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Abstract. We give an O(nd+n log n) algorithm computing the number
of minimum (s, t)-cuts in weighted planar graphs, where n is the number
of vertices and d is the length of the shortest s-t path in the corresponding
unweighted graph. Previously, Ball and Provan gave a polynomial-time
algorithm for unweighted graphs with both s and t lying on the outer
face. Our results hold for all locations of s and t and weighted graphs,
and have direct applications in image segmentation and other computer
vision problems.

1 Introduction

Graph cuts play an important role in a number of computer vision algorithms.
For example, in image segmentation, see e. g. [4, 5, 9], an image is represented
by a graph with pixels as the vertices and an edge connects two pixels if they
are neighboring and considered similar; the edge weights capture the similarity
measure between the pixels. Naturally, the underlying graph tends to be planar,
typically grid-like. One of the problems of image segmentation is to separate
an object from the background. Many segmentation algorithms rely on finding
a minimum cut between two positions, one from the object and one from the
background (often provided as input from the user). The weight of the minimum
cut corresponds to the least energy contour between the positions, viewing the
edge weights as the strength of the connection between the respective pixels.
Notice that the two chosen locations are very unlikely to be physically close to
each other, hence our assumptions on planarity and arbitrary positions of the
locations are well aligned with the image segmentation applications.

Counting problems are closely related to random sampling from the same
universe [14]. In image segmentation the current algorithms might suffer from
finding an “atypical” cut that does not represent the contour well. Ideally the
user would get the opportunity to choose the best contour out of all possible
minimum-cut-based segmentations. However, this might be infeasible because
the number of minimum cuts between two chosen positions might be exponential.
Having the ability to sample from several minimum cuts provides the user with
the option to choose the best of these segmentations while keeping the running
time reasonably small.

Minimum cuts are also related to network reliability problems where the
vertices are individual computers in a network, edges are connections between



computers, and the edge weight captures the probability of connection failure.
The number of minimum cuts between two end-points is useful in estimating the
probability of disconnecting the network, see e. g., [1]. Ball and Provan [1] showed
that, in case of unweighted (multi)graphs, the problem of counting all minimum
(s, t)-cuts is polynomially reducible to the problem of counting all antichains
in a poset. (An (s, t)-cut can be visualized as a set of edges that, if removed,
disconnect the vertices s and t, see Section 2 for the formal definition.) Both
problems are known to be #P-complete, as shown by the same authors in [18].
Nevertheless, they were able to devise a polynomial-time algorithm for counting
all minimum (s, t)-cuts in planar graphs, under the assumption that both vertices
s and t lie on the outer face. Different variants of the network reliability problem
and its connection to minimum cuts were studied in a number of previous works,
for example [2, 19, 17, 15, 6].

Our main contribution is an efficient polynomial-time algorithm for comput-
ing the number of minimum (s, t)-cuts in all weighted planar graphs and for
all pairs of s and t (i. e., we do not impose assumptions on the locations of s
and t). Recall that this is exactly the scenario of many vision applications. (For
directed graphs we work under the natural and commonly assumed condition
that all vertices are reachable from s and lead to t, see, e. g., [7]. Otherwise,
the typical definition of cuts leads to pathological cases, as discussed in Sec-
tion 4.) We extend the result of Ball and Provan to the case of weighted graphs,
showing that this case also polynomially reduces to the problem of counting
(unweighted) antichains in a poset. Our main result, summarized in Theorem 1
below, uses the reduction to devise a polynomial-time algorithm for counting
minimum (s, t)-cuts for weighted planar graphs, for all possible pairs of s and t.

Theorem 1. Let G = (V,E, w) be any (directed) planar graph with edge weights
w : E → R+. Let s, t ∈ V , s 6= t and assume that all vertices are reachable from
s and lead to t. Then, there is an O(nd + n log n) algorithm for counting all
minimum (s, t)-cuts in G, where n = |V | and d is the smallest number of edges
forming a path from s to t in G.

When both s and t lie on the outer face, it is possible to connect them by
an edge, splitting the outer face into two faces. The idea of [1] relies on the
fact that the antichain problem can then be solved by counting the number of
paths between the two new faces in the dual (directed) planar graph. However,
planarity does not allow to add the (s, t) edge for arbitrary locations of s and t.
We overcome this problem by showing that we can utilize one of the paths from
s to t. Our proof of correctness is significantly more elaborate than the outer
face case, yet the underlying algorithm is still relatively simple, as summarized
in Algorithm 1.

