
An ADL-approach to Specifying and Analyzing
Centralized-mode Architectural Connection

Guoxin Su1, Mingsheng Ying1,2, and Chengqi Zhang1

1 Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and
Information Technology, University of Technology, Sydney, NSW 2007, Australia

2 State Key Laboratory of Intelligent Technology and Systems, Department of Computer
Science and Technology, Tsinghua University, Beijing 100084, China

{guoxin, mying, chengqi}@it.uts.edu.au

Abstract. A rigorous paradigm coordinating components is important in the de-
sign stage of large-scale software engineering. In this paper we propose a new
Architecture Description Language, called ACDL, to represent the centralized-
mode architectural connection in which all components are linked by a single
connector. Following one usual approach to architectural description, in which
component types and components are distinguished, and connectors integrate
behaviors of components by specifying their coordination protocols, ACDL de-
scribes connectors in such a way that connectors are insensitive to the numbers
of attached same-type components. Based on ACDL, we develop analytic tech-
niques to facilitate the system checking of temporal properties of an architecture.
In particular, our method shows to what extent one can add, delete and replace
components without making the whole system lose desired temporal properties,
and improves the system checking in several ways, for example enhancing the
use of previous checking results to deal with new checking problems.

1 Introduction

As the complexity of software designs increases, apart from algorithmic and data-
structure-related problems, attention is focused on how to compose subsystems into
an overall system [1]. A rigorous paradigm coordinating components is important in
the design stage of large-scale software engineering.

Many approaches exist in the literature, from application-oriented to theory-empha-
sized, to deal with issues related to component-based engineering [2]. Architecture De-
scription Languages (ADLs) emerged as a promising way to formally describe some
essential features of an architecture. Although the software architecture community
agrees, more or less, that a description of an architecture should consist of three parts,
i.e. components, connectors, and architectural configuration [3], each ADL has its own
modeling focus, fleshing out features of an architecture from its own viewpoint. We
consider components as interfaces performing running-time behaviors, i.e. sequences
of input, output and internal actions, and connectors as a special kind of components
whose functionality is to integrate components, and whose interfaces can be seen as
protocols coordinating behaviors of components. Similar understanding of components
and connectors can be found in ADLs such as Wright [4] and π-ADL [5].

An ADL-Approach to Specifying and Analyzing Centralized-Mode 9

In this paper we propose a new ADL, called ACDL (an acronym for Architectural
Connection Description Language), in which component types and components are dis-
tinguished, and connectors are described to be insensitive to the numbers of attached
same-type components. ACDL provides a suitable formal specification for both the
structural and the behavioral features of centralized-model architectural connection in
which components are linked by a single connector. Centralized-mode architectural
connection emphasizes the central status of connectors in star-topology architectures.
Advantages of such architectural topology have been recognized in the literature, such
as [6] in which it was called coordinator-based architecture style.

Based on ACDL, we develop analytic techniques to facilitate the system checking
of temporal properties of an architecture. The compositional analyses use a partition
to divide the whole set of components in an architecture into parts, and allow to check
each part against the central connector to obtain the correctness of the architecture.
The type-based analyses allow to do the checking on the architecture-type level instead
of the individual-architecture level, and show to what extent one can add, delete and
replace components without making the whole system lose desired temporal properties.
Together, these techniques can improve the system checking in four ways:

– Our method enhances the use of previous checking results to deal with new check-
ing problems;

– It helps identify the part of an architecture leading to an undesired property;
– It reduces the complexity of checking by safely skipping over some components;
– It facilitates the reusability of ACDL-specifications by showing to what extent the

system checking can be carried out in the type level.

1.1 Novelty

This paper is novel in the way that ACDL describes architectures, in particular, con-
nectors. The idea that connectors integrate components by specifying the coordination
protocols for their behaviors is not new, but connectors described in ACDL are struc-
turally flexible in the sense that protocols implemented in them have no restriction on
the numbers of attached same-type components. This structural flexibility of connectors
is achieved by allowing some components to send information to inform the connector
what components are involved in the interactions. Therefore ACDL need not distinguish
connector types and instances as Wright does. The formal descriptions of connectors in
ACDL provides the centralized-mode architectural connection a generic representation,
which is important both in theory and in practice (see Sect. 2).

Another innovation is the analytic techniques of temporal properties of an archi-
tecture, which are developed based on ACDL. By employing π-calculus [7] to be its
formal semantics, ACDL allows reasoning about temporal properties of the system. We
show how it deals with deadlock-freedom and an important liveness property called
interaction-liveness. Interaction-liveness formulates the property of a system that, at
each stage during the running-time of the system, each component is able to get in-
volved into the interaction with the rest of the architecture at some future time, or alter-
natively, the system will never proceed to a situation in which some of its components
can no longer interact with the environment. The idea of using Process Algebras rea-
soning about properties of an architecture is not new and has been carried out in the

10 G. Su, M. Ying, and C. Zhang

previous literature, such as [4] and [8]. But the main novelty of our method is that,
firstly, more general than the acyclic/cyclic sharp division in [8], it uses a partition on
the whole set of components in architecture to achieve the finest-grain of the composi-
tional analyses, and secondly, it allows to do the checking on the architecture-type level
and shows to what extent one can add, delete and replace components in an architec-
ture without making the system lose the desired properties. On the other hand, although
some ADL-relevant works like [9] and [10] did indicate that their methods apply to the
analysis of liveness properties, ours, which seriously deals with interaction-liveness, is
still enlightening.

