
Dynamic Architectural Constraints Monitoring
and Reconfiguration in Service Architectures

Jose John, MingXue Wang, Claus Pahl

Lero and School of Computing, Dublin City University
Dublin, Ireland

jose.john2@mail.dcu.ie, mwang@computing.dcu.ie, cpahl@computing.dcu.ie

Abstract. Service-oriented architecture is an architectural approach that
can be applied for building autonomous service systems dynamically to
satisfy on-demand business requests. During the execution of service
compositions, architectural constraint violations relating to functional
and non-fucntional system properties need to be handled intelligently
and autonomously, possibly requiring architectural reconfigurations. We
propose integrated architectural constraint violation handling to deal
with architectural quality problems through dynamic reconfiguration.
We concentrate on service replacement selection as a remedial strategy
for a possible quality violation requiring architectural remedies.

1 Introduction

Service-oriented architecture (SOA) allows us to build interoperable distributed
systems. Service processes are build using orchestration languages like WS-
BPEL. Composing processes dynamically is a solution for on-demand requests.
Dynamic reconfiguration is often the consequence of faults (e.g., caused by the
violation of architectural constraints). The severity of some faults might not al-
low a service to be used further. BPEL provides fault handling mechanisms, but
no remedial mechanisms. A solution is to dynamically select a remedial strategy.
Architectural constraint violations indicating quality problems are important
faults that can occur during execution [12].

Our solution is an operationalisation of dynamic service architecture through
an architectural quality monitoring instrumentation of processes using the WS-
BPEL fault handling mechanism. Fault and violation handling based on dynam-
ically available architectural knowledge in the form of quality-oriented service
annotations acts here as a framework for dynamic architectural decision making:

– A dynamic remedial strategy selection mechanism. In [11], remedial strate-
gies are proposed for business constraint violations and runtime faults, which
are mapped to architectural remedial strategies for reconfiguration. This pa-
per focuses on the service replacement remedial strategy.

– Service replacement selection based on a service quality annotation scheme.
The annotation scheme captures different architectural properties for each
replacement service. When a quality constraint violation occurs, the anno-
tation scheme will be searched for a suitable replacement.



We focus on the operationalisation of dynamic selection techniques. Based on
an empirical study, we have identified a number of properties that can be used
for the annotation scheme of recomposable services. We introduce a similarity
metric based on an aggregated distance, which is used for selecting a suitable re-
placement. We also use a history-based success ranking heuristics as a weighting
mechanism to further discriminate between replacement candidate services.

Section 2 introduces service fault handling. In Section 3, we outline our archi-
tecture. We define the annotation scheme in Section 4, the selection mechanism
in Section 5, and the monitoring and violation handling implementation in Sec-
tion 6. Finally, we discuss our implementation and conclusions are given.

2 Service-oriented Architecture and Service Composition

Constraint Violation and Fault Monitoring. If we compose services dynamically
based on on-demand user requests, we can customise services based on user pro-
files or remedy requirements validation [9]. BPEL process instances interact with
the constituent web services through invoking various activities. Normally, the
process ends its execution with a reply activity. During the execution of a process,
faults can occur. One category of faults are technical runtime exceptions which
are thrown by the BPEL engine itself. There are also business or requirements
constraint violations. The faults can be the consequence of violations of archi-
tectural quality constraints or can impact on these. Quality constraints need to
be monitored and faults need to be handled appropriately so that the composed
process do not fail. Fault monitoring detects faults and records data for analysis.
We use BPEL fault handlers for architectural constraints monitoring and fault
handling. BPEL has fault handlers for handling specific faults (<catch>) and
for handling all kinds of faults (<catchAll>). We will use a constraint moni-
toring and fault handling framework to monitor architectural quality (expressed
as architectural constraints) and handle violations by recomposing the service
process.

Fault Analysis. Used for finding the best remedial strategy for a fault in-
stance, it takes fault data as input and outputs a strategy. Pre-defined remedial
knowledge is used for fault analysis. Defining remedial knowledge involves three
steps: defining a fault taxonomy, defining remedial strategies, and matching each
fault category with remedial strategies. The types of faults that can occur define
a fault taxonomy [1],[4]. In order to deal with business constraint validations, a
fault taxonomy is derived from the context model which is used for constraint val-
idation services. Remedial strategies like process goal-preserving retry, replace,
ignore or recompose [1],[11] are selected and applied dynamically:

– Ignore: this strategy completely ignores the fault occurred. This is suitable
for faults that do not have any effect on the overall architectural goal.

– Retry: this strategy tries to execute the faulted service again. Maximum
retries and the retry interval can be defined.

– Replace: this strategy replaces the faulty service with a suitable one with
same the business functionality.