For completeness, we review results studying the problem of finding one
of the minimum (s, t)-cuts in a given weighted planar graph. Building on the
work of Itai and Shiloach [12], Reif [20] developed an O(n log2 n) divide-and-
conquer algorithm for undirected graphs. Janiga and Koubek [13] designed an
O(n log2 n log log n) algorithm for directed planar graphs. The result of Bor-



Algorithm 1 Counting minimum-(s, t)-cuts in a weighted planar graph G

1: Compute a maximum s-t flow such that the directed flow edges do not form a cycle.
2: Construct Ĝ by contracting every strongly connected component of the residual

graph, let ŝ and t̂ be the vertices of Ĝ corresponding to s and t, respectively.
3: Let p be a t̂-ŝ path in Ĝ. Duplicate all edges of p, the new edges are on the left of

p when traveling from t̂ to ŝ.
4: Follow the new edges from t̂ to ŝ. If the current edge shares the same face on the

left as the previous edge, merge the edges into one edge by bypassing the middle
vertex. This process results in an t̂-ŝ path p′.

5: Let G′ be the graph G with the path p′. Construct a (directed) unweighted dual
planar graph G′d of G′, omit edges that cross the edges of p′.

6: For every pair of vertices a, b in G′d that correspond to faces that share an edge
in p′, compute the number of all a-b paths in G′d, using an algorithm for directed
acyclic graphs.

7: Return the sum of all numbers computed in step 6.

radaile and Klein [3] yields an O(n log n) algorithm for all planar graphs. The
dual graph plays a central role in all these works.

This paper is organized as follows. We present preliminaries, graph terminol-
ogy, and notation, in Section 2. We state the reduction result in Section 3 and
we prove the main result, Theorem 1, in Section 4. Section 5 contains the proofs
of the results from Section 3.

2 Preliminaries

We denote by R, R+, and R+
0 the sets of all real numbers, positive real numbers,

and nonnegative real numbers, respectively.
We work with directed graphs throughout the paper. The usual conversion

of undirected graphs into directed graphs (for every undirected edge include two
directed edges) provides corresponding algorithms for undirected graphs.

Let G = (V,E, w) be a directed graph with positive edge weights w : E →
R+. Let s, t ∈ V, s 6= t be two vertices. An (s, t)-cut of G is a set of vertices
S ⊆ V that contains s but not t. The value of the cut S is the sum of the
edge weights of the edges going out of the set S, i. e.,

∑
(u,v):u∈S,v 6∈S w(u, v). A

minimum (s, t)-cut has the smallest possible value of all (s, t)-cuts.
Our objective is to count the number of all possible minimum (s, t)-cuts of

an input graph G.
Minimum cuts are related to network flows. A flow network is a directed

graph G = (V, E, c) where c : E → R+ defines non-negative edge capacities. Let
s, t ∈ V, s 6= t be two vertices called source and sink, respectively. A flow from s
to t is a function f : E → R+

0 satisfying the following properties:

– capacity constraint: f(e) ≤ c(e) for every e ∈ E, and
– flow conservation:

∑
u:(u,v)∈E f(u, v) =

∑
w:(v,w)∈E f(v, w) for every v ∈

V − {s, t}.



The value of the flow f is the sum of the values of flow edges out of s minus
the sum of the flow edges into s, i. e.,

∑
w:(s,w)∈E f(s, w) −∑

w:(w,s)∈E f(w, s).
A flow is said to be maximum if it has the largest possible value among all flows
from s to t (we also refer to such flows as s-t-flows).

The residual graph of the flow f , denoted Gf = (V,Ef , wf ), is a weighted
directed graph where Ef contains the following two types of edges:

– for every e ∈ E with f(e) < c(e), the set Ef contains a forward edge e with
weight wf (e) = c(u, v)− f(u, v), and

– for every e = (u, v) ∈ E with f(e) > 0, the set Ef contains a backward edge
e′ = (v, u) with weight wf (e′) = f(e).

An augmenting path in a residual graph Gf is any path from s to t.
The following is a well-known Maximum-flow Minimum-cut Theorem by Ford

and Fulkerson [8].