1.2 Other Related Works

The architectural topology that we consider, i.e. centralized-mode architectural connec-
tion, is close to the coordinator-based architecture style investigated in [6], in which
the authors were motivated by the following problem: how to assemble a set of off-the-
shelf software components into an overall system which enjoys desired properties. They
achieved this goal by delegating the interactions of components to a single coordinator
which restricts the interaction-patterns of components.

Related ADLs includes Darwin [11], which also employs π-calculus as its seman-
tics. But Darwin considers components as interfaces for providing and requesting (ref-
erences of) services, and does not explicitly model a connector as a first-class entity in
an architecture. π-ADL [5] is a powerful formal specification language based on the
high-order typed π-calculus, and is equipped with the analysis language π-AAL [12]
which is able to express safety and other temporal properties. However, despite of their
expressive and analytic power, π-ADL and π-AAL do not aim to facilitate the system
checking and the reusability of specifications by providing a suitable representation of
centralized-mode architectural connection, which is the primary goal of our approach.

The remainder of this paper is organized as follows: In Sect. 2 we use client-server
systems as examples to motivate our modeling approach. In Sect. 3 we recall relevant
definitions of π-calculus. In Sect. 4 we present the structure of our description language
ACDL and a complete textual notation of a client-server system which is treated as the
working example in the sequel. In Sect. 5 we describe the translation of expressions in
ACDL into processes in π-calculus. In Sect. 6 we present several theorems dealing with
analyses of architectural properties based on the description of ACDL and illustrate
their significance by the working example. Finally, in Sect. 7 we conclude our paper
and report the future work. The proofs of the theorems are provided in the Appendix.

2 Motivating Examples

We motivate our modeling approach by considering the simple client-server system
shown in Fig. 1(a), which consists of two clients and one server linked by a black-box
middleware embodying the functionality of procedure-callings from the clients to the
server. One modeling viewpoint considers this system as a composition of two subsys-
tems as shown in Fig. 1(b). In other words, two clients are linked to the server via two

An ADL-Approach to Specifying and Analyzing Centralized-Mode 11

C1

 S

C0 C0

 (a) (b) (c)

 S

C1

 S

C0C1

Fig. 1. Client-Server Systems

independent procedure-call connectors. We call this kind of connection the dispersed-
mode connection. An obvious advantage of dispersed-mode connection is that, be-
cause each links one client and one server only, two connectors can be formally de-
scribed as instances of the same connector type in ADLs such as Wright and PADL [8].
The dispersed-mode connection also applies to multi-client-server cases. However, this
model disperses the connected middleware, and hence, is unable to implement within
the connectors some global strategies of coordination of clients and servers, for exam-
ple, a fairness strategy for access of clients to a server. The implementation of such
coordination strategies in a connector is particularly desirable if we consider a connec-
tor as a first-class entity in an architecture, whose advantages have been increasingly
recognized [13].

Given the above considerations, it is reasonable therefore to adopt another modeling
viewpoint, i.e. the centralized-mode connection (as contrary to dispersed-mode con-
nection), in which (take our client-server system for example) both clients are linked
to the server via a single procedure-call connector, as shown in Fig. 1(c). However, one
obvious difficulty for the centralized-mode connection is how to find a generic repre-
sentation of connectors that are able to be attached to different numbers of clients (and
servers). The significance of such a representation is two-fold. It is theoretically inter-
esting. For example, the three connectors in Figure 1(b) and (c) can be seen as three in-
stances of such a representation. On the other hand it favors the implementing practices.
For example, the applicability of this representation in other client-server systems with
different numbers of clients and servers advocates the reusability principle in software
architecture [14] [15]. In this paper we offer a solution to this problem by developing
ACDL to formally describe connectors in a manner where they are insensitive to the
number of attached same-type components.

3 π- Calculus

In this section we summarize relevant definitions of a version of π-calculus, which is
treated as the semantics of ACDL. For a reference to π-calculus we refer to [16].

We assume an infinite set of names, ranged over by a, b, c, x, y and z. The π-calculus
syntax is given by the following grammar:

P ::= π.P | 0 | P +Q | P‖Q | P\N | I

12 G. Su, M. Ying, and C. Zhang

Table 1. SOS of π-calculus

a(x).P
a〈y〉−→ P{y/x} α.P

α−→ P if α �= a(x)

P
α−→ P ′

P + Q
α−→ P ′

P
α−→ P ′

Q + P
α−→ P ′

P
α−→ P ′

P‖Q α−→ P ′‖Q
P

α−→ P ′

Q‖P α−→ Q‖P ′

P
a〈x〉−→ P ′ Q

a〈x〉−→ Q′

P‖Q τ−→ P ′‖Q′
P

a c−→ P ′ Q
a c−→ Q′

P‖Q τ−→ P ′‖Q′

P
α−→ P ′, ch(α) �= N

P\N α−→ P ′\N
P

α−→ P ′, I
def
= P

I
α−→ P ′

where P is called a process, π is called a prefix and ranges over a〈x〉, a(y), a c, a c and
τ (the silent action),N is called a channel and ranges over a and a c, and I ranges over
process identifiers.

An action α ranges over π and a〈x〉. The structural operational semantics (SOS) of
π-calculus is a set of derivative rules defining a relation called transition O ⊆ Process
× Action × Process. We write P

α−→ Q if (P, α,Q) ∈ O. The SOS of our π-calculus
is given in Table 1.

