reason, we classified these features
into: crosscutting-features and non-crosscutting-features. A crosscutting-feature
is a common feature of the software architecture, which is encapsulated into a
separate entity called aspect. Whereas, a non-crosscutting-feature is the specific
functionality of a component, which is encapsulated into a separate entity called
feature. Therefore, variability points can hook aspects or features to the P P C .
A P P C is defined by specifying: (i) its variability points; (ii) the aspects and /or

2 This section presents just an overview of PPCs. A broader description with additional
references to literature sources can be found in [12].

fefM ^ v ^ n w t a

A I . ' I '«Í4KFJ F#fld*il

^ l» f l i I AilHtCn

Fig. 2. a) Linking Plastic Partial Components and Variability Points, b) Variability
Points and Variations (Aspects and Features).

features that are necessary to complete the definition of the component for any
software product; and (iii) the hooks between the variability points and the as­
pects and/or features. As a result, the complete definition of a PPC for a specific
product is done by means of the selection of aspects and/or features through the
variability points.

A PPC is a specialization of a component and inherits all the properties and
behavior of a component. A PPC is characterized by the definition of a set of
variability points, i.e. the place where the different variants are hooked to the
PPC (see Figure 2.a). A variability point of a PPC is characterized by three
properties: (i) the kind of variation, (ii) the type of variability point depending
on the variants that it offers to be selected (i.e. crosscutting or non-crosscutting
features), and (iii) the weaving between variants and the component.

The kind of variation is based on the variability management of software
architectures that Bachmann and Bass set out [20]. This property is provided
to support variability, and it defines the number of variants of a product family
that must be selected (mandatory) or can be selected (optional) for developing
a specific product of the family. The kind of variation is specified as cardinality
(0..1, 1..1, 0..n, l..n, m..n).

There are two types of variability points (see Figure 2.b): (i) those that permit
the selection of variants that are crosscutting-features (aspects); (ii) and those
that permit the selection of variants that are non-crosscutting features (features).
An Aspect Variability Point (AVP) can only offer aspects to be selected; and a
Feature Variability Point (FVP) can only offer features to be selected. It is
important to emphasize that both aspects and features can be linked to more
than one variability point to facilitate reuse.

Variability points allow us to specify the weaving between the PPC and the
variant. The weaving principles of Aspect-Oriented Programming (AOP) [21] pro­
vide the needed functionality to specify where and when extending the PPCs
using variants. Therefore, AOP weaving primitives (pointcuts, weavings and as­
pects) are applied to weave a PPC with both, aspects and features. The pointcut
definition consists of defining where to insert the code of the variant. An exam­
ple of pointcut could be calling a service that the PPC provides. The definition
of the weaving operator consists of establishing when to insert the code of the
variant with regard to the pointcut: before, after or instead of (around). In our

proposal, it will be before, after or insteadOf the call of the service of the PPC.
Thereby, the PPC, the pointcut, the weaving operator and the variant are the
elements that define a weaving.

However, there are some differences between our definition of aspects and
weavings and those AOP provides. In our proposal, the pointcut and the weaving
operator are specified outside the aspects and features, and inside variability
points. As a result, unlike AOP, our aspects and features are unaware of the
linking context, and they are completely reusable.

The description of working architectures using PPCs is supported by a graph­
ical modeling tool called Flexible-PLA. Flexible-PLA has been developed follow­
ing the MDD approach [22,23] to take advantage of its metamodel definition and
its corresponding graphical metaphor [12]. It has been automatically generated
from the metamodel and the graphical metaphor. It was possible because they
were specified using the Eclipse Modeling Framework (EMF) and its Graphical
Modeling Framework(GMF) [24]. As a result, Flexible-PLA is an open-source
tool that is available for the research community.

3 Related Work

To make come true agile software architectures, it is necessary: (i) to provide
mechanisms to flexibly describe them and (ii) to define how they should be
designed throughout the Agile software life cycle, i.e, how to perform agile ar-
chitecting. In any case, Agile values and principles should be respected.

