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Abstract. The importance of modelling the dynamic architectural characteris-
tics of software systems has long been recognised. However, the nature of the
dynamic architectural characteristics of service-oriented applications goes be-
yond what is currently addressed by existing architecture description languages
(ADLs). At the heart of the service-oriented approach is the logical separation of
service need from the need-fulfillment mechanism, i.e., the service provider: the
binding between the two is deferred to runtime and established at the instance
level, i.e. each time the need for the service emerges. In this paper we present
an architecture-oriented model for dynamic reconfiguration that paves the way
for the definition of ADLs that are able to address the specification of dynamic
architectural characteristics of service-oriented applications.

1 Introduction

Several architectural aspects arise from service-oriented computing (SOC), loosely un-
derstood as a paradigm that supports the construction of complex software-intensive
systems from entities, called services, that can be dynamically (i.e. at run time) discov-
ered and bound to applications to fulfil given business goals. On the one hand, we have
so-called service-oriented architecture (SOA), normally understood as a (partially) lay-
ered architecture in which business processes can be structured as choreographies of
services and services are orchestrations of enterprise components. SOAs are supported
by an integration middleware providing the communication protocols, brokers, identifi-
cation/binding/composition mechanisms, and other architectural components that sup-
port a new architectural style. This style is characterised by an interaction model be-
tween service consumers and providers that is mediated by brokers that maintain reg-
istries of service descriptions and are capable of binding the requester who invoked the
service to an implementation of the service description made available by a provider
that is able to enter into a service-level agreement (SLA) with the consumer.

On the other hand, this new style and form of enterprise-scale IT architecture has a
number of implications on the nature of the configurations (or run-time architectures)
of the systems that adhere to that style (what we will call service-oriented systems).
If we take one of the traditional concepts of architecture as being “concerned with
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the selection of architectural elements, their interactions and the constraints on those
elements and their interactions necessary to provide a framework in which to satisfy the
requirements and serve as a basis for the design” [30], it is possible to see why service-
oriented systems fall outside the realm of the languages and models that we have been
using so far for architectural description: for service-oriented systems, the selection of
their architectural elements (components and connectors) is not made at design time; as
new services are bound, at run time, to the applications that, in the system, trigger their
discovery, new architectural elements are added to the system that could not have been
anticipated at design time. In other words, the new style is essentially ’dynamic’ in the
sense that it applies not only to the way configurations are organised but, primarily, to
the way they evolve.

For example, a typical business system may rely on an external service to supply
goods; in order to take advantage of the best deal available at the time the goods are
needed, the system may resort to different suppliers at different times. Each of those
suppliers may in turn rely on services that they will need to procure. For instance, some
suppliers may have their own delivery system but others may prefer to outsource the
delivery of the goods; some delivery companies may have their own transport system
but prefer to use an external company to provide the drivers; and so on. In summary,
the structure of a service-oriented system, understood as the components and connec-
tors that determine its configuration, is intrinsically dynamic. Therefore, the role of
architecture in the construction of a service-oriented system needs to go beyond that of
identifying, at design time, components and connectors that developers will need to im-
plement. Because these activities are now performed by the SOA middleware, what is
required from software architects is that they identify and model the high-level business
activities and the dependencies that they have on external services to fulfil their goals.