Theorem 2. Let G = (V,E, c) be a directed graph with positive edge weights and
let s, t ∈ V . Then, the value of the minimum (s, t)-cut in G equals the maximum
s-t-flow value in the flow network G.

For more information about network flows, see, e. g., [16]. Most of our termi-
nology and notation follows this reference.

3 Reduction to Forward-cuts

We give a polynomial reduction from the problem of counting minimum (s, t)-
cuts in a positively weighted graph to the problem of counting antichains in a
poset. A poset can be represented by a directed acyclic graph and an antichain
is a set of pairwise unrelated vertices (i. e., no vertex has a predecessor in the
set).

Instead of proving our results for antichains, we define a closely related notion
that we call forward-cuts. A forward-cut contains the antichain elements and all
their predecessors. Moreover, a forward-(s, t)-cut contains the vertex s but not
t. The formal definition is summarized below.

Definition 1. Let G = (V, E) be a directed acyclic (multi)graph, and let s ∈ V
be a vertex in G of indegree 0 and t ∈ V be a vertex in G of outdegree 0. Let
S be a subset of the vertices V such that s ∈ S and t 6∈ S. We say that S is a
forward-(s, t)-cut of G if there is no edge (u, v) ∈ E such that v ∈ S and u 6∈ S.

The reduction result is stated in the following theorem.

Theorem 3. Let G = (V,E, c) be a (directed) flow network with edge capacities
c : E → R+. Let s ∈ V be the source and t ∈ V be the sink. There exists a
directed acyclic graph G̃ = (Ṽ , Ẽ) and vertices s̃, t̃ ∈ Ṽ such that the number
of minimum (s, t)-cuts in G is equal to the number of forward-(t̃, s̃)-cuts in G̃.
Moreover, |Ṽ | ≤ |V |, |Ẽ| ≤ 2|E|, and it is possible to construct G̃ in time
O(|V |3 + |E|2). Also, if G is planar, then G̃ is planar as well and it can be
constructed in time O(|V | log |V |).



The proof of the theorem is included in Section 5. In the next section we
will deal with graphs where every vertex is reachable from s and leads to t. The
following corollary will be used in the proof of Theorem 1.

Corollary 1. Suppose that there exists a path from s to every vertex of G and
a path from every vertex of G to t. Then, t̃ is the only vertex of indegree 0 and
s̃ is the only vertex of outdegree 0 in G̃.

4 Minimum Cuts in Planar Graphs

The following theorem states that we can count the number of minimum (s, t)-
cuts in weighted planar graphs in polynomial-time. We impose a natural condi-
tion on the input graphs: we can get to every vertex from s and we can get to t
from every vertex. Without this condition, vertices that do not influence connec-
tivity of s and t may artificially increase the number of minimum (s, t)-cuts. For
example for a graph on vertices {s, t, a, b, c} with arcs {(s, a), (a, t), (a, b), (a, b)}
we have (s, t)-cuts {s}, {s, a}, {s, a, b}, {s, a, c}, and {s, a, b, c}. However, the
“true” (s, t)-cuts are only {s} and {s, a}.

Theorem 1. Let G = (V, E, w) be any (directed) planar graph with edge weights
w : E → R+. Let s, t ∈ V, s 6= t, be two of its vertices and assume that all
vertices are reachable from s and t is reachable from every vertex. Then, there is
an O(nd + n log n) algorithm for counting all minimum (s, t)-cuts in G, where
n = |V | and d is the smallest number of edges forming a path from s to t in G.

Before we prove the theorem, it will be useful to observe that a simple dy-
namic programming idea can be used to count the number of all paths between
two end-points in a given directed acyclic graph.

Proposition 1. Let D be a directed acyclic graph and let a, b ∈ V (D) be two
of its vertices. The number of paths from a to b can be counted in linear time.
Moreover, if D is a weighted graph where a path from a to b gets the weight of
the product of its edge weights, we can compute the sum of the weights of all
paths from a to b in linear time.

Now we are ready to prove the main theorem of this section.

Proof (of Theorem 1). Let G̃, s̃, and t̃ be the graph, the source, and the sink
from Theorem 3 applied to graph G. The theorem states that we need to count
the number of forward-(t̃, s̃)-cuts in G̃. Suppose G̃ is already embedded in the
plane (this can be done in linear time, see, e. g., [11]).