On the one hand, with regard to software architecture description, Scott Am­
bler in [25] proposes a model based on views and concerns for designing software
architectures in Agile. We take a step forward and define a specific formalism to
systematically introduce crosscutting and non-crosscutting features in the Agile
Software Development of architectures. This is due to the fact that we real­
ized that it is necessary to be flexible enough for supporting not only external
changes (modification of the architectural configuration by adding or remov­
ing components or connections), but also internal changes (modification inside
components). It is important to keep in mind that these internal changes must
preserve abstraction and encapsulation (black boxes) of software architectures
and Agile flexibility requirements. So, internal changes are treated as crosscut-
ting and non-crosscutting features that are easily added and removed to/from
agile software architectures.

On the other hand, with regard to agile architecting, one of the main Agile
issues is to improve the scalability of their products by designing their software
architectures. Several proposals have been outlined to fix this issue [9,10,11].
Most of them agree with the idea that Agile should incorporate architectural
information when it is applied to develop large-scale software-intensive systems.
However, the proposed approaches are rather "high-level". Cockburn [7] proposes
to start with a simple architecture that handles all the big rocks. Then, it can
be evolved or re factored as other requirements appear; but it should not be an
objective to get the architecture at the end of the project. Boehm and Turner [9]

recognize that hybrid approaches to balance agile and plan-driven approaches
are necessary; McMahon [10] recommends employing in agile architectures two
levels. The first level develops a high-level agile architecture including the major
system components, assumptions, and a brief description of each component.
The second level focuses on the high-risk areas for each iteration (big rocks).
M. Ali Babar et al. [11] analyze the role of the architecture in Agile through a
case study by integrating software product lines and agile practices, and carry
out a description of the organizational processes. All these works recognize and
recommend the role of architectures in Agile but the practices they provide are
rather general.

Prom our point of view, it is not necessary to create new mechanisms from
scratch to design software architectures in Agile. We can adopt existing mech­
anisms that assists architects to flexibly develop software architectures. This
flexibility can be obtained from mechanisms that allow us to specify variability.
Agile methodologies can take advantage of variability mechanisms to flexibly
adapt software architectures and to incrementally develop them together with
the working product. In fact, our proposal uses PPCs [12] to incrementally design
software architectures in Agile.

4 Flexible Working Architectures

Agile establishes an iterative and incremental software development, in which
iterations are short time-framed and always deliver valuable software (working
product). When Agile Methodologies are applied to develop large-software inten­
sive systems, software architectures are required to scale their working and final
products. Software architectures bridge the gap between requirements and imple­
mentation [1], and by extension between USs and the implementation. Therefore,
mechanisms for designing flexible architectures along with the working product
in each agile iteration are required to deal with the obstacles that hamper agile
practitioner to design software architectures. These mechanisms must support
for easily adding/removing components and connections (external variation) and
adding/removing features and aspects inside components (internal variation),
considering variation like incremental steps in software development.These as­
sumptions and PPCs are the base of our proposal for developing software prod­
ucts in Agile by designing their software architectures and preserving the Agile
values and principles. In this section, it is explained how PPCs can help us to
flexibly build working architectures throughout the ASD life cycle.

4.1 Plastic Partial Components in Agile

PPCs variability mechanisms are successfully applied to SPLs to support internal
variation of architectural components among the products of a SPL. However,
in Agile, variability mechanisms are not used to define variations (aspects and
features) among products. On the contrary, they are used to flexibly add, re­
move and modify aspects and/or features throughout the iterations of an Agile

lifecycle. Variability mechanisms behave as extensibility mechanisms to flexibly
compose pieces (aspects, features, components) of software as if we were building
a puzzle. As a result, PPCs get closer and closer to customer needs by means
of specifying the aspects and features only when they are strictly required by a
working product. From the PPC definition it is possible to conclude that PPCs
facilitate to meet the agile principle and values:

— Partial: PPCs are Partial because they can be incompletely specified. They
can be working components delivered and refined each iteration as part of the
working product. Therefore, PPCs allow us to incrementally develop archi­
tectural components by only taking into account the required functionality
for each iteration, and to construct them in time to the working product.