Run-time architectural change is itself an area of software engineering that has de-
served a lot of attention from the research community [3,19,26,27,29,32], mainly as
a response to the need for mechanisms for enhancing adaptability and evolvability of
systems in the face of changing requirements or operating conditions. Although the dy-
namic nature of the architecture of service-oriented systems could be thought to fall
within this general remit, there are a number of specificities that suggest that a more
focused and fundamental study of dynamic reconfiguration in SOA is needed. Indeed,
dynamic reconfiguration is clearly intrinsic to the computational model of SOC, i.e. it is
not a process that, like adaptability or evolvability, is driven by factors that are external
to the system. Naturally, self-adaptation is a key concern for many systems but, essen-
tially, this means reacting to changes perceived in the environment in which the system
operates. In the case of services, the driver for dynamic reconfiguration (through change
of the source of provision each time a service is required) is not so much the need to
adjust the behaviour in response to changes in the environment: it is part of the way sys-
tems should be designed to meet goals that are endogenous to the business activities that
they perform. In both cases, the aim is to optimise the way quality-of-service require-
ments are met. However, while in architectural-based approaches to self-adaptation the
optimisation process is programmed in terms of reconfiguration actions, in the case of
services the optimisation process is determined by quality-of-service requirements that
derive from business goals.
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Our purpose in this paper is to put forward a mathematical model that can be used as
a semantic domain for service-oriented architectural description languages. Our starting
point is the graph-based approach that we and other authors have used for architectural
reconfiguration [12,32]. Essentially, we introduce a mechanism of reflection (as used
in other approaches to dynamic reconfiguration [14,21]) by which configurations are
typed with models of business activities and service models define rules for dynamic
reconfiguration. This mathematical model was used in the SENSORIA project to define
the dynamic semantics of the language SRML [18]. A full definition of the model itself
cannot be provided here; a more detailed account can be found in [17]. For illustrating
our approach, we use the financial case study developed in SENSORIA.

The paper is organised as follows. In Section 3, we define a model for business-
reflective configurations of systems. In Section 4, we put forward a model of services
as rules for the dynamic reconfiguration of systems and we outline an operational se-
mantics for the rules defined by services. We discuss related work in Section 5 and
conclude in Section 6 by pointing to other aspects that are being investigated.

2 Motivation and example

At a certain level of abstraction, configurations of service-oriented applications can
be seen to be a particular case of component-connector architectural configurations: a
graph of components (applications deployed over a given execution platform) linked
through wires (interconnections between components over a given network)1. We de-
note by COMP and WIRE the universes of components and wires, respectively.

As it often happens in the presence of dynamic reconfiguration, it is necessary to
consider the execution state of the configuration elements as well. Every component
c∈COMP and wire w∈WIRE of a configuration may be in a number of states (e.g. val-
uations of local state variables), the set of which is denoted by STATEc and STATEw,
respectively. We denote by STATE the corresponding indexed family of sets of states.

Definition 1 (Configuration and State Configuration).

– A configuration is a simple graph G such that nodes(G)⊆COMP (i.e. nodes are
components) and edges(G)⊆WIRE (i.e. edges are wires). Each edge e is associ-
ated with a (unordered) pair of nodes that we denote by e : n↔ m.

– A state configuration F is a pair 〈G,S〉, where G is a configuration and S is a
configuration state, i.e., a mapping that assigns an element of STATEc to each
c∈nodes(G) and an element of STATEw to each w∈edges(G).

Configurations of service-oriented applications change as a result of the creation of
new business activities and the execution of existing ones: new components or wires
may be added to a configuration because the execution of a business activity triggered
the discovery of and binding to a service that is required. In order to illustrate our ap-
proach, we use a (simplified) scenario in which there is a financial services organisation

1 In SOC, message exchanges are essentially peer-to-peer and, hence, for simplicity, we take all
connectors to be binary.
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that offers a mortgage-brokerage service MORTGAGEFINDER that, in addition to find-
ing the best mortgage deal for a mortgage request, opens a bank account associated with
a loan (if the lender does not provide one) and procures an insurance policy (if required
by either the customer or the lender). The provision of this service depends on three
other services — a Lender, aBank, an Insurance— that are assumed to be provided
by other organisations and procured at run time, each time they are needed, according
to the profile of the customer and market availability.

In this context, let us consider a situation in which there is a business activity ABob

processing a mortgage request issued through a user interface BobHouseUI on be-
half of a customer (Bob), and that this activity is being served by MORTGAGEFINDER.
Suppose that the active computational ensemble of components that collectively pursue
the business goal of this activity in the current state is as highlighted (through a dotted
line) on the left-hand side of Figure 1 — the component BobMortAg is orchestrating
the delivery of MORTGAGEFINDER, which requires it to interact with the component
BobEstAg that is acting on behalf of Bob (who is using the interface BobHouseUI),
and a database MortRegistry of trusted lenders. Other components may be present
in the current configuration that account for other business activities running in par-
allel with ABob, say activities processing other mortgage requests that share the same
database MortRegistry or, as depicted in Figure 1, updating that registry with new
lenders. That is, ABob is in fact a sub-configuration of a larger system.

