
Counting Classes and the Fine Structure between NC1

and L

Samir Dattaa, Meena Mahajanb, B V Raghavendra Raoc, Michael Thomasd,
Heribert Vollmerd

a Chennai Mathematical Institute, India.
bThe Institute of Mathematical Sciences, Chennai, India.

cUniversität des Saarlandes, Saarbrücken, Germany.
d Leibniz Universität, Hannover, Germany.

Abstract

The class NC1 of problems solvable by bounded fan-in circuit families of loga-
rithmic depth is known to be contained in logarithmic space L, but not much
about the converse is known. In this paper we examine the structure of classes
in between NC1 and L based on counting functions or, equivalently, based on
arithmetic circuits. The classes PNC1 and C=NC1, defined by a test for positivity
and a test for zero, respectively, of arithmetic circuit families of logarithmic depth,
sit in this complexity interval. We study the landscape of Boolean hierarchies,
constant-depth oracle hierarchies, and logarithmic-depth oracle hierarchies over
PNC1 and C=NC1. We provide complete problems, obtain the upper bound L
for all these hierarchies, and prove partial hierarchy collapses. In particular, the
constant-depth oracle hierarchy over PNC1 collapses to its first level PNC1, and
the constant-depth oracle hierarchy over C=NC1 collapses to its second level.

1. Introduction

The class NC1 occupies a special place in the study of complexity classes
inside P, owing to its robustness and multiple characterizations. It is defined
as the class of languages accepted by families of circuits of polynomial size and
logarithmic depth using bounded fan-in Boolean gates. By uniform NC1 we
mean the subclass where the circuit families have succinct descriptions: given a
size parameter in unary, the circuit for that size from the family can be “easily”
computed. Various notions of uniformity are known to give rise to the same class
of languages, also coinciding with the class of languages accepted by logarithmic-
time alternating machines ALOGTIME. Other characterizations of NC1 include

Email addresses: sdatta@cmi.ac.in (Samir Datta), meena@imsc.res.in (Meena
Mahajan), bvrr@cs.uni-sb.de (B V Raghavendra Rao), thomas@thi.uni-hannover.de
(Michael Thomas), vollmer@thi.uni-hannover.de (Heribert Vollmer)

Supported in part by the Indian DST and the German DAAD.

Preprint submitted to Elsevier April 16, 2011

polynomial-sized formulas, bounded-width branching programs, bounded-width
circuits and programs over finite monoids.

It is known that all NC1 languages can be accepted in logarithmic space L,
but it is not known whether this containment is strict. All L-complete languages
are candidates for membership in L but not in NC1, and most of these candidates
lie in classes defined using the natural counting classes associated with NC1,
namely, #NC1 and GapNC1. The former counts “proving sub-circuits” in an
NC1 circuit (see Section 2 for formal definitions); the latter is its closure under
subtraction. It is not yet known whether these functions can be evaluated in NC1,
although the best upper bound is very very close (an O(log∗) factor in depth).
It is known that functions in #NC1 and GapNC1 can be evaluated in function
logarithmic space FL; thus languages definable by applying simple predicates to
such functions are also in L. The natural choices of predicates are a test for zero
and a test for positivity, giving rise to the language classes C=NC1 and PNC1

sitting between NC1 and L. (There are also predicates testing for zero modulo a
fixed prime; the resulting language classes are already known to coincide with
NC1.) A nice survey of these classes can be found in [All04].

It is not clear how much structure is there between NC1 and L in the event
that the classes are distinct. In this note, we attempt to explore the structure
between NC1 and L, based on hierarchies of language classes built upon C=NC1

and PNC1. For a complexity class C, there are three standard ways of defining the
hierarchies above C: the Boolean hierarchy BH(C), the constant-depth hierarchy
using oracle gates AC0(C), and the NC1-oracle-gate hierarchy NC1(C), with
BH(C) ⊆ AC0(C) ⊆ NC1(C).

Our results. As a first step in our study, we describe the oracle hierarchies in
terms of arithmetic circuits augmented with test gates. These are the arithmetic-
Boolean circuits defined in [vzGS91]; with size and depth restrictions as in NC1,
and with test gates for “= 0?” or “> 0?”, we obtain the classes a-NC1

= and a-NC1
>.

We observe that if each path in the circuit has O(1) test gates, then a-NC1
=

and a-NC1
> coincide with AC0(C=NC1) and AC0(PNC1) respectively (Proposi-

tion 11). However, there is a subtlety in similarly characterizing NC1(C=NC1)
and NC1(PNC1). We introduce a syntactic restriction on the arithmetic-Boolean
circuits giving rise to a reasonable definition, and show that (1) the classes so
defined coincide with NC1(C=NC1) and NC1(PNC1) (Proposition 13), and (2) as
expected, are indeed contained in L (Theorem 17). On the other hand, without
this restriction, the best upper bound we can show for the arithmetic circuit
hierarchy is the complexity class TC1 (Theorem 18), which subsumes L and even
nondeterministic logspace NL, but is contained in NC2.

Next, we show that the constant-depth hierarchy over PNC1 (and hence also
the Boolean hierarchy) collapses to PNC1 (Theorem 19). We adapt the proof
of [Ogi98], where an analogous result for PL is shown. One difficulty in the
adaptation is showing the required normal form for GapNC1 circuits. We use the
equivalent characterization of GapNC1 as arithmetic bounded-width branching
programs GapBWBP, and establish the normal form here. Another difficulty is
computing an exponential sum; we use the notion of read-once certified circuits

2

and read-once exponential sums, introduced in [MR09], to to carry the proof
through.