The SOS compiles a π-calculus process P into a Labeled Transition System (LTS)
called the LTS of P . A transition path ϕ (of the LTS) of P is a maximum concatenation
of transitions, i.e., either an infinite concatenation of transitions or a finite concatenation
of transitions such that the last process has no more transitions. Q is reachable from
P if there is a finite concatenation of transitions from P to Q. Furthermore, ch(α)
refers to the channel of α. Ch(P) denotes the set of channels of actions labeled in the
transition paths of the LTS of P . P

α−→ means P
α−→ P ′ for some P ′. Given a specific

occurrence of P in Q, P
α−→ in Q means that, P

α−→ P ′ for some P ′ and, in addition,

this transition is a primitive of the derivation of Q
β−→ Q′ for some Q′, β according

to the SOS in Table 1.1 For example, ā〈b〉.P ā〈b〉−→ in (ā〈b〉.P‖a(x).Q)\a. Let I =
{N0, . . . , Nn}, P\I abbreviates P\N0 · · · \Nn; (π + π′).P abbreviates π.P + π′.P .

Definition 1. P is deadlock-free, if there is no finite transition path of P .

Definition 2. P is strongly deadlock-free, if P is deadlock-free and all its transition
paths contain infinite non-silent actions, i.e. α’s such that α �= τ .

Strong deadlock-freedom means processes interact with the environment infinitely
often.

Definition 3. P1, . . . , Pn are mutually interaction-live against (the restriction of) I,
if for each Q = (Q1‖ · · · ‖Qn)\I reachable from P = (P1‖ · · · ‖Pn)\I and each
i ∈ [1, n], there is R = (R1‖ · · · ‖Rn)\I reachable from Q such that Ri

α−→ in R for
some α �= τ where ch(α) ∈ I.

1 Throughout this paper when P
α−→ in Q is written, the specific occurrence of P in Q is clear

in the context.

An ADL-Approach to Specifying and Analyzing Centralized-Mode 13

When P1, . . . , Pn represent all components (including the connector) of a system, and
I is the set of communication channels of the system, interaction-liveness formulates
the property that, this system will not proceed to a situation in which some of its com-
ponents can no longer interact with the rest of the system.2

4 Specifying Architectural Connection

In this section we present the architecture description language ACDL and a working
example throughout the remainder of this paper. A textual notation in ACDL consists of
two parts: an architecture type and an architecture. The former specifies the component
types and the connector; the latter specifies the components of corresponding types. The
structure of ACDL is given in the following template:

ArchitectureType {"name"}
ComponentType {"name"}
Input {...}
Output {...}
Control {...}
Behavior {...} %in Process-Algebra form%

Connector {"name"}
Protocol {...} %in Process-Algebra form%

Architecture {"name"}
Configuration {"Component : ComponentType"}

A ComponentType is defined as a function of Input, Output, Control and Behavior. El-
ements in Input and Output are indexed by their component-type name, and elements
in Control convey component-type names (their own and others). Behavior of a Com-
ponentType is specified in the Process-Algebra form and its prefixes are the elements in
Input, Output and Control. A Connector is defined as a function of Protocol, which is
also specified in Process-Algebra form and whose prefixes are derived from elements
in Input, Output and Control of every ComponentType in this way: if act name is in
Input or Output of some ComponentType, then act x is a possible prefix of Protocol;
if act〈name〉 is in Control of some ComponentType, then act(y) is a possible prefix of
Protocol. Note that act(y) binds variable y. We further require that no free occurrence
of variables appears in Protocol.

Our working example is the complete textual notation of a simple client-server sys-
tem named SimpleCS, in which three clients, Client0, Client1 and Client2, and two
servers, Server0 and Server1, are linked by a procedure-call connector ProCall:

Architecture Type {Client-Server}
ComponentType {C} %for Client%
Input {result_C}
Output {request_C}
Control {log<C>, target<S>}

2 Note that the interaction-liveness is strictly weaker than that each component will interact with
other components in the system infinitely often. In our working example, the latter property is
not desirable.

14 G. Su, M. Ying, and C. Zhang

Behavior {Client = internalCompute.log<C>.
target<S>.request_C.result_C.Client}

ComponentType {S} %for Server%
Input {involve_S}
Output {return_S}
Behavior {Server = involve_S.internalCompute.

return_S.Server}
Connector {ProCall}
Protocol {ProCall = log(x).target(y).request_x.

involve_y.return_y.result_x.ProCall}
Architecture {SimpleCS}

Configuration {C0,C1,C2:C; S0,S1:S}

There are three important points to be observed. First, behaviors of components are
derived from Behavior of their types, so we need not specify them in the textual no-
tation. Secondly, the connector ProCall obtains its knowledge of involved components
from the information conveyed in log and target, and consequently, the specification of
architecture type Client-Server need not have any restriction on the number of compo-
nents, i.e. instances of Client and Server. In this way, a component-number-insensitive
connector ProCall is formally described. This is the main feature of ACDL. Finally, the
architecture type/instance separation in ACDL implies that the specification of Client-
Server may be reused when describing other architectures of the same type.

5 Formal Semantics

In this section, we bridge ACDL and π-calculus. For the convenience of discussion, we
set down some notations in Table 2.

Table 2. Notation Convention

STRUCTURES NOTATIONS SEMANTICS

architecture type A -
architecture A [A]
component type E -
component E [E]
connector G [G]

The semantics [E] of component E is the process identifier whose recursive definition
is naturally obtained from the behavior of E (not its component type) according to
the input-, output- and silent-nature of the prefixes (elements in Control are output-
nature). Similar treatment applies to the semantics [G] of a connector G. But prefixes
in [G] are dual to prefixes in some [E] provided that E ,G are in one architecture. As
an example, Table 3 gives the semantics of the components Client0, Server0 and the
connector ProCall in the SimpleCS system.