Let us further imagine that the discovery of a provider of the service Lender is trig-
gered byBobMortAg. As illustrated in the right-hand side of Figure 1, as a result of the
execution of the discovery and binding process, a new component — RockLoans —
is added to the current configuration and bound to the component BobMortAg that is

RockLoans

BobMortAg

bcl

BobHouseUI

BobEstAg

bea

bam

MortRegistry

BobMortAg

BobHouseUI

BobEstAg

bea

bam

MortRegistry

AliceManag

AliceRegUI

AliceManag

AliceRegUI

bcr

arm

amr

bcr

arm

amr

Fig. 1. Two configurations that shows the sub-configuration that corresponds to the business ac-
tivity ABob before and after the discovery of a provider of the service Lender, respectively.
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orchestrating the delivery of MORTGAGEFINDER. This new component is responsible
for the provision of the service by the selected provider of Lender.

This example illustrates why, in order to capture the dynamic aspects of SOC, we
need to look beyond the information available in a state — configurations account only
for which components are active and how they are interconnected, not why they are
active and interconnected in that way. Therefore, we need to have available information
that accounts for the dependencies that the activity has on externally provided services,
the situations in which they need to be discovered, and the criteria according to which
they should be selected. The approach that we developed achieves this by making con-
figurations business reflective, i.e. by labelling each sub-configuration that corresponds
to a business activity with a model of the workflow that implements its business logic.
The models that we propose for this effect are called activity modules, whose opera-
tional semantics defines the rules according to which service-oriented systems are dy-
namically reconfigured. We discuss this form of reflection in Section 3.

3 Business-reflective configurations

Activity modules are specification artefacts that we use for typing the sub-configurations
that, in a given state, execute the business activities that are running. Figure 2 depicts the
activity module that types the configuration of the activity ABob on the left-hand side
of Figure 1, i.e. before the discovery of a provider of the service Lender. The different
elements of an activity module are:

– Component-interfaces: the specifications that type the components that, in the
sub-configuration, execute the business activity. For example, MA is a component-
interface declared to be of type MortgageAgent .

– Serves-interface: the specification of the interface (HUI in the example) that the
activity uses to interact with users.

– Uses-interfaces: the specification of the interactions that the activity performs with
persistent components (MR of type Registry in the example).

– Wire-interfaces: the connectors — roles and glue, in the sense of [4] — that spec-
ify, through the glue, the protocols that are executed by the wires and the maps from
the roles of the connectors to the component specifications.

– Requires-interfaces: the specifications of the external services that may be re-
quired during the execution of the activity. For instance, the activity module in
Figure 2 declares three ‘requires-interfaces’ — LA of type Lawyer, IN of type
Insurance, LE of type Lender and BA of type Bank. These types are specifi-
cations of the behaviour that is required of external services. They are used for the
selection of providers when the discovery of the services is triggered.

– Internal configuration policies: these are state conditions associated with compo-
nent interfaces that specify how they should be initialised, and triggers associated
with requires-interfaces that determine when external services need to be discov-
ered. Graphically, these policies are identified by the clocks.

– External configuration policies: these are the SLA constraints that apply to the
discovery and selection of external services. Graphically, these policies are identi-
fied by the rulers.
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The nature of the specifications used for defining the interfaces is not relevant for
the purpose of this paper. In [18] we have used both a declarative language and an ex-
tension of UML statecharts for component-interfaces, and temporal logic for requires-
interfaces, but other formalisms could be used. For generality, we assume that all spec-
ifications belong to a universe SPEC. We distinguish between the different kinds of
interfaces because they have different roles in the dynamic re-configuration of the ac-
tivity as explained further on. We also abstract from the nature of the connectors that
are used in wire-interfaces and work over a generic universe CNCT. Details on the kind
of connectors that we have found useful for service modelling can be found in [1].