Finally, we examine the hierarchies over C=NC1. Since C=NC1 is not even
known to be closed under complementation, we do not expect a collapse all the
way down. Our first result is a characterization of the Boolean hierarchy over
C=NC1 as the class of languages described by checking feasibility of small systems
of linear equations, where the coefficients themselves are GapNC1-computable
functions of the input word (Theorem 34). Our second result is that the
constant-depth hierarchy over C=NC1 collapses to a class slightly weaker than
the second level (Theorem 41). Both these results appear as analogues of known
results [ABO99] for the corresponding logarithmic-space class C=L, but require
substantially different proofs.

Also, unlike in the case of PL and C=L, our results do not seem to go through
for the NC1-hierarchies over PNC1 and C=NC1.

2. Background

For any language L, χL denotes its characteristic function: χL(x) := 1 if
x ∈ L, χL(x) := 0 if x 6∈ L.

Boolean circuits and language classes. We denote by L the class of languages
accepted by deterministic logarithmic-space Turing machines.

We consider Boolean circuits with internal gates labelled ∨, ∧, or ¬. By NC1

we denote the class of languages which can be accepted by a family {Cn}n≥0 of
Boolean circuits of polynomial size whose depth is bounded by O(log n), with each
gate having constant fan-in. The class AC0 denotes the set of languages accepted
by a Boolean circuit family {Cn}n≥0 of polynomial size and constant depth,
with unbounded fan-in. Without loss of generality, we can assume that negation
gates appear only at the leaves of the circuit. Also, without loss of generality
we can assume that AC0 and NC1 circuits are actually formulas: every gate has
out-degree one. An NC0 circuit is a Boolean circuit, or formula, of constant size,
with each gate having constant fan-in. We denote by AC0

k (respectively) NC0
k

the polynomial size (respectively, constant size) circuit families of depth at most
k.

By TC0 and TC1 we denote the class of languages decided by circuit families
of polynomial size and constant (respectively, logarithmic) depth, where each gate
is either a negation gate or an unbounded fan-in majority gate: it outputs 1 if
and only if more than half of its inputs are 1. Integer addition and multiplication
are known to be in TC0.

A branching program (BP for short) is a layered acyclic graph G with edges
labelled by constants (0 or 1) or literals, and with two special vertices s and t. It
accepts an input x if there is an s ; t path where each edge is labelled by a true
literal or the constant 1; we call such a path an accepting path on input x. BWBP
denotes the class of languages that can be accepted by families of polynomial size
bounded width branching programs {Gn}n≥0, where the graph Gn considers n
variables. It is known that BWBP equals NC1 ([Bar89]). Restricted to uniform

3

circuits (with appropriate notions of uniformity, see for instance [Vol99]), it is
known that NC1 = BWBP ⊆ L.

Proposition 1 (Known containments).

AC0 ⊆ TC0 ⊆ NC1 = BWBP ⊆ L ⊆ TC1 ⊆ DSPACE(log2 n) ∩ P.

Arithmetic circuit classes. For the purposes of this paper, an arithmetic circuit
is a circuit where the gates are labelled from the set {+,×,−1, 0, 1, x1, . . . , xn}.
The gates + and × are the addition and multiplication operations over Z. Such
a circuit computes a function f : {0, 1}n → Z.

An a-NC1 circuit family {Cn}n≥0 is a family of bounded fan-in arithmetic
circuits where for each n, Cn is of size polynomial in n, depth logarithmic in n,
and computes a function fn : {0, 1}n → Z. The family computes the function
f : {0, 1}∗ → Z where f(x) := C|x|(x). GapNC1 is the class of functions computed
by a-NC1 circuit families. The analogous arithmetic class for constant-depth
unbounded fan-in circuits is denoted by a-AC0.

An arithmetic branching program is a BP B where edges are labelled by
literals or constants from the set {−1, 0, 1}. For an s ; t path P , let wt(P (a))
denote the product of all the edge labels in P under the assignment a. Then the
function computed by B is defined as follows:

for all a ∈ {0, 1}n f(a) :=
∑

P is an s;t path in B

wt(P (a))

An a-BWBP family {Bn}n≥0 is a family of arithmetic branching programs of
polynomial size and bounded width. GapBWBP is the class of functions computed
by a-BWBP program families.

For a Boolean (no edge labelled −1) BP B and an input assignment a, let
#[s ; t](a) denote the the number of s ; t paths in B under the assignment a.
#BWBP is the class of functions : {0, 1}∗ → N computed by BWBP. The class
DiffBWBP is the closure of #BWBP under finite subtractions; For a Boolean (no
edge labelled −1) BP B and an input assignment a, let #[s ; t](a) denote the
the number of s ; t paths in B under the assignment a. #BWBP is the class of
functions : {0, 1}∗ → N computed by BWBP. The class DiffBWBP is the closure
of #BWBP under finite subtractions; DiffBWBP = {f − g | f, g ∈ #BWBP}.

The above three classes coincide:

Proposition 2 ([CMTV98]). GapNC1 = GapBWBP = DiffBWBP.

We will often use the following equivalent form for GapNC1 functions: for any
GapNC1 function f , there is a BWBP B with start node s, two target nodes t1
and t2, and f(a) = #[s ; t1](a)−#[s ; t2](a). We say that B gap-represents
the function f .