In the sequel, we assume that E1, . . . , En list all components in A, and G is the
connector in A. Let IEi , called the set of channels of Ei, be the set of channels in Input,

An ADL-Approach to Specifying and Analyzing Centralized-Mode 15

Table 3. Semantics Samples

[Client0] = τ. log〈C0〉. (target〈S0〉 + target〈S1〉). request C0. result C0. [Client0]
[Server0] = involve S0. τ. return S0. [Server0]

[ProCall] = log(x). target(y). request x. involve y. return y. result x. [ProCall]

Output and Control of Ei. For example, IC0 = {log, target, request C0, result C0}.
The semantics of A is defined by

[A] = ([E1]‖ · · · ‖[En]‖[G])\IA ,

where IA =
⋃n

i=1 IEi . Note that the positions of [E1], . . . , [En] and [G] do not affect
the analyses of temporal properties of A. The following propositions formulate some
neccessary properties of ACDL to formulate or prove the theorems later. Let i, j, k ∈
[1, n].

Proposition 1. If Ei, Ej and Ek are of the same type, then (i) IEi ∩ IEj = IEi ∩ IEk
,

and, (ii) IEj = {N{b/a} : N ∈ IEi} and [Ei] = [Ej]{b/a}, where a, b are the names
of Ei, Ej , respectively.

Proposition 1 formalizes that same-type components share the same Control and that
their Input and Output are parameterized on their names.

Proposition 2. (1) Ch([Ei]) ⊆ IEi for each Ei . (2) For each P = (P1‖ · · · ‖Pn‖Pn+1)
\IA reachable from ([E1]‖ · · · ‖[En] ‖[G])\IA, if Pn+1

α−→ in P , then either α = τ or
ch(α) ∈ IA.

The first clause of Proposition 2 justifies the name of IEi , i.e. the set of channels of Ei.
The second clause justifies the definition of [A] above by showing all channels of G are
in IA, and implies that G indeed functions to coordinate behaviors of components in
A only.

6 Analyzing Architectural Properties

In this section we develop formal techniques to analyze deadlock-freedom and interac-
tion-liveness based on the framework of ACDL. To improve the readability we put all
the proofs of theorems in the Appendix. The utilities of the theorems are illustrated by
the working example – the SimpleCS system.

We say A, E or G, respectively, is deadlock-free, if [A], [E] or [G], respectively, is
deadlock-free; E ′

1, . . . , E ′
m (selected from E1, . . . , En) and G are mutually interaction-

live against (the restriction of) I, if [E ′
1], . . . , [E ′

m] and [G] are mutually deadlock-
free against I; A is interaction-live if E1, . . . , En and G are mutually interaction-live
against IA.

We still need to formulate one property expressing that the connector fits the compo-
nents:G is compatible with {E ′

1, . . . , E ′
m} againstI, if each transition path of ([E ′

1]‖ · · · ‖
[E ′

m]‖[G])\I contains infinitely many processes P = (P1‖ · · · ‖ Pm‖Pm+1)\I such
that: if Pm+1

α−→ and ch(α) ∈ I, then Pm+1
α−→ in P .

16 G. Su, M. Ying, and C. Zhang

6.1 Compositional Analyses

For convenience, we use the collection of the elements in the architecture A to denote
A itself, i.e. A = {E1, . . . , En,G}. To carry out the compositional analyses, we need
an auxiliary definition. Let P be the finest partition on A − {G} such that Ej ∈ P(Ei)
whenever IEj ∩ IEi �= ∅. We let

A− {G} = {E1
1 , . . . , Ek1

1 , . . . , E1
m, . . . , Ekm

m } ,

where
∑m

i=1 ki = n and P(E1
i) = {E1

i , . . . , Emi

i }, and let IP(Ei) =
⋃

Ej∈P(Ei)
IEj .

Note that by Proposition 1 either P(E1
i) = {E1

i } or P(E1
i) is the super set of the set of

same-type components including Ei. This partition sets the stage for the compositional
analyses: analyses of the architecture are decomposed into analyses of parts accord-
ing to the partition, while “finest” refers to the possibly finest-grained decomposition.
This renders our compositional analytic method (for deadlock-freedom, i.e. Theorem
1) more general than that in [8] where components in an acyclic-topology architecture
share no channels due to the definition of PADL.

Theorem 1. If G is deadlock-free and compatible with P(E1
i) against IP(E1

i) for each
i ∈ [1,m], then A is deadlock-free.

The proofs of Theorem 1 and other theorem below are given in the Appendix. Theorem
1 allows us to reduce the checking of the deadlock-freedom of A to the checking of
the deadlock-freedom of G and compatibility of G with parts of A, i.e. {E1

i , . . . , Emi

i }
where i ∈ [1,m]. For the SimpleCS system, to check the deadlock-freedom of the
whole system, it suffices to check: (1) the deadlock-freedom of ProCall, and, (2) the
compatibility of ProCall with {Client0,Client1, Client2} against Ic0 ∪ Ic1 ∪ Ic2, with
{Server0} against Is0, and with {Server1} against Is1, respectively. By decomposing
the analyses, we may be able to use previous checking results to check other similar
architectures, and detect which part of an architecture is responsible for deadlocks (if
any) and hence, make diagnoses.

Theorem 2. IfA satisfies the conditions in Theorem 1, all components inA are strongly
deadlock-free, and G is mutually interaction-live against IP(E1

i) for each i ∈ [1,m],
then A is interaction-live.