— Plastic: PPCs are Plastic because they are highly malleable. This is thanks
to their extensibility mechanisms, which allow us to flexibly adapt software
components by easily adding or removing fragments of code. As a result,
they are ready to be extended or modified at any moment.

PPCs are always composed of mandatory aspects or features and every vari­
ability point of a PPC is either mandatory and unique or mandatory multiple
and multiple. In agile, aspects and features of PPCs are mandatory unless they
will be removed over iterations. So, the kinds of variation are constrained to the
following cardinalities:

- 1..1: mandatory and unique: it is mandatory to select the unique aspect or
feature of the variability point.

- m..n: mandatory and multiple: variability point is not used in Agile as a
point of decision, therefore it is mandatory to select the multiple features or
aspects of the variability point. For this reason, the number of selections m is
equals to the number of variants n, and the cardinality is n..n.

Therefore, when PPCs are applied in Agile, the two types of variability points
are characterized by the kind of addition, update or deletion, not by the kind
of selection that performs. An Aspect Variability Point (AVP) can only add,
modify or remove aspects; and a Feature Variability Point (FVP) can only add,
modify or remove features.

4.2 Agile Architecting

In this section, we present our experience of applying PPCs in Agile. In our pro­
posal, all the components of the architecture are PPCs, that are incrementally
developed in time to the working product. They constitute the new concept of
working architecture. A working architecture is the architecture that is iteratively
and incrementally designed together with the working product. This idea was
also proposed in [26,27,28] as continuous architecting. Continuous architecting
allow us to tackle architecture degradation and keep the system in sync with
changing conditions. In addition, successful agile architecting requires to define
the role of the architect in an Agile team. The architecture team is part of the
Agile team and interacts with the rest of members at the making-decision process
by tracking architectural concerns and balancing them with business priorities.

Thereby, architecture can also support one of the agile values, communication
[29]. Next, from our experience we explain how to develop agile working architec­
tures using PPCs. We make a distinction between the first performed iteration
and the others.

First Iteration

Once the architecture team, the development team, and the customer have de­
fined the USs of the software product, the customer selects the USs for being
developed in the first iteration. This selection is performed taking into account
the priorities of the customer and the advice and recommendations of the devel­
opment and architecture teams. Next, the development and architecture teams
can start the architecture design and implementation of the selected USs. Before
implementing USs, it is important to analyze them to identify candidate com­
ponents for a working architecture of the working product. Whereas traditional
software development classifies requirements into functional and non-functional,
Agile does not make this distinction in USs. In fact, most USs are related to func­
tional requirements due to the fact that they are those requirements that the
customer perceives as the result he/she requires. However, it often happens that
non-functional requirements, such as distribution or security, have to be implic­
itly considered and implemented to meet the functional requirements, i.e. cus­
tomer needs. As a result, the architecture team must keep in mind non-functional
requirements to identify them in the USs. In consequence, we understand that
the architecture team must analyze USs to identify:

1. PPCs: Units of basic functionality, also known as major software compo­
nents [10]. They are candidate components of the software architecture of
the working product. They make up the working architecture.

2. Features: Features represent non-cross cutting features (see section 2.2). They
are usually functional requirements that are not relevant enough for being
major software components. They constitute additional functionality of the
final product, which is susceptible of being removed over time. Thus, they
are part of the functionality that a PPC provides.

3. Aspects: Aspects represent cross cutting features (see section 2.2). They are
usually non-functional requirements. They are part of the functionality that
one or more PPCs provide.

4. Architectural Connections: Connections to coordinate PPCs and configure a
working architecture.

From this iteration, a first version of the working architecture is obtained.

Subsequent Iterations

As in the first iteration, the customer, the architecture and development teams
select the USs that are going to be developed during the current iteration. How­
ever, in this case the selection can be also guided and supported by the working
architecture obtained from the previous iteration. This is due to the fact that

software architectures not only can help us s tudy the feasibility of the develop­
ment of software systems, but also can help us determine which requirements
are reasonable and viable [30], and by extension which USs could be selected.
There are different criteria of selection tha t can be assisted by the architecture
knowledge such as scalability, reusability or the impact of changes. Therefore, the
knowledge of a working architecture is a value which may enrich the agile process.