The specific language used for specifying initialisation conditions and triggers is
also of no particular importance for this paper, so we assume that we have available a
set STC of conditions over STATE. Finally, we adopt so called ’soft constraints’ for ex-
pressing SLA constraints. These generalise the notion of constraint: while a constraint
is a predicate over a certain set of variables X and, hence, divides the set of valua-
tions of X in two disjoint subsets (those that satisfy the constraint and those that do
not), a soft constraint is a function mapping each valuation of X into some domain
D (e.g., the interval of real numbers [0, 1]) that captures different degrees of satisfac-
tion. Soft constraints are commonly used for describing problems where it is neces-
sary to model fuzziness, preferences, costs, inter alia. In particular, they have shown
to be useful for supporting the negotiation of service-level agreements [7]. Some well-
known soft constraint formalisms are Valued Constraint Satisfaction Problems [16] and
Semiring-based Soft Constraints [6]. The particular formalism that is adopted is not
relevant for this paper; in SRML [18], we adopted [6].

In summary, an activity module includes all the information that defines the business
aspect of the activity on a particular state. This includes the specifications of the compo-
nents and connectors that execute the activity on that state but also the dependencies on

BA:
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intBA

LA:
Lawyer

SLA_1

EA:
EstateAgent

intLA

eal: EL

HUI:
House 

Application

ea: HE
intEA

MR:
Registry

MA:
MortgageAgent

IN:
Insurance

intIN

cr:ME

cl:ML

mi:MI

mb: MB

intMA

am:CM LE:
Lender

intLE

Fig. 2. The activity module that types the sub-configuration that corresponds to ABob as shown
on the left-hand side of Figure 1.
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external services that determine how that configuration may change. Activity modules
are also formalised as graphs:

Definition 2 (Activity Module). An activity module M consists of

– A simple graph graph(M); we use nodes(M) to denote the set of its nodes.
– A set requires(M)⊆nodes(M).
– A set uses(M)⊆nodes(M)\requires(M).
– A node serves(M)∈nodes(M)\(requires(M) ∪ uses(M)).

We use components(M) to denote the set of all remaining nodes.
– A labelling function labelM such that
• labelM (n)∈SPEC for every node n.
• labelM (e : n↔ m)∈CNCT for every edge e.

– A pair intP lc(M) of mappings 〈triggerM , initM 〉 such that triggerM assigns a
condition in STC to each n∈requires(M) and initM assigns a condition in STC
to each n∈components(M).

– A pair extP lc(M) consisting of a soft constraint system cs(M) and a set sla(M)
of soft constraints over cs(M).

We denote by body(M) the (full) sub-graph of graph(M) that forgets the nodes in
requires(M) and the edges that connect them to the rest of the graph.

We can now also formalise the typing of state configurations with activity modules
motivated before, which makes configurations business-reflective. We consider a space
A of business activities to be given, which can be seen to consist of reference num-
bers (or some other kind of identifier) such as the ones that organisations automatically
assign when a service request arrives.

Definition 3 (Business Configuration). A business configuration is a triple 〈F ,B, C〉
where

– F is a state configuration.
– B is a partial mapping that assigns an activity module B(a) to each activity a ∈ A

— the workflow being executed by a in F . We say that the activities in the domain
of this mapping are those that are active in that state.

– C is a mapping that assigns an homomorphism C(a) of graphs body(B(a))→ F to
every activity a∈A that is active in F . We denote by F(a) the image of C(a) — the
sub-configuration of F that corresponds to the activity a.

A homomorphism of graphs is just a mapping of nodes to nodes and edges to edges
that preserves the end-points of the edges. Therefore, the homomorphism C of a busi-
ness configuration types the nodes (components) of F(a) with specifications of the
roles that they play in the activity — i.e. C(a)(n) : labelB(a)(n) for every node n —
and the edges (wires) with connectors — i.e. C(a)(e) : labelB(a)(e) for every edge e.