If A satisfies the conditions in Theorem 1, Theorem 2 licenses us to reduce the check-
ing of the interaction-liveness of A to the checking of the following two: the strong
deadlock-freedom of each component in A, and the mutual interaction-liveness of
E1

i , . . . , Eki

i ,G against IP(E1
i) for each i ∈ [1,m]. For the SimpleCS system, to check

the mutual interaction-liveness of A, it suffices to check: (1) the strong deadlock-
freedom of all clients and servers, and, (2) the mutual interaction-liveness of Client0,
Client1,Client2 and ProCall against Ic0∪Ic1∪Ic2, of Server0 and ProCall against Is0,
and of Server1 and ProCall against Is1, respectively. The significance of Theorem 2 is
similar to Theorem 1, as described above. Theorem 2 also shows that the checking of
interaction-liveness can be based on the checking of deadlock-freedom according to
Theorem 1.

An ADL-Approach to Specifying and Analyzing Centralized-Mode 17

Theorem 3. If Ei and Ej are of the same type and IEi ∩ IEj = ∅, then (1) G is com-
patible with {Ei} against IEi if and only if G is compatible with {Ej} against IEj ,
(2) Ei is strongly deadlock-free if and only if Ej is strongly deadlock-free, and, (3) Ei

and G are mutually interaction-live against IEi if and only if Ej and G are mutually
interaction-live against IEj .

In the SimpleCS system, according to Theorem 3 we have that, for example, Procall
is compatible with {Server0} against Is0 if and only if Procall is compatible with
{Server1} against Is1, and Server0 is strongly deadlock-free if and only if Server1

is strongly deadlock-free. With this theorem we can safely skip over the checking of
some parts of an architecture.

6.2 Type-Based Analyses

The compositional analyses are carried out in the level of architecture instance. We now
develop analytic techniques in the level of architecture type.

Similar to an architecture, we treat an architecture type A as a collection of compo-
nent types, together with a connector. In this section we assume E ∈ A. Note that E is
disjointed if and only if P(EE) = {EE} for some P . Let EE refer to a component of type
E and AA an architecture of type A. We say A is open for deadlock-freedom on E, if
AA∪{EE} and AA−{EE} are deadlock-free wheneverAA is deadlock-free;3

A is open
for interaction-liveness on E, if the proposition of the same form holds for interaction-
liveness. Informally, if A is open for deadlock-freedom on E, then every new archi-
tecture obtained from a deadlock-free architecture of type A via adding, deleting and
replacing instances of E is also deadlock-free, and if A is open for interaction-liveness
on E, then every new architecture obtained from an interaction-live architecture of type
A via adding, deleting and replacing instances of E is also interaction-live. We are go-
ing to set down some reasonable conditions on component types to ensure these two
properties hold.

We say E is disjointed, if IEE

1
∩ IEE

2
= ∅ for any components EE

1 , EE

2 ; E is excluded,

if for any component EE

1 , EE

2 the following holds: for each P = (P1‖P2‖P3)\IEE

1
∪

IEE

2
reachable from ([EE

1]‖[EE

2]‖[G])\ IEE

1
∪ IEE

2
, there is α �= τ such that Pi

α−→
in P for each i ∈ {1, 2}, only if Pj where j = 3 − i is reachable from [EE

j] via a
finite concatenation of transitions labeled by τ only. Informally, a component type is
disjointed if and only if its Control is empty. The definition of “excludedness” implies
the following lemma which says, informally, that each component of that type must
not start its interaction if any other component of the same type is in the middle of
interaction, and whose proof follows immediately from the definition of excludedness.

Lemma 1. Suppose E ′
1, . . . , E ′

m (m ≥ 2) are all instances of E in AA, and E is ex-
cluded, then: For each P = (P1‖ · · · ‖Pm‖Pm+1)\

⋃m
i=1 IP(E′

i)
reachable from

([E ′
1]‖ · · · ‖[E ′

m]‖[G])\⋃m
i=1 IP(E′

i)
, Pi

α−→ in P where α �= τ for each i ∈ [1,m],
only if Pj where j ∈ [1,m] − {i} is reachable from [E ′

j] via a finite concatenation of
transitions labeled by τ only.

3 For AA − {EE} we have to suppose AA has more than one instances of type E, for there must
be at least one instance for each component type in an architecture.

18 G. Su, M. Ying, and C. Zhang

We now demonstrate the relationship between disjointedness, excludedness, deadlock-
freedom and interaction-liveness.

Theorem 4. If E is disjointed, then A is open both for deadlock-freedom and for
interaction-liveness on E.

Theorem 4 allows us to add and delete components of disjointed types without mak-
ing the architecture lose deadlock-freedom and interaction-liveness, if the architecture
enjoyed these two properties originally. We illustrate the application of Theorem 4 by
our working example – the SimpleCS system. Since the the component type Server
does not have any Control actions, it is not hard to prove that Server is disjointed. If
we have already obtained the result that SimpleCS is deadlock-free (resp. interaction-
live), then we can build new systems based on SimpleCS that are also deadlock-free
(resp. interaction-live), such as:

MultiServerCS = SimpleCS ∪ {Server2, . . . , Servern} − {Server0, Server1} .

If we do not know the deadlock-freedom and interaction-liveness of SimpleCS, we
check the following simpler system with one server only:

SingleServerCS = SimpleCS − {Server1} .

Theorem 5. If E is excluded, then A is open both for deadlock-freedom and for interac-
tion-liveness on E.