Once the customer, architecture and development teams have selected the
USs for the iteration, the architecture and development teams can s tar t the
architecture design and implementation of the selected USs as in the first itera­
tion. Finally, after completing the last iteration, a final software architecture is
obtained as part of the final product.

It is important to emphasize tha t the unique difference among the first itera­
tion and the rest of them is the fact tha t the first iteration s tar ts from scratch the
software architecture. We do not define a ZFR (Zero Feature Release) where the
customer does not participate as other approaches propose [16,10]. We consider
tha t the investment of time and cost in this ZFR does not guarantee tha t the
decisions taken will be definitive and the ZFR architecture will be preserved. So,
our first iteration is just one more, where the customer participates. In each it­
eration, PPCs , Aspects, Features or Connections from the software architecture
are updated, added and removed in a flexible way and without any restriction.

4 .3 Ana lys i s of P P C s a n d Working Architectures from t h e Ag i l e
P e r s p e c t i v e

P P C s facilitate to meet the agile principles and values and to carry out some of
the agile practices. P P C s and working architectures match with the four agile
values: (i) Individuals and interactions over processes and tools: The architec­
ture team is par t of the Agile team and participates in its meetings; (ii) Working
software over comprehensive documentation: P P C s are part of a working archi­
tecture, which is software tha t is delivered in each working product; (iii) Cus­
tomer collaboration over contract negotiation: The architecture team interacts
with the customer throughout the agile process; and (iv) Responding to change
over following a plan: P P C s easily accept changes by adding or removing fea­
tures and /or aspects and they are connected between them to configure working
architectures.

With regard to the twelve agile principles, next we detail those tha t could be
enriched with our proposal.

— (PI). Our highest priority is to satisfy the customer through early and con­
tinuous delivery of valuable software: P P C s help get closer and closer to
customer needs over iterations, and by extension the working architecture.

— (P2). Welcome changing requirements, even late in development. Agile pro­
cesses harness change for the customer's competitive advantage: P P C s are
plastic. They are ready to be extended or modified at any moment.

— (P3). Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale: Working architectures
are par t of the delivery.

— (P4)- The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation: The architecture
team participates in every meeting of the project and is welcome to the
new customer needs. The architecture team shares architectural information
among its members and with all others in every scheduled meeting. The
architecture team is open minded to the changes tha t their feedback may
imply. This is thanks to the adaptat ion facilities tha t P P C s and working
architectures provide.

— (P5). Working software is the primary measure of progress: the working
architecture is part of the working software tha t is delivered in each iteration.

— (P6). Continuous attention to technical excellence and good design enhances
agility: P P C s supports to intuitively modularize and scale software by using
its variability mechanisms, which can be advantageously used for adding or
removing pieces of software throughout the different iterations tha t comprise
the development of a working product. In addition, P P C s help us to easily
apply a major technique used in Agile to cope changes: refactoring. Refac-
toring is a process and a set of techniques to reorganize code while preserving
the external behavior of a working system [31]. P P C s help us to extend and
reorganize code by its encapsulation into features and aspects, which avoids
the inherent tangled-code tha t crosscutting concerns generate.

5 Applying P P C for the Agile Development of a Testing
Framework for Biogas Plants

In this section, we illustrate the use of P P C s in Agile through our experience
of developing a framework for monitoring, testing and operating biogas power
plants. This development has been performed following SCRUM [18] and in
cooperation with the software company Answare-Tech, which is operating in the
software and system engineering arena. This industrial collaboration has taken
place within FLEXI ITEA2 project, in which both U P M and Answare-Tech have
worked closely together.

5.1 A Test a n d O p e r a t i o n Framework for B i o g a s P l a n t s

Biogas power plants produce electric energy from the anaerobic digestion of the an­
imal meat/vegetable waste. The process of biogas production is composed of four
main stages: shredding, pasteurization, homogenization, and anaerobic digestion.
Each stage is performed in tanks tha t must be monitored, tested and controlled.