– Recompose: this strategy discards the entire faulty process and establishes
a new process with the same architectural goal.

Non-goal preserving strategies identified are log (the fault data is recorded),
alert (concerned parties will be alerted) and suspend (suspends the faulty process
based on a threshold value of past failure ratio). The fault taxonomy is mapped to
the strategies. We can have two kinds of constraint violation faults, pre-condition
constraint violation faults and post-condition constraint violation faults, which
are validated before or after service execution, respectively.

3 Fault Handling Architecture

We focus on the replacement strategy in particular as it is the core activity in
architectural reconfiguration – recomposition creates specific problems in terms
of planning techniques [10] that go beyond the focus of this paper. Replace-
ment requires additional supporting infrastructure for discovering alternatives.
We can implement it in two ways: pre-assign a replacement service so that the
strategy can be instantly applied or discover alternative services dynamically.
This discovery can be based on functional and/or non-functional architectural
annotations. We select an alternative service from a service repository, which
may have multiple services which match the functionality of the faulty service.
A decision which one to select is made by a selection mechanism.

We use BPEL fault handling to implement annotation and remedial activ-
ities. This avoids the overhead of BPEL engine-dependent modifications and
additional monitoring components in order to reduce monitoring and fault han-
dling overhead. We add validation services for business constraint validations.
Constraint violations are thrown from these constraint services as service faults.
This allows us to catch the architectural constraint violation faults in the BPEL
fault handlers. Fig. 1 shows the architecture. Main layers identified are process
execution layer, fault tolerance layer and database layer. The fault-tolerance
layer contains monitoring, analysis (selection mechanism) and a service wrapper
component. The database layer stores all available services to be considered for a
possible replacement in a service repository. The annotation is stored in an anno-
tation scheme database. The wrapper handles the invocation of the replacement
service. The execution of the process happens at the process execution layer.

4 Service Quality Annotation Scheme

The annotation scheme is a central component that enables dynamic alternative
service selection. Annotations of replacement services are kept in a dynamically
accessible and updatable repository. The annotation scheme works based on
operational (QoS) properties of services. The values of these architectural quality
properties play a crucial role in the selection of a replacement service. We choose
here three architecturally important properties which can be measured - all
suitable for easy operationalisation:



AnnotationAnnotation Service
Repository
Service

Repository

MonitoringMonitoring Service
Wrapper
Service
WrapperAnalysisAnalysis

BPEL ProcessBPEL Process

BPEL
Engine
BPEL
Engine

fault data replacement

Process
Execution

Layer

Database
Layer

Fault
Tolerance

Layer

Fig. 1. Fault Handling Architecture.

– Response Time (Latency): This property measures the difference between
the time a service request takes between the request and response. It can be
calculated as follows: Response Time = Response Completion Time - User
Request Time. Response Completion Time is the time when all data for a
response arrives at the user. User Request Time is the time when the user
sends a request. This is a measure of the performance of a web service.

– Availability: It is the time period in which the service is ready for use or the
service is maintained. If the time when a system is not available is ’Down
Time’ and when its is available is ’Up Time’, then availability is the average
uptime. It can be measured using Availability = 1 - (Down Time / Up Time).

– Accessibility: Accessibility represents the degree that a system is normatively
operated to counteract request messages without delay. In some cases, a
service system could be accessible for external users to try accessing its
resources even if its services are not available. We can determine whether
a web service system is accessible by just ensuring that the system can
return an acknowledgment for a request message. Thus, accessibility can be
calculated as the ratio of number of acknowledgments received to the number
of request messages: Accessibility = Number of Acknowledgments Received /
Number of Request Messages.

Other properties such as throughput and reliability, but also integrity, compli-
ance and security are also considered to be important, but have not been ad-
dressed in our framework yet. We focus on selection based on operational criteria
of architectural relevance, which capture classical quality-of-service properties in
the first category (such as response time or accessibility). Maintaining architec-
tural quality through quality monitoring and remedy is our objective.

5 Analysis and Selection Mechanism

The selection mechanism that we use here is based on the concept of an aggre-
gated distance (AD). An aggregated distance is the sum of distances of all the
annotated properties for a service. For each annotated property there is some



threshold value for the running process. A distance is the difference between
this threshold value and the actual property value of the service. Let Pij

be the
value of the j-th property of the i-th replacement service Pi. Tj as the threshold
value is defined for the j-th property in order to normalise the values. Then, the
aggregated distance, a simple additive weighting, for the i-th service is

ADi =
ni∑

j=1

Pij − Tj

max(Pij
)−min(Pij

)

for all properties j where max and min refer to the maximal and minimal values
of each property in order to normalise each property in comparison to the other
properties. ADi shall be defined 1 where max(Pij )−min(Pij ) = 0. The service
with the least aggregated distance is the best replacement candidate.