The significance of Theorem 5 is just like Theorem 4 in that it allows us to add and
delete components of excluded types without making the architecture lose deadlock-
freedom and interaction-liveness, if the architecture enjoyed these two properties orig-
inally. In the SimpleCS system, since the log actions in each Client instance has to
synchronize with the log actions in the connector ProCall, it is not hard to verify that
component type Client is excluded. As above, if we already have the result that Sim-
pleCS is deadlock-free (resp. interaction-live), then we can build new systems based on
SimpleCS that are also deadlock-free (resp. interaction-live) (combining Theorem 4),
such as:

MultiCS = MultiSeverCS ∪ {Client3, . . . ,Clientm} − {Client0,Client1,Client2} .

If we do not know the deadlock-freedom or interaction-liveness of SimpleCS, we check
the following elementary system with one client and one server only (combining Theo-
rem 4):

SingleCS = SingleServerCS − {Client1,Client2} = {Client0, Server0,ProCall} .

In total, what Theorem 4 and Theorem 5 tell us is when and to what extent the checking
of deadlock-freedom and interaction-liveness of an architecture can be carried out in the
type level. A final point worthy to be noticed is that, combining with the compositional
analytic techniques (Theorem 1 and 2), the checking of SingleCS can be splitted into
the checking of the following two subsystems:

SingleCSC = {Client0,ProCall}, SingleCSS = {Server0,ProCall} .

An ADL-Approach to Specifying and Analyzing Centralized-Mode 19

6.3 Discussions

We have shown how our analytic techniques, i.e. the compositional analyses and the
type-based analyses, deal with the deadlock-freedom and the interaction-liveness of an
architecture. We now summarize how these techniques improve the system checking in
the following four ways and explain them by examples.

– First, our method enhances the use of previous checking results to deal with new
checking problems. For example, if we already know that ProCall is compatible
with Server0 against Is0 , then we can deduce that ProCall is compatible with
Server1 against Is1 .

– Secondly, our method helps make diagnoses of those architectures failing to satisfy
a desired property. This is due to the compositional nature of our first analyses. Sup-
pose a client-server architecture BadCS contains a deadlock and we detect that the
ProCall is not compatible with the client type, say, BadClient. By fixing BadClient
we may obtain a deadlock-free architecture.

– Thirdly, our method reduces the complexity of system checking. For example, we
can reduce the checking of deadlock-freedom and interaction-liveness of the system
SimpleCS to the checking of those properties of the system SingleCS.

– Finally, while the architecture-type/instance distinction in ACDL makes the reusa-
bility of architecture-type specifications to describe new architectures possible, our
type-based analyses facilitate this reusability by showing when and to what extent
the system checking of some properties can be undertaken in the type level.

7 Conclusions and Future Work

In this paper we consider components in software-intensive systems as interfaces per-
forming behaviors of input, output, and internal actions, and connectors as a special
kind of components that glue components by specifying coordination protocols for their
behaviors. Our focus is the centralized-mode architectural connection in which all com-
ponents are linked by a single connector. We have proposed a new ADL called ACDL,
the key feature of which is that it describes connectors in such a way that they are
insensitive to the numbers of attached same-type components. We develop two kinds
of analytic techniques customizing ACDL, i.e. compositional analyses and type-based
analyses, to improve the system checking of temporal properties, such as deadlock-
freedom and interaction-liveness, of an architecture. The latter property is a liveness
property formulating that, during the running-time of the system, each component will
never be trapped in a situation where no future interactions with the rest of the system
is possible.

Our future work will follow two directions. First, the interaction-liveness is only one
kind of liveness properties, but we foresee that our method applies to other liveness
properties. Therefore one challenging problem is to find out what range of liveness
properties can be dealt with by our method, and to give them a formal definition.

The other important direction is the tool support for ACDL. A tool-set accompanying
an ADL is, strictly speaking, not part of the language itself, but the purpose of devel-
oping formal languages for architectural description is because their formality implies

20 G. Su, M. Ying, and C. Zhang

their suitability to be manipulated by software tools [3]. However, until now we have
not offered (in this paper or elsewhere) any tool support for ACDL, such as a parser
which analyzes the syntactic correctness of a piece of written ACDL textual notation,
and this renders ACDL rather conceptual. A “shortcut” to overcome this shortcoming
is mapping a conceptual language like ACDL to a standard language equipped with a
well-developed toolkit such as UML (currently UML2.0 [17]), so an ACDL user can
leverage the tools customizing UML like a code-generator and be favor of the theoretic
merits of ACDL in practice. Nonetheless, the applicability of the mapping depends
on whether and to what extent UML supports modeling the abstractions formally de-
scribed by ACDL, especially given the fact that UML is a semi-formal language. Op-
timistically, UML has an extension mechanism permitting one use Object Constraint
Language (OCL) [18], which is based on set theory and predicate logic, to provide a
precise description of the information unable to be expressed in standard UML dia-
grams. The general applicability of using UML to model software architectures as sev-
eral representatives of ADLs do has been evaluated in the literature [19]. In our case,
however, a thorough examination is needed.

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments to
improve the draft of this paper.