It is known that NC1 circuits can be made unambiguous [Lan93]. In terms
of arithmetic circuits, this yields:

Proposition 3. Let L be any AC0 (or NC1) language. Then there is an a-AC0

(a-NC1, respectively) circuit family C that does not use the constant −1 such
that for each string w, C(w) = χL(w).

4

The classes C=NC1 and PNC1 which are the central to this paper are defined
as follows.

Definition 4.

C=NC1 :=
{
L ∈ {0, 1}∗

∣∣∣∣ for some f ∈ GapNC1, for all x ∈ {0, 1}∗,
x ∈ L if and only if f(x) = 0.

}
PNC1 :=

{
L ∈ {0, 1}∗

∣∣∣∣ for some f ∈ GapNC1, for all x ∈ {0, 1}∗,
x ∈ L if and only if f(x) > 0.

}
Proposition 5 ([CMTV98]). 1. NC1 ⊆ C=NC1 ⊆ PNC1 ⊆ L.

2. C=NC1 is closed under union and intersection.
3. PNC1 is closed under union, intersection and complementation.

Arithmetic-Boolean circuits. Let a test gate for “=0?” (respectively “>0?”) be
a unary gate that outputs 1 if its input is equal to 0 (respectively greater than 0)
and 0 otherwise. Define an a-NC1

= circuit (respectively a-NC1
> circuit) to be an

arithmetic circuit of logarithmic depth and polynomial size over Boolean input
gates, binary +- and ×-gates, constants −1, 0 and 1 as well as test gates for
“=0?” (respectively “>0?”). From the definitions, it follows that

Proposition 6. A language L is in C=NC1 (or PNC1) if and only if χL can be
computed by an a-NC1

= (respectively a-NC1
>) circuit family in which each circuit

has exactly one test gate appearing as the output gate.

Read-once certificates. LetB be a branching program on variablesX = {x1, . . . , xn}∪
Y = {y1, . . . , ym}. B is said to be read-once certified in Y if there are indices
i0 = 1 < i1 < i2 < . . . < im such that variable yj appears only between layer
ij−1 and ij . By specialising the arguments in [MR09] to the counting classes,
we can compute exponential sums over the variables in Y efficiently.

Proposition 7 (adapted from Theorem 3(2), [MR09]). Let f(X,Y) be a function
computed by an a-BP B of size s and width w, read-once certified in Y . Let g be
the function defined as

g(X) :=
∑

e∈{0,1}m

f(X, e)

Then g can be computed by an a-BP of size poly(s) and width O(w2). Hence, if
f ∈ GapBWBP, then g ∈ GapBWBP.

Miscellaneous. We denote by C1 · C2 a circuit which can be split horizontally into
two parts, with the top part being a circuit of type C1, and all its inputs being
either circuit inputs (literals or constants) or circuits of type C2. We denote by
[C] an oracle gate for a language in C.

Thus [C] · AC0 is the class of all languages accepted by AC0(C) oracle circuits
such that each circuit has a single oracle gate at the output, and each input bit
to the oracle gate is the output of an AC0 sub-circuit.

5

3. Hierarchies

3.1. Defining the Hierarchies
Among the simplest is the Boolean hierarchy, which characterizes the lan-

guages expressible as Boolean combinations of any constant number of languages
from respectively C=NC1 or PNC1.

Definition 8 (The Boolean Hierarchy). Let C be a complexity class. The
Boolean hierarchy over C is defined as the set of languages L for which there
exists an NC0 circuit C with k inputs and A1, . . . , Ak ∈ C such that for all
x ∈ {0, 1}∗,

x ∈ L⇐⇒ C(χA1(x), χA2(x), . . . , χAk
(x)) = 1

We denote this class of languages by NC0 · C or BH(C).

Remark 9. A perhaps more standard way of defining the Boolean hierarchy is
to define the levels BH0(C) := C, and BHi(C) := {L14L2 | L1, L2 ∈ BHi−1(C)},
and then take the union

⋃
i>0 BHi(C). If C is closed under union and intersection,

then these definitions coincide with each other and with the definition of NC0 · C
above ([KSW87]).

The other way of defining hierarchies is via oracle queries. As shown in
[AO96] (see also [ABO99]), nesting queries above a base machine is equivalent to
adding oracle gates in an AC0 circuit. And in many cases, it also turns out to be
equivalent to adding oracle gates in an NC1 circuit. We present the oracle-circuit
definitions, first introduced by Wilson [Wil85], below.

Let L be any language. An AC0(L) circuit family is a sequence {Cn}n≥0

of AC0circuits containing additional oracle gates for L of unbounded fan-in.
Similarly, an NC1(L) circuit family is a sequence {Cn}n≥0 of NC1 circuits with
additional oracle gates for L of unbounded fan-in such that oracle gates of fan-in
m account for depth dlogme.

Definition 10 (The AC0 and the NC1 Hierarchy). Let C be a complexity
class. Then AC0(C) (respectively NC1(C)) is defined to comprise those problems
decidable by an AC0(L) (respectively NC1(L)) circuit family for some L ∈ C.

3.2. Characterizing the Hierarchies using Arithmetic-Boolean Circuits
From Proposition 6, we know that C=NC1 and PNC1 have equivalent Arith-

metic-Boolean circuits. It is natural to ask whether there are equivalent such
circuits for the hierarchies above these classes. For the AC0 hierarchy, this is easy
to see; we show below that AC0(C=NC1) and AC0(PNC1) can be characterized
using arithmetic-Boolean circuits. We need the notion of nesting depth: in a
circuit C, the nesting depth of gates of a type t is the largest number k such that
some path from the output to a leaf of C goes through exactly k gates of type t.