In addition to the AD, we use a heuristic function to support the selection.
A history-based success ranking system shall support the decision. The heuristic
is in this case an approximation of the expected reliability of a service. If the
post-constraint evaluation finishes without any exception, we increase the rank
of the service by one. If the execution flow reaches the fault handler, the service
has generated some fault and we decrease the rank by one. While selecting the
replacement service, we take the service with highest rank into account as a
weighting to discriminate between similarly valued services based on AD. We
adjust the distance measure using the rank for service i, rank(i), with 1 being
the best and ‖rank‖ denoting the total number of ranked services:

ADnorm
i = ADi × (1 +

rank(i)
‖rank‖

)

This ranking-based weighting works as a passive recommendation system as
it gives up-to-date feedback on each service. The normalised ADnorm

i value that
is closest to the original ADi is considered the best (lower ranked services would
create a greater distance to ADi).

6 Architectural Constraint Monitoring and Handling

Two aspects need to be distinguished: monitoring in order to keep the service
annotations up to date and architectural constraint monitoring and handling.

Annotation Monitoring and Updating. The annotation scheme is kept up to
date. The advantage of dynamic monitoring is that the selection mechanism can
make decisions based on the latest information to increase the accuracy of selec-
tions. We monitor the response time of a service, measured as the time between
the end of pre-condition validation to the start of post-condition validation. This
time is updated for that service in the annotation scheme as the new response
time. We are working on a constraint monitoring instrumentation that can be
applied to provide measurement for the suggested quality properties.

Instrumentation Template for Constraint Handling. The implementation of
the violation handling needs a BPEL process instrumentation that integrates



pre-conditionpre-condition

path = 1
invokingServiceRef = applService

path=2path=2 path=3path=3path=1path=1

applService()applService()

post-conditionpost-condition

pre-conditionpre-condition

genericOperation()genericOperation()

post-conditionpost-condition

analyse()analyse()

path=2
invokingServiceRef=

replacement

path=2
invokingServiceRef=

replacement
post-conditionpost-condition

repeatUntil (path=0)

catch

catchAll

path=3

faultData
invokingServiceRef

path=0 path=0 path=0

Fig. 2. Instrumentation Template.

fault handling and monitoring capabilities. To achieve this, we use constraint
services. The instrumentation also applies the selected remedial strategies. We
use a modified version of the instrumentation template which is used in [11].
Fig. 2 shows this modified instrumentation template. Two important variables
are used in the instrumentation template, invokingServiceRef and path. invok-
ingServiceRef holds a reference to the current activity which is invoked. invok-
ingServiceRef is passed to both pre- and post-constraint services so that they
can inspect the properties of the invoking service to see whether constraints are
satisfied. Whenever there is a fault, the invokingServiceRef will be passed to
the fault handlers for further analysis along with the fault data. There are two
main execution paths in the template. In the default path (path=1), the original
service is invoked along with the pre- and post-constraint services. If there is a
fault, then the path variable is changed so that the execution follows the second
path (path=2). Once an execution path is completed without faults, the path
variable is assigned to 0 (path = 0) and the repeatUntil construct finishes.

The Replacement Strategy. Faults caused by pre-condition constraint viola-
tion are caught by the <catch> fault handler. It passes fault data as well as
the invokingServiceRef variable to the analyse() service. Since the replacement
strategy is applied, the analyse operation sets path=2. It also assigns a new
service found by the selection to invokingServiceRef. This alternative service is
called by the genericOperation() wrapper. Faults caused by the invoking service
are caught by a <catchAll> handler. It sets path to 3. This path has a post-
constraint validator which converts this fault into a constraint validation fault.
This is caught by the <catch> and analyse() will run as in case 1.

7 Discussion

Our evaluation focus was on the effectiveness and performance of the monitoring
and fault handling system. Performance is critical as the context is dynamic



architectural reconfiguration. Effectiveness and reliability are equally important
in an autonomous setting.

The aggegrated distance approach essentially creates an attribute vector of
normalised values (threshold), which based on a manual validation determines
good candidate replacements. We have used the success ranking to have a sec-
ond analysis stage to remove unsuitable cases. 35 test cases were designed for
a payment process, which involves four business services (requestBill; payBill;
updateRecords; infoProvider) to evaluate the remedial strategy as a whole. We
developed three alternative services for each service to test the replacement reme-
dies with alternative services. Test cases cover architectural constraint violations
and runtime faults in the context of all proposed remedial strategies.