References

1. Garlan, D., Shaw, M.: An introduction to software architecture. Technical report, Pittsburgh,
PA, USA (1994)

2. Sifakis, J.: A framework for component-based construction. In: Proceedings of the 3rd IEEE
International Conference on Software Engineering and Formal Methods (2005)

3. Medvidovic, N., Taylor, R.: A classification and comparison framework for software ar-
chitecture description languages. IEEE Transactions on Software Engineering 26(1), 70–93
(2000)

4. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Transactions on
Software Engineering and Methodology 6(3), 213–249 (1997)

5. Oquendo, F.: π-ADL: an architecture description language based on the higher-order typed
π-calculus for specifying dynamic and mobile software architectures. ACM SIGSOFT Soft-
ware Engineering Notes 29(3), 1–14 (2004)

6. Tivoli, M., Inverardi, P.: Failure-free coordinators synthesis for component-based architec-
tures. Science of Compututer Programming 71(3), 181–212 (2008)

7. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Information and Compu-
tation 100(1), 1–77 (1992)

8. Bernardo, M., Ciancarini, P., Donatiello, L.: Architecting families of software systems with
process algebras. ACM Transactions on Software Engineering and Methodology 11(4), 386–
426 (2002)

9. Inverardi, P., Wolf, A.L., Yankelevich, D.: Static checking of system behaviors using de-
rived component assumptions. ACM Transactions on Software Engineering and Methodol-
ogy 9(3), 239–272 (2000)

An ADL-Approach to Specifying and Analyzing Centralized-Mode 21

10. Aldini, A., Bernardo, M.: On the usability of process algebra: An architectural view. Theo-
retical Computer Science 335(2-3), 281–329 (2005)

11. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying distributed software architectures.
In: Proceedings of the 5th European Software Engineering Conference, pp. 137–153 (1995)

12. Mateescu, R., Oquendo, F.: π-AAL: an architecture analysis language for formally spec-
ifying and verifying structural and behavioural properties of software architectures. ACM
SIGSOFT Software Engineering Notes 31(2), 1–19 (2006)

13. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, NJ (1996)

14. Spitznagel, B., Garlan, D.: A compositional formalization of connector wrappers. In: Pro-
ceedings of the 25th International Conference on Software Engineering (2003)

15. Giesecke, S.: Taxonomy of architectural style usage. In: Proceedings of the 2006 Conference
on Pattern Languages of Programs (2006)

16. Sangiorgi, D., Walker, D.: π-calculus: A Theory of Mobile Processes. Cambridge University
Press, NY (2001)

17. Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide, 2nd edn.
Addison-Wesley Professional, Reading (2005)

18. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for
MDA. Addison-Wesley, Boston (2003)

19. Medvidovic, N., Rosenblum, D.S., Redmiles, D.F., Robbins, J.E.: Modeling software ar-
chitectures in the unified modeling language. ACM Transaction on Software Engineering
Methodology 11(1), 2–57 (2002)

Appendix

Proof of Theorem 1. To improve readability we use {[E1
i]} refering to [E1

i]‖ · · · ‖[Eki

i],
for each i ∈ [1,m]. Hence [A] = ({[E1

1]}‖ · · · ‖{[E1
m]}‖[G])\IA. We decompose the

proof of Theorem 1 into the following three lemmas.

Lemma 2. If P = (P1‖ · · · ‖Pm‖Pm+1)\IA is reachable from [A] = ({[E1
1]}‖ · · · ‖

{[E1
m]}‖[G])\IA, then (Pi‖Pm+1)\IP(E1

i) is reachable from ({[E1
i]}‖[G])\IP(E1

i) for
each i ∈ [1,m].

Proof. The proof is by induction on the number of transitions from [A] to P . Suppose
Q = (Q1‖ · · · ‖Qm‖Qm+1)\IA, Q

α−→ P , and Q is reachable from [A]. W.r.t. Propo-
sition 2 and the partition P , there are only two cases on the derivation of Q

α−→ P . (1)
Suppose Q

α−→ P is derived from Qi
τ−→ Pi for some i ∈ [1,m + 1]. Then clearly

(Qj‖Qm+1)\IP(E1
j) for each j ∈ [1,m]. By induction hypothesis we are done. (2)

Suppose Q
α−→ P is derived from Qj

β−→ Pj for some j ∈ [1,m] and Qm+1
β′
−→

Pm+1 where β′ is dual to β. Then (Qj‖Qm+1)\IP(E1
j)

β−→ (Pj‖Pm+1)\IP(E1
j), (Qk‖

Qm+1)\IP(E1
k)

β−→ (Qk‖Pm+1)\IP(E1
k), and Qk = Pk where k ∈ [1,m] − {j}. By

induction hypothesis, we have the result.

Lemma 3. If G is compatible with P(E1
i) for each i ∈ [1,m], then G is compatible with

A− {G} against IA.

22 G. Su, M. Ying, and C. Zhang

Proof. Suppose P = (P1‖ · · · ‖Pm‖Pm+1)\IA is reachable from [A], and Pm+1
α−→

for some α. By Proposition 2, ch(α) ∈ IP(E1
i) for some i ∈ [1,m]. By Lemma 2,

(Pi‖Pm+1)\IP(E1
i) is reachable from ([Ei]‖[G])\IP(E1

i). Since G is compatible with

P(E1
i), Pm+1

α−→ in ({[E1
i]}‖[G])\IP(E1

i). Therefore Pm+1
α−→ in [A].

Lemma 4. If G is deadlock-free and compatible with A − {G} against IA, A is
deadlock-free.

Proof. The result is obvious by the definitions.

Proof of Theorem 2. We first show a small lemma:

Lemma 5. Ei and Ej are strongly deadlock-free, the [Ei]‖[Ej] is strongly deadlock-free;
and this can be generalized to any number of components.

Proof. This lemma can be proved by show that if [Ei]‖[Ej] has a finite transition path or
a infinite path failing the satisfying the non-silent-label requirement, then one of Ei and
Ej must be failed; this can be easily generalized to any finite number of components.