It is common tha t customers monitor and control several biogas plants dis­
t r ibuted in a geographical area. In addition, they require that the language and
framework to monitor, test and operate the plant will be specific of the biogas
domain. To satisfy these needs, we decided to evolve an existing domain-specific
framework for testing and operating environments, called TOPENpr imer [32].
TOPENpr imer is devised for testing and operating systems from various do­
mains. Therefore, U P M and Answare-Tech work together to update TOPEN-
Primer to test biogas plants, i.e. T O P E N Biogas.

5.2 D e v e l o p i n g a F lex ib l e A r c h i t e c t u r e for T O P E N B i o g a s

T O P E N Biogas was developed through 6 SCRUM sprints during 15 weeks (see
P3 , section 4.3). The Scrum Team was composed of 10 engineers: a Product
Owner, a Scrum Master, two architects (architecture team), and six developers
(development team). During Pre-game phase, we created the Product Backlog
with the USs identified by the customer (see P4, section 4.3). Later in the process,
the USs were prioritized in each sprint in a Sprint Backlog. The development
results of 3 sprints are described below.

— Sprint 1: The Sprint 1 was focused on the T O P E N Biogas main function­
alities. Following, some selected USs from the Sprint Backlog:

(U S 1) . Test engineers specify a test case utilizing a user interface and with
the biogas plant specific language.

(U S 2) . Test engineers compile and execute a test case from the user interface.
The results of the test case executions must be shown to them.

(U S 3) . Test engineers remotely test/monitor the biogas plant.

. Palette

¡¿j= Nodes !

• Port

HPIasticPartialC.

B Component

& Links

1 PortAttach

Fig. 3. Topen Biogas Working Architecture of the First Sprint

From these USs, the architecture team identified some non-functional require­
ments with regard to the distribution, security and the critical nature of the
data . The architecture team decided on a distributed architecture and identi­
fied 4 PPCs , i.e. 4 incomplete components tha t had to be completely defined
in following sprints. These P P C s are: kernel functions (TopenEngine), graphical
user functions (GUI), da ta management (MIB), and the communication with
the biogas plant (Gateway), as shown in Figure 3 3 (see P I and P6, section 4.3).
From now on, our focus will be the P P C TopenEngine to illustrate how a P P C
can be iteratively updated by considering each sprint working architecture. In
the first sprint, to support distributed communication among components, the
use of Java Remote Method Invocation (RMI) was decided. As a result, the
architecture team defined a crosscutting feature (aspect), which implemented a
distribution concern based on RMI. In addition, it was implemented an AVP,
which hooked the aspect to the TopenEngine (see Figure 4.a).

Figures 3 and 4 are snapshots of Flexible-PLA tool.

'•• Pol 'it j ! : r • , p.*

+ [14]

L UuUillUtiunkiit

+ CI-U + (IJJ

Q froqjiPUnt ¿IS
d 5wAíh0lf Q MvMvFiwrt?

9 TOFEiLJ.i*njfci.t}_dij£.'*r

/ \ + W-J1

*<• Simali-rPjiif r

I +n.Ji

/ ^ ^
1 'i.-.iTf hOn

Coimanó
SemartícB

COfTliniM
:] MadUjf ropnty
[orinara

• ' , . -

&MMtU

/* H[»lf*J[lH

/Li

Fig. 4. Topen Engine PPC Adaptation through Sprints

— Sprint 2: The Sprint 2 was focused on supporting the operation of the
biogas plant. Below, some selected USs from the Sprint Backlog:

(U S 4) . Test engineers operate biogas tanks and modify the value of their
properties. As a result of this US, the properties and operations supported by
each tank were developed. This US was divided into sub-USs as:

(U S 4 2) . Test engineers switch on/off a tank, and/or modify the tank prop­
erties value by sending commands.

(U S 4 4) . Test engineers be notified about temperature excess in tanks by means
of alarm reception.