Let p = (t̃ = v0, v1, . . . , vk = s̃) be a (directed) path from t̃ to s̃ in G̃. To
simplify our language, let us redraw G̃ so that the path p goes horizontally from
left to right. We duplicate every edge of the path, drawing the duplicate edges
just above the original edges, thus the i-th duplicate edge ei (drawn between
vertices vi−1 and vi) lies inside a face fi. (Notice that we are allowing multi-
edges.) We replace every consecutive block of the duplicate edges that lie inside



the same face by a single edge. Formally, if ei, ei+1, . . . , ej lie inside the same face
fi = fi+1 = · · · = fj (and if either edge ei−1 or edge ej+1 exist, neither lies in
the face fi), then the edges get replaced by a single edge from vi−1 to vj that lies
inside fi. After this process we obtain a new path p′ = (t̃ = v′0, v

′
1, . . . , v

′
k′ = s̃)

where no two consecutive edges lie inside the same original face. We will refer
to this new graph by G′. Notice that G′ is a planar directed acyclic graph with
t̃ and s̃ being the only vertices of in- and out-degree 0, respectively.

Thus, every original face bordered by an edge in p on the south got split into
two or more faces in G′. More precisely, there the face got split into one or more
“south” faces and exactly one “north” face. The “south” faces are in bijection
with the e′i edges and we refer to the “south” face corresponding to edge e′i by
f south

i . There could be several e′i edges bordering the same “north” face. We refer
to the “north” face above the edge e′i by fnorth

i .
Next we construct a dual graph G′d and its planar embedding as follows. The

faces of G′ become the vertices of G′d and the edges will connect neighboring
faces (with one exception, see below). For two neighboring faces f ′1 and f ′2 that
share an edge e′ = (u′1, u

′
2), there is an edge from f ′1 to f ′2 in G′d, drawn starting

in f ′1, cutting across e′, and ending in f ′2, if both of the following conditions are
satisfied:

– edge e′ is not on the path p′,
– if G′ is redrawn so that e′ is vertical with u′1 being the bottom end-point,

then f ′1 is on the left of e′ and f ′2 is on the right.

Notice that G′d is a planar directed graph that allows multiple edges in case
when two faces of G′ neighbor in more than one edge.

We claim that G′d is also acyclic. Suppose that G′d contains a cycle going
through faces x1, x2, . . . , xz (for convenience let xz+1 = x1). The edges in G′d
defining this cycle form a face in G′d, let us call it X. By definition of edges in G′d,
for every pair of faces xi, xi+1 (in G′) there is an edge in G′ shared by both faces
that leads from inside of X to outside of X, and there are no other edges in G′

crossing through the border of X. Let yi be the end-point of the edge shared by
xi, xi+1 that lies inside X. Since G′ is acyclic, following the predecessors of the
yi’s, we must get to a vertex of indegree 0. Thus, t̃, the only vertex of indegree
0, lies inside X. Following the successors of the yi’s, we must get to s̃; therefore,
s̃ lies outside of X. Then, the path p′ needs to cut through the border of X and
must go through one of the yi’s. But, by definition of G′d, we did not include
dual edges crossing through the edges of the path p′, a contradiction.

Next we claim that every path in G′d that starts at one of the “south” faces
f south

i and ends at the corresponding “north” face fnorth
i uniquely corresponds

to a forward-(t̃, s̃)-cut in G̃, and, vice versa, every forward-(t̃, s̃)-cut has a corre-
sponding path from a “south” to the corresponding “north” face in G′d.

Let q be a path from f south
i to fnorth

i in G′d. Let us connect the end-points
of q, forming a cycle q′. Notice that the edge connecting the end-points cuts
through the path p′. The cycle q′ splits the plane into two regions. Let T be the
set of vertices of G̃ that lie in the same region as t̃. The path q cuts through
at least one edge of G̃, the edge bordering the face f south

i on the south. The



set T includes the left end-point of this edge and the complement of T includes
the right end-point. Since s̃ is the only vertex with outdegree 0 and there is a
vertex outside T , s̃ must lie outside of T as well. Thus, T is an (t̃, s̃)-cut. By the
definition of edges in G′d, all edges cutting through q start in T and end outside
T . By planarity, no other edges connect T with its complement, therefore, T is
a forward-(t̃, s̃)-cut. Thus, every “south-north” path defines a forward-(t̃, s̃)-cut.