Then we prove Theorem 2:

Proof. Suppose A satisfies the conditions in Theorem 1, and {[Ej]} is strongly
deadlock-free for each j ∈ [0,m], we show that if for some i ∈ [1,m] there is an
infinite transition path ϕ of [A] containing only finitely many P such that there is Q
reachable from P and Qi

α−→ in Q for some α �= τ , then there is an infinite transition
path ψ of ({[E1

i]}‖G)\IP(E1
i) containing only finitely many P ′ such that there is Q′

reachable from P ′ and Q′
i

α−→ in Q′ for some α �= τ , and hence prove the theorem.
More specifically, ψ is constructed in the following procedure: Suppose P is reachable
from [A] via n transitions in ϕ and also P

α−→ Q is in ϕ, and let ψ̂n be a finite concate-
nation of transitions starting at ({[E1

i]}‖G)\IP(E1
i) and ending at (Pi‖Pm+1)\IP(E1

i),

1. ψ̂0 = ({[E1
i]}‖G)\IP(E1

i) ;

2. If P
α−→ Q is derived from Pi

τ−→ Qi (thus α = τ), then ψ̂n+1 = ψ̂n
τ−→

(Qi‖Qm+1)\IP(E1
i) where Qm+1 = Pm+1;

3. If P
α−→ Q is derived from Pi

β−→ Qi and Pm+1
β′
−→ Qm+1 where β′ are dual to

β (thus α = τ), then ψ̂n+1 = ψ̂n
τ−→ (Qi‖Qm+1)\IP(E1

i) ;

4. If P
α−→ Q is derived fromPj

β−→ Qj where j �= i ∈ [1,m] and Pm+1
β′
−→ Qm+1

where β′ are dual to β, then ψ̂n+1 = ψ̂n
β′
−→ (Qi‖Qm+1)\IP(E1

i) where Qi = Pi;

5. If P
α−→ Q is derived from Pj

τ−→ Qj where j �= i ∈ [1,m] (thus α = τ), then
ψ̂n+1 = ψ̂n .

The strong deadlock-freedom of each {[Ej]} guarantees that there are only finitely many
k1’s and k2’s such that k1 �= k2 and ψ̂k1 = ψ̂k2 . Therefore it not hard to verify that
limn→∞ ψ̂n is the ψ we want.

An ADL-Approach to Specifying and Analyzing Centralized-Mode 23

Proof of Theorem 3. Clause (1) and (3) in Theorem 3 immediately follow from Theorem
4 (see below) and Clause (2) is obvious.

Proof of Theorem 4. We decompose the proof of Theorem 4 into the following three
lemmas.

Lemma 6. Provided E is disjointed, P = (P1‖P2)\IEE

1
is reachable from R = ([EE

1]‖
[G])\IEE

1
if and only if P ′ = (P1σ‖P2σ)\IEE

2
is reachable from R′ = ([EE

2]‖ [G])\IEE

2
,

where σ = {p, q/q, p} and p, q are the IDs of E1, E2, respectively.

Proof. Note that by Proposition 1, we have that P ′ = Pσ and R′ = Rσ, and that α ∈
IEE

1
iff ασ ∈ IEE

2
. We firstly consider the direction from left to right. The proof is by in-

duction on the number of transitions fromR toP . SupposeQ = (Q1‖Q2)\IEE

1
is reach-

able from R and Q
α−→ P . By induction hypothesis Q′ = Qσ = (Q1σ‖Q2σ)\IEE

2
is

reachable from R′. Similar to the proof of Lemma 2, we proceed by two cases on the
derivation ofQ

α−→ P . (1) SupposeQ
α−→ P is derived fromQ2

α−→ P2 and α /∈ IEE

1
,

thenQσ
ασ−→ Pσ is derived fromQ2σ

ασ−→ P2σ for ασ /∈ IEE

2
. (2) SupposeQ

α−→ P is

derived fromQ1
τ−→ P1 (thusα = τ), thenQσ

τ−→ Pσ is derived fromQ1σ
τ−→ P1σ.

(3) Suppose Q
α−→ P is derived from Q1

β−→ P1 and Q2
β′
−→ P2 where β′ is dual to

β (thus α = τ), similarly we have the same result. Hence P ′ = Pσ is reachable from
R′. By symmetric of substitution we complete the proof.

Lemma 7. Provided E is disjointed, G is compatible with {EE

1 } against IEE

1
if and only

if G is compatible with {EE

2 } against IEE

2
.

Proof. Lemma 7 is based on Lemma 6 in the same vein that Lemma 3 is based on
Lemma 2.

Lemma 8. Provided E is disjointed, EE

1 and G are mutually interaction-live against
IEE

1
if and only if EE

2 and G are mutually interaction-live against IEE

2
.

Proof. Let σ = {p, q/q, p} where p, q are the IDs of E1, E2, respectively. We show that
if P = (P1‖P2)\IEE

1
is reachable from ([E1]E‖[G])\IEE

1
and Pi

α−→ in P (i = 1, 2),

then Pσ = (P1σ‖P2σ)\IEE

2
is reachable from ([E2]E‖[G])\IEE

2
and Piσ

ασ−→ in Pσ.
The proof is similar to the proof of Lemma 6.

Proof of Theorem 5. The proof of Theorem 5 is decomposed into three lemmas below
whose proofs are similar to those of previous lemmas.

Lemma 9. Provided E is excluded, if G is compatible with {EE

i } against IEE

i
for some

i ∈ [1,m], then G is compatible with {EE

1 , . . . , EE

m} against
⋃m

i=1 IEE

i
.

Lemma 10. If [EE

1] is strongly deadlock-free, then [EE

1]‖ · · · ‖[EE

m] is strongly deadlock-
free.

Lemma 11. Provided E is excluded, if EE

i and G are mutually interaction-live against
IEE

i
for some i ∈ [1,m], then EE

1 , . . . , EE

m and G are mutually interaction-live against
⋃m

i=1 IEE

i
.