Proposition 11. AC0(C=NC1) (respectively AC0(PNC1)) equals the class of
languages decidable by a-NC1

= (respectively a-NC1
>) circuit families such that the

nesting depth of test gates is bounded by a constant and the output gate of each
circuit is a test gate.

6

Proof. We will consider the case C=NC1 only, the proof for PNC1 is completely
analogous.

For the direction from left to right, let L ∈ C=NC1 and denote by f the
function witnessing this fact (that is, x ∈ L ⇐⇒ f(x) = 0 for all x). Let C
be an unambiguous AC0(L) circuit with n inputs (without loss of generality we
may assume that C is unambiguous). From C, construct an arithmetic circuit
C ′ as follows:

• Replace each ∧-gate with a ×-gate.

• Replace each ¬-gate with input x with the sub-circuit 1 + (−1× x).

• Replace each ∨-gate with inputs x1 and x2 with the sub-circuit x1 + ((1 +
(−1× x1))× x2).

• Replace each oracle gate with inputs x1, . . . , xm with a test gate whose
input is the arithmetic circuit that computes f(x1 · · ·xm).

It holds that C ′(x) ∈ {0, 1} and C ′(x) = C(x) for all possible inputs x. The
size of C ′ is clearly polynomial in the size of C. Its depth is O(log n) owing to
the replacement of an oracle gate by a test gate atop an a-NC1 circuit; however,
the nesting gate of test gates is at most the depth of C and hence a constant.
Thus, the circuit D deciding whether C ′(x) + (−1) is equal to zero is the desired
a-NC1

= circuit.
For the converse direction, let C denote an a-NC1

= circuit with a test gate at
the output and O(1) nesting depth of test gates. Without loss of generality, we
can assume that the circuit is a formula: every gate has out-degree 1. If we cut
all the edges leading out of a test gate, the circuit breaks up into blobs, each
of which is an arithmetic circuit with a test gate at the output. In particular,
let g1, . . . , gm enumerate all test gates in C, and denote by Si the maximal
connected sub-circuit of C rooted at gi that consists of +, ×-gates and the
constants −1, 0, 1. Then each Si computes some function fi : {0, 1}m → {0, 1}.
By the structure of the circuit, using Proposition 6, we see that these functions fi
are all characteristic functions of C=NC1 languages. Replacing Si with an oracle
gate for the corresponding language yields a Boolean circuit C ′ of polynomial
size comprising input gates and oracle gates for C=NC1 only. The depth of this
circuit is the nesting depth of test gates in C and hence a constant. This is the
required AC0(C=NC1) circuit.

Remark 12. A small technicality in the above proof: in going from right to left,
different oracle gates appear to query different languages in C=NC1. However,
these can all be replaced by queries to any one language that is complete for
C=NC1 under projections.

It is tempting to believe that dropping the requirement on nesting depth
of test gates will characterize NC1(C=NC1) and NC1(PNC1). This, however, is
not the case. The conversion from left to right (NC1(C=NC1) to a-NC1

=) goes
through, but for the converse, the requisite depth bound does not follow. We
describe a certain condition under which we can obtain an exact characterization.

7

Let C be an a-NC1
= circuit (respectively a-NC1

> circuit) with n inputs and let
g1, . . . , gm enumerate all of its test gates. Denote by Si the maximal connected
sub-circuit of C rooted at gi that consists of +, ×-gates and the constants −1,
0, 1; these are the blobs in the proof of Proposition 11. As the depth of C is
logarithmic in the number of its inputs, we may without loss of generality assume
that S1, . . . , Sm induce a partition of the non-input gates of C. Thus any path
from the output to a leaf in C goes through a chain of these blobs. There can
be O(log n) blobs on any such chain, and the logarithm of the size of a blob
can be as large as θ(log n), and this causes the problem in replicating the above
proof. We “define away” the problem: We say that C has the small-blob-chains
property if for every path π from the root of C to an input gate or a constant,∑

gi occurs in π

log |Si| ∈ O(log n).

Now we can show that the NC1 hierarchies above C=NC1 and PNC1 are charac-
terized exactly.

Proposition 13. NC1(C=NC1) (respectively NC1(PNC1)) equals the class of
languages decidable by a-NC1

= (respectively a-NC1
>) circuit families with the

small-blob-chains property in which the output gate of each circuit is a test gate.

Proof. We will consider the case C=NC1 only, the proof for PNC1 is completely
analogous. The constructions are exactly as in the proof of Proposition 11, only
the analysis is different.

For the direction from left to right, let C ′ be the circuit obtained from the
unambiguous NC1(L) circuit C. Without loss of generality assume that C ′ is
a formula. The size of C ′ is clearly polynomial in the size of C. As in C any
oracle gate of fan-in m accounts for depth logm and the depth of C bounded by
O(log n), we obtain that the depth C ′ remains bounded by O(log n) and also
satisfies the small-blob-chain property. Thus, the circuit D deciding whether
C ′(x) + (−1) is equal to zero is the desired a-NC1

= circuit.
For the converse direction, let C denote an a-NC1

= circuit and let C ′ be the
Boolean circuit constructed from C as in Proposition 11; it is of polynomial
size comprising input gates and oracle gates for C=NC1 only. From the small-
blob-chains property, we finally obtain that for each path π′ starting in the
root of C ′ and leading to an input gate or a constant,

∑
g∈π′ log(fan-in(g)) =∑

S∈π O(log |S|) ∈ O(log n), where π is the corresponding path in C going
through blob S instead of oracle gate g. Thus the depth of C ′ remains bounded
by O(log n).