In Figure 3, we represent a business configuration for the state configuration de-
picted on the left-hand side of Figure 1. For simplicity, we only show the node map-
pings of the homomorphisms. In addition to the business activity ABob that we have
been discussing, Figure 3 reveals another business activity — AAlice — in which the
registry of trusted lenders MortRegistry is also involved. The activity module that
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types AAlice defines that the business goal of this activity is to update the registry with
new lenders; in the particular state being depicted, this activity still requires an external
service to be discovered that can certify the new lender.

The fact that the homomorphism is defined over the body of the activity module
means that the requires-interfaces are not used for typing components of the state con-
figuration. Indeed, as discussed above, the purpose of the requires-interfaces is for iden-
tifying dependencies that the activity has, in that state, on external services. In particu-
lar, this makes requires-interfaces different from uses-interfaces as the latter are indeed
mapped, through the homomorphism, to a component of the state configuration.

In summary, the homomorphism makes state configurations reflective in the sense of
[14] as it adds meta (business) information to the state configuration. This information is
used for deciding how the configuration will evolve (namely, how it will react to events
that trigger the discovery process). Indeed, reflection has been advocated as a means of
making systems adaptable through reconfiguration, which is similar to the mechanisms
through which activities evolve in our model. The reconfiguration process, as driven by
services, is discussed in the next section.

MortRegistry

BobMortAg

BobHouseUI

BobEstAg bam

AliceManag

AliceRegUI
SLA_UR
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Registry

MC:
Management
Coordinator
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Fig. 3. A business conguration that shows the sub-congurations that correspond to the business
activities ABob (top part) and AAlice (bottom part) and the activity modules that type them.
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4 Service Binding as a Reconfiguration Action

As already mentioned, business configurations change whenever the execution of an
activity requires the discovery of and binding to a service. It remains to formally define
this process, which starts with the discovery of potential providers of the service and
the selection of one service provider among these.

We start by providing a formal notion of service, which we developed in SENSO-
RIA [18] inspired by concepts proposed in the Service Component Architecture (SCA)
[25]. We model services through service modules, which are similar to the activity mod-
ules that we introduced in the previous section except that, instead of a serves-interface
to the user of the activity, they include a provides-interface through which activities
can connect to the service (identified through a requires-interface). Such interfaces are
labelled by specifications (business protocols) that describe the properties that a cus-
tomer can expect from the interactions with the service. Uses-interfaces and requires-
interfaces can be included in service modules in the same way as in activity modules.

Definition 4 (Service Module). A service module M consists of

– A simple graph graph(M).
– A set requires(M)⊆nodes(M).
– A set uses(M)⊆nodes(M)\requires(M).
– A node provides(M)∈nodes(M)\(requires(M) ∪ uses(M)).
– A labelling function labelM such that
• labelM (n)∈SPEC for every node n.
• labelM (e : n↔ m)∈CNCT for every edge e.

– An internal configuration policy intP lc(M) as in definition 2.
– An external configuration policy extP lc(M) as in definition 2.

In Figure 4 we present the structure of the service module that models the mortgage-
brokerage service MORTGAGEFINDER described before. A complete definition of this
service using the modelling language SRML, including all the specifications involved,
is presented in [18]. The module specifies that the service is provided through an
interface CR and wire CC that can bind to any activity that requests an external
service through a requires-interface that is matched by the specification Customer.
The orchestration of the provision of the service is specified through the component-
interface MA of type MortgageAgent which may require external services that match
the requires-interfaces LE of type Lender (for securing a loan), BA of type Bank (for
opening a bank account), and IN of type Insurance (for procuring an insurance). The
orchestration also requires the binding to a persistent component RE of type Registry
(that stores information about trusted lenders).

In order to formalise the processes of discovery and binding, let r be a requires-
interface of an activity a. The discovery of services to which r can be bound involves
finding services M that (i) through their provides-interface p are able to satisfy the
specification associated with r, and (ii) through their external configuration policies
offer SLA constraints that are compatible with those of a and, therefore, make it possi-
ble to reach a service-level agreement. For simplicity, we limit our attention to service
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modules where there is exactly one component-interface connected to the provides-
interface and to activity modules where each requires-interface is connected to a single
component-interface (the formulation of the general case can be found in [17]).