From these USs, the architecture team decided to add two features to the
TopenEngine P P C . One feature implements the lexical-syntactic parser to an­
alyze the commands/a larms tha t test engineers send/receive to/from the tanks
of a biogas plant (e.g. parsing of references to tanks, properties and operations).
The other feature implements the semantic parser to provide of meaning to these
commands/a larms (see Figure 4.b). These parsings validate both lexically and se-
mantically the commands and alarms tha t test engineers send or receive to/from
the tanks of a biogas plant. Adding these new User Stories by means of adding
new features tha t hook the TopenEngine P P C implies more effort in specifying
the pointcuts and the weaving operators. However we gain in code modularity,

scalability and reusability because these fragments of code are unaware of the
linking context (see P5 and P6, section 4.3).

— Sprint 3: The Sprint 3 was focused on the physical communication with the
biogas plant.

Since the Gateway had a Service Oriented Architecture based on Web Services
technology TopenEngine had to be changed to support Web Services (see P2,
section 4.3) . Therefore, the TopenEngine supported both RMI communication
with the GUI and MIB, and Web Services communication with the Gateway
(see Figure 4.c). This new requirement was solved by hooking a new distribution
aspect, which provided Web Services technology. It is important to emphasize
that this aspect was not only hooked to the PPC TopenEngine, but also to all the
PPC components that needed to communicate with the Gateway. As a result,
the distribution of our application was modified just by adding a new single
fragment of code. We did not need search in all the components the scattered
distribution capabilities of the components previously implemented to modify
them. The incremental design of the architecture in subsequent sprints by means
of the use of PPC allowed us to flexibly modify the distribution capabilities with
the minimum impact both in cost and effort, and to inherently refactor the
distribution code (see P5 and P6, section 4.3).

6 Conclusions and Further Work

The deployment of PPCs is an attempt to provide a solution for architectural de­
sign of large software systems in Agile. They are malleable components that we
have advantageously used for adding or removing pieces of software throughout
the different iterations that comprise the development of our working product.
As a result, we realized that PPCs were working components of a working ar­
chitecture that was designed in time to our working framework for testing and
operating biogas power production plants.

In cooperation with our industrial partners we have managed to show that it
is possible to focus on architecture without suffering from practices that move
away the customer from the architecture and development teams. In addition,
we realized that non functional requirements can be allocated into the architec­
ture while the discussion/communication with the customer is mainly focused
on the set of functional requirements. Therefore, the impact of introducing non­
functional requirements in Agile is minimized. From an architectural technical
point of view, scaling up can be achieved and, as important, the need of refac-
toring was sized down: the impact of introducing new features was often less
dramatic thanks to the flexibility and reusability provided by PPCs.

As future work, we plan to work in larger size projects to understand what
is still missing and to obtain measures and empirical results. Systematization
of use of PPCs and automation are two issues that will have to be faced for
the approach deployment. Together with Answare-tech we intend to use PPCs
in a project for security and safety of intelligent buildings and IT for energy

management systems. In addition, it is necessary to analyze how the use of
P P C s can facilitate the maintenance and evolution of software architectures.

Acknowledgments

The work reported here has been partially sponsored by the Spanish MEC
(DSDM TIN2008-00889-E), MICINN (INNOSEP TIN2009-13849), and MITYC
(FLEXI ITEA2 6022 FIT-340005-2007-37 TSI-020400-2009-066) and by UPM
(Researcher Training program). Authors are indebted to Answare-tech and Bio-
gasFuelCell SA for their participation and support during the development of
the project.

References

1. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture.
SIGSOFT Softw. Eng. Notes 17(4), 40-52 (1992)

2. Garlan, D.: Software architecture. In: Wiley Encyclopedia of Computer Science
and Engineering (2001)

3. Beck, K., et al.: The Agile Manifesto (2001), ht tp: / /www.agilemanifesto.org
(accessed July 2010)

4. Bowers, J., May, J., Melander, E., Baarman, M., Ayoob, A.: Tailoring xp for large
system mission critical software development. In: Proceedings of the Second XP
Universe and First Agile Universe Conference on Extreme Programming and Agile
Methods - XP/Agile Universe 2002, London, UK, pp. 100-111. Springer, Heidelberg
(2002)