There exist arithmetic-Boolean circuits violating the small-blob-chains prop-
erty. Consider, for example, any circuit family {Cn}n≥0 such that Cn contains n
input gates, log n test gates, and the input to each of these test gates is a binary
gate g with inputs i1 and i2 such that the sub-circuits computing i1 and i2 are
disjoint, the sub-circuit computing i1 contains ≥ n gates, and the sub-circuit
computing i2 is rooted at a test gate (see Fig. 1). Then the path starting in

8

=0?

+

+/×

≥ n gates

=0?

×

+/×

≥ n gates

=0?

×

+/×

≥ n gates

Figure 1: A circuit violating the small-blob-chains property.

the root of circuit Cn and proceeding to the right ancestor of every binary gate
crosses all maximal sub-circuits consisting of all but test gates rooted at test
gates that consist of +-, ×-gates as well as the constants −1, 0, 1. Thus,∑

Si occurs in π

log |Si| ≥ log n · log n /∈ O(log n).

Hence, dropping the small-blob-chains property from the circuits in Proposi-
tion 13 leads to presumably different class of languages. We denote these classes
by AH, for arithmetic hierarchy, defined analogously to the classes figuring in
Proposition 6 and Proposition 13.

Definition 14 (Arithmetic Circuit Hierarchies over C=NC1 and PNC1). A
language L is said to be in AH(C=NC1) (or AH(PNC1)) if and only if χL can be
computed by an a-NC1

= (respectively a-NC1
>) circuit family such that in each

circuit, the output gate is a test gate.

The following chain of inclusions holds.

Observation 15.

C=NC1

PNC1

⊆

⊆

BH(C=NC1)⊆

BH(PNC1)

⊆

⊆

AC0(C=NC1)⊆

AC0(PNC1)

⊆

⊆

NC1(C=NC1)⊆

NC1(PNC1)

⊆

⊆

AH(C=NC1)⊆

AH(PNC1).

⊆

Remark 16. We can also augment the a-NC1
= and a-NC1

> circuits in Definition 14
by allowing oracle gates, with dlog(fan-in(g))e charged to the depth of each such
gate g. Since, without loss of generality, we deal with languages over a binary
alphabet, the inputs to the oracle gate must be Boolean inputs. But the circuit
computes arithmetic values, except at test gates. Thus, we will require that all
the inputs to an oracle gate are either Boolean circuit inputs (literals or the
constants 0,1, but not −1) or the outputs of test gates. It can be shown that

9

allowing C=NC1 oracle gates in a-NC1
= circuits, or PNC1 oracle gates in a-NC1

>

circuits, with this condition, does not add to the power of the circuit families
beyond AH(C=NC1) and AH(PNC1) respectively.

3.3. Upper bounds
We first show that the AC0 and the NC1 hierarchies over C=NC1 and PNC1

are contained in L. By the containments depicted in Observation 15, it suffices
to show this bound for NC1(PNC1).

Theorem 17. NC1(PNC1) ⊆ L.

Proof. Let L be in NC1(PNC1) and suppose without loss of generality that
L ⊆ {0, 1}?. Then there exists a language B in PNC1 and an NC1(B) circuit
family {Cn}n≥0 such that C|x|(x) = 1 if and only if x ∈ L. As apparent from
the proof of Proposition 13, we may without loss of generality assume that Cn
contains oracle gates and input gates only.

Given x, we now simulate the circuit C|x| in a top-down way. At any (oracle)
gate for B, we simulate the PNC1 circuit for B, using the fact that PNC1 is
known to be in L (Proposition 5). If this simulation requests an input g, we
recursively simulate the sub-circuit of C rooted at g to obtain this bit.

The amount of space required by this approach is O(log n) for the paths in
C plus the space needed for the simulations. As PNC1 ⊆ L, each simulation
requires space logarithmic in the fan-in of the oracle gate. Let s(g) denote the
space needed to simulate the circuit associated with the (oracle) gate g, assuming
that its inputs are explicitly available. Then, for each path π starting in the
root of C and leading to an input gate or a constant, we have

∑
g∈π s(g) =∑

g∈π O(log(fan-in(g))) ∈ O(log n). Thus the entire recursive simulation requires
O(log n) space, and so we conclude that NC1(PNC1) is contained in L.

Recall from Proposition 13 that NC1(PNC1) can be described in terms of
a-NC1

= circuits with the small-blob-chains property. The proof above can be
restated assuming that the equivalent a-NC1

= circuit family is given, rather than
the oracle circuit. We describe this restatement here, primarily to highlight why
it does not work for AH(PNC1).

Alternative proof of Theorem 17. Let C be the a-NC1
>circuit with test gates

placed so as to satisfy the small-blob-chains property. Let it have n input
gates, and let x ∈ {0, 1}n. We use the facts that PNC1 is known to be in L
(Proposition 5), and that PNC1 is characterized by a-NC1

> circuits with a single
test gate at the output (Proposition 6).