Vice versa, let T be a forward-(t̃, s̃)-cut. Let (u, v) be such that u ∈ T and
v 6∈ T . We claim that on a face f adjacent to (u, v) there must be exactly one
other edge (u′, v′) such that u′ ∈ T and v′ 6∈ T .

First we show that there must be an edge (u′, v′) such that u′ ∈ T and
v′ 6∈ T . Let us follow the vertices on the face f , starting with v, going to u, etc.
The existence of (u′, v′) follows by parity: we start in v 6∈ T , then visit u ∈ T ,
then there might be other vertices in T , but eventually we come back to v, a
vertex outside of T . Thus, there must be a pair of consecutive vertices u′ ∈ T
and v′ 6∈ T . Since T is a forward-cut, the edge between u′ and v′ must go from
u′ to v′.

Next we show that (u, v) and (u′, v′) are the only two edges on the face f
crossing the boundary of T . By contradiction, suppose there is another edge
(u′′, v′′) leading out of T . Notice that the vertices u, u′, u′′ are not necessarily
distinct but at least two of them are different (since every vertex has only two
adjacent edges bordering the face and u, u′, u′′ are adjacent to three distinct
edges (u, v), (u′, v′), and (u′′, v′′)). Similarly, vertices v, v′, v′′ are not all the
same vertex. Suppose we follow the edges on the face f in the cyclic order given
by following its boundary (either clockwise or counterclockwise). By parity, we
encounter an (u, v)-edge forward, followed by a (u, v) edge backward, followed
by a (u, v) edge forward (followed, by parity, by a (u, v) edge backward, but we
do not need this edge for our argument). Without loss of generality, assume the
edges are encountered in order

−−−→
(u, v),

←−−−−
(v′, u′), and

−−−−−→
(u′′, v′′). We know that t̃ leads

to every vertex, in particular also u and u′. Consider the region defined by a t̃−u
path, a t̃−u′ path, and the u, v, . . . , v′, u′ part of the face f ’s boundary. We also
know that every vertex, including v and v′′ leads to s̃. Notice that s̃ does not
lie strictly inside f since f is a face. Also notice that s̃ cannot lie on the paths
defining the region since s̃ has outdegree 0. The last possibility to consider is if s̃
lies inside (but not on the paths) or outside (but not on the paths) of the region
defined by the paths. Then, either v or v′′ cannot get to s̃ since exactly one of
v and v′′ is inside the region. We obtained a contradiction with the existence of
the third edge (u′′, v′′).

Therefore, we know that every face containing an edge cutting through T
contains exactly two edges leading out of T . Such faces are neighboring by exactly
the edges leading out of T , therefore, in the dual graph G′d with edges between
the “north” and “south” faces included, there is a cycle leading through all of
the faces cutting through T . Since t̃ and s̃ are separated by the cycle, the path
p′ must cut through the cycle. Therefore, there is a “north” and “south” face
pair on the cycle and the cycle can be represented by a “south” to “north” path
in G′d.



Therefore, we need to count the number of all paths starting at a “south”
face and ending at the corresponding “north” face in G′d. This can be done,
by Proposition 1 with a = f south

i and b = fnorth
i , in linear time. (Notice that

G′d could be a multi-graph. We can replace multiple edges by a single edge
with edge weight equal to the duplicity of the original edges. The weighted
path count corresponds to the path count in G′d.) We need to count the paths
for every “south” face f south

i (this happens as many times as is the length of
p′, i. e., at most n times) and sum the returned values. The overall running
time is O(|p′|(|E| + |V |)) = O(dn) since for planar graphs |E| = O(|V |). This
running time includes the construction of the paths p, p′, and the dual graph
G′d. Accounting for the running time from Theorem 3, we get an overall running
time of O(dn + n log n). ¤

5 Proof of Theorem 3

We mentioned the connection between minimum cuts and maximum flows. We
utilize the connection in our proofs where we work with network flows that are
acyclic, as defined below.

Definition 2. Let G = (V,E, c) be a (directed) flow network with edge capacities
c : E → R+. Let s ∈ V be the source and t ∈ V be the sink. We say that an
s-t flow f : E → R+

0 is acyclic if the (directed) graph Ff = (V, Df ), where
Df consists of edges in E that carry positive f -values (formally, Df = {e ∈
E | f(e) > 0}), is acyclic. We call the graph Ff the flow graph of the flow f .