For the formulation of condition (i) above we assume that the universe SPEC of
specifications is equipped with a notion of refinement such that ρ : r → p means
that the behavioural properties offered by p entail the properties required by r, up to
a suitable translation between the languages of both. For example, if using temporal
logic for specifying the business protocols associated with r and p as in [18] refinement
corresponds to entailment (logical consequence).

The formulation of condition (ii) above relies on a composition operator ⊕ that is
applicable to soft constraint systems that are compatible (see [6] for an example) and
to sets of constraints over compatible constraints systems. Soft constraint systems also
provide a notion of best level of consistency that assigns a non-negative numerical value
blevel(C) to each set of constraints C — the degree of satisfaction that we can expect
for C. A set of constraints is said to be consistent if and only if blevel(C) > 0. If C is
consistent, a valuation for the variables of C is said to be a solution of C.

Definition 5 (Service matching). Let A be an activity module and r∈requires(A).
We denote by match(A, r) the set of pairs 〈M,ρ〉 such that:

– M is a service module such that the constraint systems cs(M) and cs(A) are com-
patible and blevel(sla(M)⊕sla(A)) > 0;

– ρ is a refinement mapping from labelA(r) to labelM (provides(M)).

That is, the matching process for an activity module and one of its requires-interfaces
returns all service modules whose provides-interface refines the requires-interface of the
activity module and whose constraint systems are compatible and whose constraints are
consistent.

Definition 6 (Service Discovery). Let A be an activity module and r∈requires(A).
We denote by discover(A, r) the set of triples 〈M,ρ,∆〉 such that:

– 〈M,ρ〉 ∈match(A, r);

MORTGAGEFINDER
SLA

RE:
Registry

MA:
MortgageAgent

LE:
Lender

intLE

BA:
Bank

intBA

IN:
Insurance

intIN

     CR:
     Customer

cr:ME

cl:ML

mi:MI

mb: MB

cc:
CM

Fig. 4. The structure of a service module that models MORTGAGEFINDER.
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– ∆ is a solution for sla(M)⊕sla(A) such that bvalue(sla(M)⊕sla(A)) is maximal
for match(A, r), i.e. ∆ maximises the degree of satisfaction for the combined set
of SLA constraints.

That is, the discovery process returns the set of service modules that offer the best
possible service available, the solution ∆ being the corresponding SLA agreement.

Consider now a business configuration L = 〈〈G,S〉,B, C〉, a an active business
activity in L and r∈requires(B(a)) such that triggerB(a)(r) evaluates to true in S.
The reaction to this trigger is a reconfiguration of the business configuration, which
results in a new business configuration obtained by binding an element 〈M,ρ,∆〉 of
discover(B(a), r) to a. We now define this binding process.

Definition 7 (Service Binding). Let L = 〈〈G,S〉,B, C〉 be a business configuration, a
an active business activity inL, r∈requires(B(a)),M a service module, ρ a refinement
mapping from r to provides(M) and ∆ a constraint. Binding 〈M,ρ,∆〉 to r induces a
business configuration 〈〈G′,S ′〉,B′, C′〉 such that:

– B′(x) = B(x), if x 6= a.
– B′(a) is an activity module M ′ such that:
• graph(M ′) is obtained from the sum (disjoint union) of the graphs of B(a) and
M by identifying r with the node ofM to which provides(M) is connected and
identifying the corresponding edges.

• requires(M ′)= requires(M)∪requires(B(a))\{r}, i.e. we eliminate r and
add the requires-interfaces of M .

• uses(M ′)=uses(M)∪uses(B(a)), i.e. we add to B(a) the uses-interfaces of
M .

• serves(M ′)=serves(M), i.e. we keep the serves-interface.
• the labels provided by label′M are those that are inherited from the graphs of
B(a) and M . The edge that connected r is now labelled with the label of the
edge that connects provides(M) in M .

• intP lc(M ′) has the triggers and initialisation conditions that are inherited
from B(a) and M .