As in the proof of Proposition 11, we assume that the circuit is a formula, and
cut all the edges leading out of test gates, so that the circuit breaks up into blobs,
each of which is an arithmetic circuit with a test gate at the output. If g1, . . . , gm
enumerate all test gates in C, and Si the maximal connected sub-circuit of C
rooted at gi with no test gate other than gi, then each Si computes fi = χLi

for
some Li ∈ PNC1, and so each fi is computable in L.

10

Given x, we evaluate the circuit in a top-down way, starting with the topmost
blob and carrying out the logspace evaluation of the associated function. When
this evaluation needs a bit that is an input to this blob and is an output of
another test gate, we recursively starts a fresh logspace computation of the
required function. When this computation terminates, we resume the earlier
computation.

At any stage, the computation traces out a path, or a chain, through the
blobs in C, with the current computation focussing on the leaf of the chain.
The space requirement per blob is logarithmic in the size of the blob. By the
small-blob-chains property, we conclude that the overall space requirement is
O(log n).

By Proposition 13, the arithmetic hierarchy over PNC1 differs from the NC1

hierarchy only in the small-blob-chains property. In the absence of this property,
the recursive simulation in the second proof above yields only a O(log2 n) space
bound. Also, since the log-space evaluation of each blob may not be read-once
in its inputs, each blob may have to be evaluated several times. So we cannot
obtain a polynomial time bound for the recursive procedure.

However, using a bottom-up evaluation, we can show that AH(PNC1) circuits
can be evaluated in TC1.

Theorem 18. AH(PNC1) ⊆ TC1.

Proof. We perform a straightforward bottom-up Boolean evaluation of the
arithmetic circuit; that is, we evaluate bit representations of the values carried
on the wires. Since C is a formula, all intermediate values have polynomial-sized
bit representations, so the + and × gates can be replaced by TC0 sub-circuits.
The test gates can also be trivially replaced by appropriate TC0 sub-circuits.
This yields a log depth circuit with majority gates, that is, a TC1 circuit.

4. The PNC1 hierarchy collapses

In this section we show that the constant-depth PNC1 hierarchy, AC0(PNC1),
collapses to the base level.

Theorem 19. AC0(PNC1) = PNC1.

Proof. Since PNC1 is closed under complementation, and since unbounded fan-in
∨ and ∧ functions are in NC1 and hence in PNC1, we can assume without loss
of generality that the AC0(PNC1) circuit has only oracle gates. Theorem 20
below shows how to collapse two adjacent levels of PNC1 oracle gates into one.
Applying this repeatedly gives the desired result.

The rest of this section is devoted to proving Theorem 20:

Theorem 20. [PNC1] · [PNC1] = PNC1.

11

We adapt the techniques of [Ogi98] to the case of constant width branching
programs. Also, as in [Ogi98], we use the polynomial technique developed earlier
([BRS95, FR96]) to show closure properties of the complexity class PP. A new
ingredient we require is the notion of read-once certified circuits and exponential
sums from [MR09].

4.1. Overview of the Collapse Argument
Consider a language L in [PNC1]·[PNC1]. Then there is a language H ∈ PNC1

and a circuit family {Cn} accepting L where each Cn has depth 2 and has only
oracle gates for H. That is, the output gate g is an oracle gate whose inputs are
themselves oracle gates or literals or constants. Without loss of generality, we
can assume that in fact all inputs to g are outputs of oracle gates. Let g have
fan-in t. On input x, its inputs are χH(Y1), χH(Y2), . . . , χH(Yt), where each Yi
is a projection (re-ordering of bits) of the input x.

Let f be the GapNC1 function witnessing that H ∈ PNC1. Then there is a
a-BWBP family computing f . The idea is to consider the a-BWBP B for inputs
of length t, say y1, . . . , yt, and try to replace each edge labelled yi by a copy of
the a-BWBP on Yi. However, since Yi is the input to an oracle gate, we want a
0-1 value for the sign of f(Yi), not the value of f(Yi) itself. If the sign function
can be computed by a suitable polynomial function, then we can apply this
function to each f(Yi) to get another GapNC1 function. Unfortunately, the sign
function cannot be represented in this fashion. However, it can be approximated
by rational functions (ratios of polynomials); this approximation was first used
in [BRS95], and later in [FR96] and [Ogi98]. We follow the presentation from
[Ogi98] and describe the polynomials in Section 4.3.

To show that using such approximations is valid, we require that B satisfies
a certain condition: All paths should have equal susceptibility to error, so as to
not change the overall outcome. In particular, since a yi edge label corresponds
to using the output of an oracle gate, and since different oracle gates can have
different errors, we will require that each path has exactly the same multiset
of edge labels, independent of the input. This is a strong normal form. Such a
normal form was required to collapse AC0(PL) to PL, and was shown in [Ogi98].
We show a corresponding normal form for a-BWBPs in Section 4.2.

Finally, we need to show that there is a GapBWBP function h which has the
same sign as the value of the a-BWBP B with the rational approximations in
place. In [Ogi98], the analogous result is shown by describing an appropriate
probabilistic log-space machine. In the GapBWBP setting, things are a bit more
complicated since we have only O(1) storage. We get around this by using
the notion of exponential sums over read-once certified circuits, introduced
in [MR09]. The GapBWBP family computing the desired h is described in
Section 4.4, completing the proof of Theorem 20.

4.2. A Normal Form for PNC1 and GapBWBP

We introduce a notation here. A node v in a BP B is called a nondeterministic
node if there is an input assignment for which v has two out-edges labelled 1.