Notice that the flow graph consists of the backward edges in the correspond-
ing residual graph, reversed. The next claim, stated without proof, observes that
there exists an acyclic maximum flow in every flow network.

Proposition 2. There exists an acyclic maximum s-t flow in any flow network
G = (V, E, c). The acyclic flow can be found in time O(T (G) + |E|2), where
T (G) is the fastest maximum flow algorithm for G. For example, the push-
relabel algorithm [10] yields T (G) = O(|V |3). The term O(|E|2) comes from
sequential elimination of cycles in the flow. For planar graphs Borradaile and
Klein’s [3] maximum flow algorithm returns an acyclic maximum s-t flow in time
O(|V | log |V |).

In subsequent proofs we rely on the fact that every maximum flow can be
obtained from a sequence of augmenting paths that do not use backward edges,
as spelled out by the following lemma, stated without proof.

Lemma 1. Let f : E → R+
0 be an acyclic s-t flow in a flow network G =

(V, E, c) with source s and sink t. Then, f can be decomposed into augmenting
paths p1, . . . , pd, where d ≤ |E|.

Next we state that if a vertex lies in a minimum cut set, then the cut set
must contain all of the vertex’s predecessors.
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Fig. 1. Proof of Lemma 2: The left figure shows a graph Ff and an (s, t)-cut S such
that there are vertices u ∈ S and v 6∈ S, and there is a path from v to u. The right figure
shows the graph Ff decomposed into paths p1, p2, p3, p4 and the cut-edges (xi, yi) and
(x′, y′) (these edges are highlighted).

Lemma 2. Let f : E → R+
0 be an acyclic maximum s-t flow in a flow network

G = (V,E, c) with source s and sink t. Let S be a minimum (s, t)-cut in G.
Then, if a vertex u is in S then every vertex v that precedes u in the flow graph
Ff must be in S as well.

Proof. By contradiction, assume that there are two vertices u, v such that u ∈ S,
v 6∈ S and there exists a path from v to u in Ff , see Figure 1. It follows that
there is an edge (v′, u′) in Ff such that u′ ∈ S and v′ 6∈ S. By Lemma 1, the
flow f can be decomposed into d augmenting paths p1, . . . , pd where the path pi

carries flow of value φi > 0. At least one of the paths contains the edge (v′, u′),
let pj be such a path. For every i ∈ {1, . . . , d} there exists an edge (xi, yi) on the
path pi such that xi ∈ S, yi 6∈ S. Moreover, for the path pj there exists another
edge (x′, y′) besides (xj , yj) such that x′ ∈ S and y′ 6∈ S.

The cut value is defined as the sum of the capacities of the edges (x, y) where
x ∈ S and y 6∈ S. Therefore,

value(S) =
∑

(x,y)∈E,x∈S,y 6∈S

c(x, y) ≥
∑

(x,y)∈E:∃i:x=xi,y=yi or x=x′,y=y′
c(x, y)

≥
d∑

i=1

φi + φj = value(f) + φj .

Since φj > 0, the value of the cut S is strictly greater than the value of the
flow f . Therefore, by the Max-flow-min-cut Theorem (Theorem 2), S cannot be
a minimum (s, t)-cut of G. ¤

Next we claim that no minimum cut cuts through strongly connected com-
ponents of a residual graph corresponding to a maximum flow.

Lemma 3. Let f : E → R+
0 be an acyclic maximum s-t flow in a flow network

G = (V, E, c) with source s and sink t. Let Gf be the corresponding residual
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Fig. 2. Proof of Lemma 3: The figure shows a residual graph Gf and an (s, t)-cut S
cutting through a strongly connected component C. Backward edges are depicted by
straight arrows while the forward edges are dashed. The edge (x′, y′) is highlighted.
For clarity we do not include residual capacities.

graph. If S is a minimum (s, t)-cut in G, then for each strongly connected com-
ponent C in Gf , either C ⊂ S or C ∩ S = ∅.
Proof. By contradiction, suppose that there exists a strongly connected com-
ponent C and a minimum (s, t)-cut S such that there exist vertices u, v ∈ C
such that u ∈ S and v 6∈ S, see Figure 2. Since u, v belong to the same strongly
connected component, there exists a path from u to v in Gf , as well as a path
from v to u in Gf . By the definition of a residual graph, Gf contains two types
of edges: forward and backward edges where the backward edges are simply the
edges of f reversed. We will show that there must exist a forward edge (x′, y′)
in Gf such that x′ ∈ S and y′ 6∈ S. This will imply that S cannot be a minimum
(s, t)-cut.