• extP lc(M ′) = 〈cs(M)⊕cs(B(a)),sla(M)⊕sla(B(a)) ∪ {∆}〉.
– G′ is obtained from G by adding:
• For each node n of components(M), a component cn in COMP that imple-

ments the specification labelM (n) and, for each edge connecting n, a wire that
implements the connector that labels the edge.

• For every node n of uses(M), a component cn of G that implements the spec-
ification labelM (n) is selected and, for every edge connecting n in M , a wire
that implements the connector that labels the edge is added to G.

That is to say, implementations of component-interfaces of M are added to the
graph and existing components are chosen for uses-interfaces. Wires are added
that implement the connectors specified in M .

– S ′ coincides with S in the nodes of G and assigns, to every new node cn where
n∈components(M), a state that satisfies initM (n).

– C′ is the homomorphism that results from updating C with the mappings defined
above, i.e. for each node n of body(M), C′(n) = cn, and similarly for the edges.
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In order to illustrate how binding works, consider the business configuration in Fig-
ure 4, which shows ABob at an earlier stage of execution (i.e. earlier than the configu-
ration depicted in the left-hand side of Figure 1). Assume that, in the current state, the
trigger intMG is true and that the service module shown in Figure 4 is returned by the
discovery process described in Definition 6 for the requires-interface MG. A possible
result of the binding is depicted in Figure 3.

Note that a new component — BobMortAg — is added to the configuration of
ABob as an instance of MortgageAgent, but that the uses-interface RE of MORT-
GAGEFINDER does not give rise to a new component: it is mapped to MortRegistry.
This is the means through which effects of services can be made ‘persistent’, i.e. the
execution of the service can interfere with other activities in the current configuration.
For instance, if AAlice registers a new lender, ABob will be able to consider that lender
when discovering an external service that responds to the trigger intLE of the requires-
interface LE of type Lender. On the other hand, the serves-interface of the activity
module remains invariant through the evolution of the business configuration. This cap-
tures the fact that the activity relies on the same interface to interact with its user. Also
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CA:
Certification

Autority

intCA
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RUI:
Registry
Manager

rm:RM
intMC

HUI := BobHouseUI
EA := BobEstAg

RUI := AliceRegUI
MC := AliceManag
RE := Registry

LA:
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EA:
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Application

ea: HE
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mi:MI

MortRegistry

BobHouseUI
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AliceRegUI
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Fig. 5. A business conguration that precedes that of Figure 3.
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notice that the new activity module that types ABob acquires the requires-interfaces of
MortgageAgent, i.e. the business activity evolves both at the level of its configuration
and its type.

5 Related Work

In the last decade, different approaches to architectural specification have been pro-
posed that permit the representation of dynamic architectures [3,5,12,29,32,33]. The
focus of these approaches is on the description of a control (reconfiguration) layer on
top of a managed system. The dynamic architectural changes that have to be performed
in the managed system are specified explicitly, for instance in terms of reconfiguration
rules [5,12,32], configurator processes [3] or reconfiguration scripts [29,33]. Although
different semantic domains have been used in those aforementioned works, their under-
lying mechanisms can be defined in terms of operations that rewrite state configurations
in the sense of Definition 1. The work that we presented in this paper follows on this tra-
dition but offers a more structured approach (based on reflection) that targets the forms
of reconfiguration that arise, specifically, in SOC.

A different direction was taken by Darwin [24], π-ADL [27] and ARCHWARE [26],
which explore the expressive power of the π-calculus — a calculus developed precisely
for concurrent systems whose configurations may change during computation. As a
result, these ADLs do not promote the separation between the management of the com-
putational aspects of systems and of their architecture (configuration); by borrowing
primitives from the π-calculus, they include instantiation, binding and rebinding as part
of the behaviour of system components. From our point of view, the separation that
the approaches mentioned in the previous paragraph (including ours) promote between
the two levels (computation and reconfiguration) has clear advantages for managing the
complexity that arises in modern software-intensive systems, especially when, like in
SOC, their architecture is highly dynamic. The expressive power of the π-calculus has
also been explored within SOC: several service calculi have been proposed to address
operational foundations of SOC (in the sense of how services compute) [13,15,22,23] as
well as to capture the dynamic architectures of service-oriented systems [28,31]. Here
again, a clear separation between the aspects that belong to the SOA middleware and
those that derive from the application domain seems to be essential for the definition of
ADLs that can effectively support high-level design.