12

We show the following normal form for branching programs computing functions
in GapNC1; this is analogous to Lemma 3.1 in [Ogi98] for PL and #L functions.

Lemma 21. Let f be a function in GapNC1. Then there exists a branching
program Q of width O(1) such that

1. Q has a single start node s and two terminal nodes t1 and t2;
2. every path originating from s ends at either t1 or t2 and nowhere else;
3. any path of Q on any given input x contains exactly q nondeterministic

nodes, where q = q(n) ≤ poly(n);
4. every edge is labelled by a literal yi or ¬yi;
5. on any input y, Q has exactly 2q paths originating from s;
6. f = #[s ; t1]−#[s ; t2].

Proof. From Proposition 2, there is a BP P of width w = O(1) and size s =
poly(n), with nodes s, t1 and t2 such that f = #[s ; t1]−#[s ; t2]. The edge
labels in P are literals or the constant 1. We modify P so that

• Every node has out-degree 0,1,or 2.

• For each layer k, there is an index ik such that, edges from layer k to k+ 1
are labelled from the set {1, yik ,¬yik}.

This can be achieved by doing necessary staggering of the program P . Copy all
the nodes of a layer into new nodes, and then implement the edges according to
their labels, taking one variable at a time. Repeat this process for all the layers.
This ensures that every edge in a particular layer is labelled by a single variable,
its negation or a constant. This will double the width and increase the size by a
factor of wn. Now, in a similar way, we can ensure that the out-degree of every
node is 0,1 or 2; this will double the width, and increase the size by a factor of
w rather than wn, since all outgoing edges at a layer read the same variable.
The resulting BP P ′ will thus have width bounded by 4w and size O(w2n · s),
where s = size(P).

We create a new line (a path) called the “zero-gap” line starting from s. This
line remains a single path until the last layer and forks out to both t1 and t2,
with all the edges being labelled by 1. Note that this line produces a zero-gap.
To meet condition 2 in the lemma, for every node v, if v has an out-edge labelled
yi (respectively ¬yi) and no out-edge labelled ¬yi (respectively yi), then add an
edge labelled ¬yi (respectively yi) to the zero-gap line. Note that this process
ensures condition 2 without changing the gap-function.

Recall that a node in P ′ is nondeterministic if it has two out-going edges
labelled 1 on at least one input assignment to y (for example, a node with two
outgoing edges labelled yi and 1 respectively). A layer is called nondeterministic
if at least one of the nodes in that layer is nondeterministic. In order to ensure
that for every input y, the total number of paths originating from s remains the
same, we make all the nodes in every nondeterministic layer nondeterministic,
by adding necessary paths to the zero-line as follows: Consider a deterministic
node v in a nondeterministic layer. Let yi be the allowed variable label for this

13

layer. There are two possibilities: v has two out-edges, one labelled by yi and
the other labelled by ¬yi or v has a single out-edge labelled by 1. In both the
cases, we add an edge to the zero-gap line, with label 1. In the case when v
is a node already in the zero-gap line, we just add a parallel edge. Again, this
construction does not alter the gap function.

Finally we eliminate the constant 1 on edge labels: replace an edge labelled
1 by parallel edges, one labelled yi and the other labelled ¬yi, where yi is the
variable at this layer.

Let Q denote the resulting BP. Let q be the number of nondeterministic
layers of Q. Since we have two choices at every nondeterministic layer and only
one choice at deterministic layers, on any input y, the number of distinct paths
originating from s is exactly 2q. As we have not changed the gap values in the
whole process, this proves the lemma.

4.3. Rational Approximations for the Sign: Ogihara’s Polynomials
In the following, we define the functions that will be needed in the construction.

We follow the same notations from [Ogi98].

Definition 22 ([Ogi98]).

Pm(z) := (z − 1)
m∏
i=1

(z − 2i)2,

Qm(z) := −(Pm(z) + Pm(−z))),

Rm,k(z) :=
(

2Pm(z)
Qm(z)

)2k

,

Sm,k(z) := (1 +Rm,k(z))−1
,

Am,k(z) := Qm(z)2k, and
Bm,k(z) := Qm(z)2k + (2Pm(z))2k.

The following properties of Sm,k are proved in [Ogi98]:

Proposition 23 ([Ogi98]). For m, k ≥ 1, and for every z, the following holds:

1. Sm,k(z) = Am,k(z)
Bm,k(z) ,

2. 1 ≤ z ≤ 2m ⇒ 1− 2−k ≤ Sm,k ≤ 1, and
3. −2m ≤ z ≤ −1⇒ 0 ≤ Sm,k(z) ≤ 2−k.

Let f be a function from strings to non-zero integers, and let µ = µ(|x|) be
such that for all strings x, |f(x)| ≤ 2µ(|x|). Let B′ be a function mapping a string
x to a sequence Y1, . . . , Yp of p Boolean strings for some p, and let κ = 2p+ 1.
For i ∈ [1, p], define the following functions:

S(x, i, 1) := Sµ,κ(f(Yi)),
S(x, i, 0) := 1− Sµ,κ(f(Yi))
α(x, i, 1) := Aµ,κ(f(Yi)),
α(x, i, 0) := Bµ,κ(f(Yi))−Aµ,κ(f(Yi)), and
β(x, i) := Bµ,κ(f(Yi)).