5. Dybá, T., Dings0yr, T.: Empirical studies of agile software development: A sys­
tematic review. Inf. Softw. Technol. 50(9-10), 833-859 (2008)

6. Babar, M.A., Abrahamsson, P.: Architecture-centric methods and agile approaches.
In: Agile Processes in Software Engineering and Extreme Programming (XP 2008),
pp. 242-243 (2008)

7. Cockburn, A.: Agile Software Development. The Cooperative Game, 2nd edn.
Addison-Wesley Professional, Reading (2006)

8. Kruchten, P.: On software architecture, agile development, value & cost. Keynote
SATURN, Pittsburgh, Pennsylvania, USA (2008),
h t tp : / /www.sei .emu.edu/archi tecture/sa turn/2008/keynotes .html

9. Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Per­
plexed. Addison-Wesley, Reading (2004)

10. McMahon, P.: Extending agile methods: A distributed project and organizational
improvement perspective. CrossTalk: The J. Defense Software Eng. 18(5), 16-19
(2005)

11. Babar, M.A., Ihme, T., Pikkarainen, M.: An industrial case of exploiting prod­
uct line architectures in agile software development. In: Software Product Lines
Conference, SPLC (2009)

12. Pérez, J., Diaz, J., Costa-Soria, C , Garbajosa, J.: Plastic partial components:
A solution to support variability in architectural components. In: WICSA 2009:
Joint Working IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture, ECSA (2009)

http://www.agilemanifesto.org
http://www.sei.emu.edu/architecture/saturn/2008/keynotes.html

13. Pohl, K., Bockle, G., Linden, F.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, Germany (2005)

14. Shore, J., Warden, S.: The Art of Agile Development. O'Reilly Media, Inc., Se­
bastopol (2007)

15. Vilki, K.: Juggling with the paradoxes of agile transformation. Flexi Newslet­
ter 2(1), 3-5 (2008)

16. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison-Wesley Professional, Reading (November 2004)

17. Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development:
From Concept to Cash. Addison-Wesley Professional, Reading (2006)

18. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice-Hall,
Englewood Cliffs (2002)

19. Assmann, U.: Invasive Software Composition. Springer, New York (2003)
20. Bachmann, F., Bass, L.: Managing variability in software architectures,

pp. 126-132. ACM Press, New York (2001)
21. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An

overview of aspectj, pp. 327-353. Springer, Heidelberg (2001)
22. Beydeda, S., Book, M., Gruhn, V.: Model-Driven Software Development. Springer,

Heidelberg (2005)
23. Schmidt, D.C.: Guest editor's introduction: Model-driven engineering. In: Model-

Driven Engineering (2006)
24. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling

Framework 2.0. Addison-Wesley Professional, Reading (2009)
25. Ambler, S.W.: Agile architecture: Strategies for scaling agile development,

ht tp: / /www.agilemodeling.com/essays/agileArchitecture.htm (accessed July
2010)

26. Kruchten, P.: Software architecture and agile software development an oxymoron?
Keynote Software Architecture Challenges in the 21st Century, USC (June 8, 2009)

27. Erdogmus, H.: Architecture meets agility. IEEE Software 26(5), 2-4 (2009)
28. Madison, J.: Agile architecture interactions. IEEE Software PP(99), 41-48 (2010)
29. Kornstadt, A., Sauer, J.: Tackling offshore communication challenges with ag­

ile architecture-centric development. In: WICSA 2007: Proceedings of the Sixth
Working IEEE/IFIP Conference on Software Architecture, Washington, DC, USA,
p. 28. IEEE Computer Society, Los Alamitos (2007)

30. Andrade, L.F., Fiadeiro, J.L.: Architecture based evolution of software systems.
In: Bernardo, M., Inverardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 148-181.
Springer, Heidelberg (2003)

31. Fowler, M., et al.: Refactoring: Improving the Design of Existing Code. Addison-
Wesley, Reading (1999)

32. Magro, B., Garbajosa, J., Perez, J.: A software product line definition for validation
environments. In: Software Product Lines Conference (SPLC), pp. 45-54 (2008)

http://www.agilemodeling.com/essays/agileArchitecture.htm