The overhead created for monitoring and updating annotation attributes did
not exceed 9% of the overall execution time and the overhead for the violation
was in average between 3 and 4% due to the embedding of the instrumentation
into the BPEL fault handling. Only the access to the database for replacement
selection was a significant element in the 9% figure. Each process was com-
posed of a different number (2 to 10) of application services. We instrumented
each process and created pairs of processes to compare their performance. The
performance evaluation results show that the instrumented processes does not
introduce any significant overhead (in average less than 1%). The instrumented
processes do not delay the overall execution unless a fault needs to be handled.

Effectiveness, performance and reliability shall also be looked at in the con-
text of related work. In [10], a solution using various planning techniques for dy-
namic service composition is provided. However, they lack comprehensive fault-
tolerance mechanisms. Constraint integration and monitoring platforms has been
looked at. In [2], a constraint language is proposed for the Dynamo monitoring
platform. We use a simpler and more efficient standard BPEL fault handling
without requiring additional execution monitoring subsystems.

Different remedial strategy selections have been proposed. An interesting
approach [5] is to invoke all alternative services in parallel and select the one
which gives back the first response. It allows to select the best service quickly,
but causes computational and network overheads and has the risk of multiple
transactions, which is avoided in our annotation repository-based solution.

Our selection approach is based on aggregated distances and heuristics as
a basic recommendation mechanism. Recommendation system are based on the
learning done by the system from user or system feedbacks [7]. While aggregated
distances seem to perform well as a similarity measure in terms of determining
effective replacements, agglomerative clustering algorithms (e.g. association co-
efficient based similarity measures) can also be used.

8 Conclusions

We have introduced an integrated constraint monitoring and violation handling
mechanism for dynamic service compositions. Flexible service process orches-
trations at runtime form the problem setting [8],[3]. We used replacement as



the basis of our remedial architecture strategy. We provided an instrumentation
template to support the integrated fault monitoring and handling for archi-
tectural quality constraints. A quality-oriented selection mechanism has been
implemented to select from the available replacement services. Architectural re-
configuration is a problem of technical fault-tolerance, but also the consideration
of architectural compliance with respect to business rules.

An extension is a more intelligent selection strategy based on machine learn-
ing. We will also address access performance improvements for the selection
mechanism. Storage of the annotation scheme is another point of improvement.

Acknowledgment

This work was supported, in part, by Science Foundation Ireland grants 03/CE2/I303 1
(Lero) and 07/RPF/CMSF429 (CASCAR).

References

1. D. Ardagna, C. Cappiello, M. Fugini, E. Mussi, B. Pernici, and P. Plebani. Faults
and recovery actions for self-healing web services. In World Wide Web Conf, 2006.

2. L. Baresi, S. Guinea, and L. Pasquale. Towards a unified framework for the mon-
itoring and recovery of bpel processes. In Workshop on Testing, analysis, and
verification of web services and applications, 2008.

3. R. Barrett, L. M. Patcas, J. Murphy, and C. Pahl. Model Driven Distribution Pat-
tern Design for Dynamic Web Service Compositions. In International Conference
on Web Engineering ICWE’06. Palo Alto, US, pages 129–136. ACM Press, 2006.

4. K. M. Chan, J. Bishop, J. Steyn, L. Baresi, and S. Guinea. A fault taxonomy for
web service composition. In 3rd Intl. Workshop on Engineering Service Oriented
Applications WESOA, 2007.

5. G. Dobson. Using ws-bpel to implement software fault tolerance for web services.
In 32nd EUROMICRO Conf on Software Eng and Adv Applications, 2006.

6. A. Liu, Q. Li, L. Huang, and M. Xiao. A declarative approach to enhancing the
reliability of bpel processes. In IEEE Intl. Conf. on Web Services, 2007.

7. U. Manikrao and T. Prabhakar. Dynamic selection of Web services with recom-
mendation system. In Next Generation Web Services Practices, 2005.

8. C. Pahl. A Formal Composition and Interaction Model for a Web Component Plat-
form. In Proc. ICALP Workshop on Formal Methods and Component Interaction
FMCI’02. Electronic Notes on Computer Science ENTCS Vol. 66 No. 4, 2002.

9. C. Pahl. Layered Ontological Modelling for Web Service-oriented Model-Driven
Architecture. In European Conference on Model-Driven Architecture Foundations
and Applications ECMDA2005, pages 88–102. Springer LNCS 3748, 2005.

10. M. Pistore, F. Barbon, and P. Bertoli. Planning and monitoring web service com-
position. Workshop on Planning and Scheduling for Web and Grid Services, 2004.

11. M. Wang, K. Y. Bandara, and C. Pahl. Integrated Constraint Violation Handling
for Dynamic Service Composition. In IEEE International Conference on Services
Computing SCC’2009, 2009.

12. L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. Qos-
aware middleware for web services composition. IEEE Transactions on Software
Engineering, 30(5):311–327, 2004.