Consider a path from u to v in Gf . Since u ∈ S and v 6∈ S, there must exist
an edge (x′, y′) on this path such that x′ ∈ S and y′ 6∈ S. If the edge (x′, y′) is
a backward edge then its reverse (y′, x′) is a flow edge and, by Lemma 2, if S
is a minimum (s, t)-cut such that x′ ∈ S, then y′ must also be in S. Therefore,
(x′, y′) is a forward edge.

Now let us look at the value of the cut S. By the same argument as in the
proof of Lemma 2, we get

value(S) =
∑

(x,y)∈E,x∈S,y 6∈S

c(x, y) ≥
∑

(x,y)∈E:∃i:x=xi,y=yi or x=x′,y=y′
c(x, y)

≥
d∑

i=1

φi + φ′ = value(f) + φ′,

where φ′ > 0 is the residual capacity of the (forward) edge (x′, y′) in Gf . Notice
that the edge (x′, y′) is distinct from every (xi, yi) since it is a forward edge.
Therefore, the value of the cut S is strictly bigger than the value of the maximum
flow f , a contradiction with the assumption that S is a minimum cut. ¤

Therefore, we define a contraction graph that contracts every strongly con-
nected component. We obtain the following corollary of the last lemma.



Definition 3. Let G = (V, E) be a directed graph. We define the SCC-contraction
graph of G, denoted Ĝ, to be the graph obtained from G by contracting each
strongly connected component into a single vertex.

Corollary 2. Let Ĝf be the SCC-contraction graph of the residual graph cor-
responding to an acyclic maximum s-t flow f in a flow network G = (V,E, c).
Suppose ŝ ∈ V (Ĝf ) is the vertex obtained by contracting the strongly connected
component containing s and t̂ ∈ V (Ĝf ) is the vertex obtained by contracting the
strongly connected component containing t. Moreover, we define a function α
from the set of (t̂, ŝ)-cuts of Ĝf to the set of (s, t)-cuts of G: for a (t̂, ŝ)-cut T̂ in
Ĝf , let α(T̂ ) contain all vertices v that belong to a strongly connected component
v̂ 6∈ T̂ . Then,

(i) the function α is injective, and
(ii) for every minimum (s, t)-cut S in G there exists a (t̂, ŝ)-cut T̂ in Ĝf such

that α(T̂ ) = S.

Proof. To prove (i), let us first look at the (s, t)-cuts S for which there exists a
(t̂, ŝ)-cut T̂ such that S = α(T̂ ). By the definition of α it follows that any such
S must satisfy the property that for every strongly connected component C of
Gf , either C ⊂ S or C ∩ S = ∅.

Suppose that we have an S satisfying this property. Then we can uniquely
construct T̂ such that S = α(T̂ ): for every strongly connected component C of
Gf , if C∩S = ∅ then the vertex corresponding to C in Ĝf is in T̂ (and otherwise
this vertex is not in T̂ ). Since we can reconstruct T̂ uniquely, α is injective.

To show part (ii), by Lemma 3, every minimum (s, t)-cut S satisfies the
property that for every strongly connected component C, either C ⊂ S, or C ∩
S = ∅. Therefore, there exists T̂ (containing all strongly connected components
not in S) such that S = α(T̂ ). ¤

The next two lemmas show that there is a bijection between minimum (s, t)-
cuts in G and forward (t̂, ŝ)-cuts in the SCC-contraction graph. The bijection is
given by the function α defined in the above corollary. The proofs of the lemmas,
omitted due to space constraints, are similar to the proofs of Lemmas 2 and 3.

Lemma 4. Under the assumptions of Corollary 2, suppose S is a minimum
(s, t)-cut in G. Then α−1(S) is a forward (t̂, ŝ)-cut in Ĝf .

Lemma 5. Under the assumptions of Corollary 2, let T̂ be any forward-(t̂, ŝ)-
cut in Ĝf . Then the (s, t)-cut S = α(T̂ ) is a minimum (s, t)-cut in G.

The proof of Theorem 3, the main reduction theorem, follows from Proposi-
tion 2 and Lemmas 4 and 5.

Acknowledgments. We would like to thank the anonymous referees for many
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