Therefore, the reason that led us to propose a different model for dynamic archi-
tectures specifically targeted for SOC is not the lack expressiveness of existing models
but, rather, the lack of models that capture the ‘business’ aspects of SOC at the ‘right’
level of abstraction. To our knowledge, ours is the first proposal in this direction.

Indeed, the definition of models is intrinsically associated with abstraction. For ex-
ample, operational models of sequential programming are typically defined in terms of
functions (called states) that assign values to variables, which abstract from the way
memory is organised and accessed in any concrete conventional computer architec-
ture. Paradigms such as SOC superpose further layers of abstraction (creating a richer
middleware) so that systems can be built and interconnected by relying on a software
infrastructure that adds to the basic computation and communication platform a num-
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ber of facilities that, in the case of SOAs, support service publication, discovery and
binding. This means that designers or programmers working over a SOA do not need
to implement these mechanisms: they can rely on the fact that they are available as
part of the abstract operating system that is offered by the middleware. Just like any
Java programmer does not need to program the dynamic allocation, referencing and de-
referencing of names, a programmer of a complex service should not need to include
the discovery, selection and binding processes among the tasks of the orchestrator.

This is why we perceive that the architectural aspects of SOC are best handled over
graph-based representations that separate computation from reconfiguration such as the
ones proposed in this paper. Drawing an analogy with the semantics of programming
languages, we could say that we proposed a notion of (typed) state and state transition
for such dynamic aspects of SOC: states are graphs of components and connectors that
capture configurations that execute business activities, and transitions are reconfigura-
tions that result from binding to selected services. Our model captures the nature of
SOA-middleware approaches and generalises them, offering a more abstract level of
modelling in which the business aspects that drive reconfiguration can be represented
explicitly and separately from the orchestration of the interactions through which ser-
vices are delivered.

6 Concluding Remarks

In this paper we presented a mathematical model that can be used as a semantic do-
main for service-oriented architectural description languages. The static aspects of our
model were inspired by the concepts proposed in the Service Component Architecture
(SCA) [25] towards a general assembly model and binding mechanisms for service
components and clients that may have been programmed in possibly many different
languages, e.g. Java, C++, BPEL, or PHP. We have transposed those concepts to a more
abstract level of modelling and enriched them with primitives that address the dynamic
aspects (run-time service discovery, selection and binding) of service-oriented systems.
This model paves the way for the definition of ADLs that are able to address the spec-
ification of dynamic architectural characteristics of service-oriented applications and,
moreover, contribute to overcome the lack of models that capture the ‘business’ aspects
of SOC.

The advantages of this approach have been explored in the language SRML that we
defined in SENSORIA [18] but our model is general enough that it can be used to sup-
port other ADLs. For example, at a methodological level, we have extended the tradi-
tional use-case method to define the structure of both activity and service modules from
business requirements [9], which was validated in a number of case studies, including
automotive [10] and telco systems [1] in addition to more classical business-oriented
domains such as the one used in the paper. Another advantage of the separation of re-
configuration from computation is that different orchestration languages can be used for
modelling the components and connectors through which services are provided without
affecting the way activities or services are structured in modules: for example, trans-
formations were defined from BPEL to SRML [11], UML state machines were used

14



for supporting model-checking [2], and transformations to PEPA [20] were used for
supporting quantitative analysis [8].
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31. M. López Sanz, Z. Qayyum, C. Cuesta, E. Marcos, and F. Oquendo. Representing service-
oriented architectural models using pi-adl. In ECSA, pages 273–280, 2008.

32. M. Wermelinger and J. Fiadeiro. A graph transformation approach to software architecture
reconfiguration. Sci. Comput. Program., 44(2):133–155, 2002.

33. M. Wermelinger, A. Lopes, and J. Fiadeiro. A graph based architectural (re)configuration
language. In ESEC/FSE-9, pages 21–32, New York, NY, USA, 2001. ACM.

16