14

For w ∈ {0, 1}p, define

S̃(x,w) :=
p∏
i=1

S(x, i, wi),

α̃(x,w) :=
p∏
i=1

α(x, i, wi), and

β̃(x) :=
p∏
i=1

β(x, i).

Let H be the language defined as {y | f(y) > 0}. Then

Lemma 24 ([Ogi98]). 1. If wi = χH(Yi) for 1 ≤ i ≤ p, then 1 − p2−κ ≤
S̃(x,w) ≤ 1. Otherwise, 0 ≤ S̃(x,w) ≤ 2−κ.

2. S̃(x,w) = α̃(x,w)

β̃(x)
.

4.4. The Collapse: Proof of Theorem 20
We use the following characterization of the class PNC1.

Proposition 25. A language L belongs to PNC1 if and only if there is a function
f ∈ GapNC1 such that if x ∈ L then f(x) ≥ 1 and if x /∈ L then f(x) ≤ −1.

We now complete the proof of Theorem 20. Let L ∈ [PNC1] · [PNC1]. As
described in Section 4.1, there is a GapNC1 function f and a circuit family
accepting L such that for every word x, f(x) 6= 0, and furthermore, x ∈ L ⇔
f(b1, . . . , bt) > 0, where bi = χH(Yi) and so bi = 1 if f(Yi) > 0; bi = 0 otherwise.
Each query string Yi is obtained from x by a projection and is an oracle query
at the bottom layer; bi is the oracle reply.

Replace each bi by a variable yi and apply Lemma 21 to get a polynomial
size branching program Q, with three special nodes s, t1, and t2, computing
f(Y) on t-bit inputs via the gap f = #[s ; t1]−#[s ; t2]. Note that for every
layer k of Q, there is a variable uk ∈ Y such that the edges from layer k to
layer k+ 1 are labelled from the set {uk,¬uk}. Note that all the uk need not be
distinct. Henceforth, we denote by yk and Yk the variable at layer k of Q and
the corresponding query string, respectively. Without loss of generality we can
assume that every layer is a nondeterministic layer. Let Q have p layers. Then
every pair of bit-strings w, u, each of length p, uniquely represents a path in the
BP Q, by considering the ith bit wi of w as the query answer at the ith layer
and ith bit ui of u as the nondeterministic choice. For w, u, with |w| = |u| = p,
define the Boolean function e(w, u) as follows: e(w, u) = 1 if and only if the
path of Q represented by the strings w and u is an accepting path (that is, it

15

terminates at t1). Now define the following functions:

T (x) :=
∑

u,w∈{0,1}p

e(w, u)S̃(x,w),

a(x) :=
∑

u,w∈{0,1}p

e(w, u)α̃(x,w), and

h(x) := a(x)− 2p−1β̃(x).

By Lemma 24, we have T (x) = a(x)/β(x). Using the properties of S̃ we
have:

Lemma 26 ([Ogi98]). If x ∈ L then T (x) > 2p−1, and if x /∈ L then T (x) <
2p−1. Hence, x ∈ L if and only if h(x) ≥ 0.

Hence it is sufficient to prove that h(x) ∈ GapBWBP.
Since GapBWBP is closed under taking polynomially bounded sums and

products, it follows easily that α(x, i, wi) and β(x, i) are in GapBWBP. We now
show that a(x) ∈ GapBWBP. At this point, it is convenient to revert to the
GapBWBP formulation rather than the DiffBWBP formulation used until now.
We modify Q by adding one layer at the end with one node t, edge t1 → t with
weight 1, and edge t2 → t with weight −1; call this a-BWBP Q′. It computes
the same function gap represented by Q.

First we show that e(W,U) can be computed by a constant width branching
program which is read-once certified in the variables W and U . Let r be the
width of Q′; note that r = O(1). We build a Boolean circuit C which is “read-
once certified” in W and U (that is, there exists a partition of C into sub-circuits
C1, . . . , C|U |+|W | with the following property: For each input from U ∪W , there
exists an index i such that all wires from the input gate lead to the sub-circuit
Ci), has width O(r), and computes e(W,U). We proceed layer by layer. At
the ith stage, C computes the index of the node v at layer i which is a part of
the unique path in Q′ represented by W and U . Note that this index requires
O(log r) bits and hence C has those many gates as the output of this stage.
Now the (i+ 1)th stage computes the index of the node v′ at layer i+ 1, which
is uniquely defined given the index of v and bits wi and ui. Given the bit
representation of the index of v, the index of v′ depends only on wi and ui hence
can be computed by a circuitry of size (hence width) O(r). We can further split
this circuitry into a substage that reads only wi, followed by a substage that
reads only ui. After the final stage, the circuit outputs 1 if and only if the index
corresponds to the node t1 at the last layer. Clearly C computes e(W,U) and
is of size O(r · size(Q′)) and width O(r). Also from the description of C, it is
clear that C is read-once certified in W ∪ U , with the variables being read in
the order w1, u1, w2, u2, . . . , wp, up.

Using a standard subset construction (see [Bar89], Section 5), we obtain a
BP B computing e(W,U) so that:

• width(B) = 2O(r) and size(B) = 2O(r)size(C); and

16

Bi B′i
.
.
.

BiBi B′i B′i

Pi

Pi

Pi

Figure 2: Composing Bi, Pi, and B′
i

• B is read-once certified in W ∪ U , with the variables being read in the
order w1, u1, w2, u2, . . . , wp, up.

Let Bi be the part that depends only on wi, and let B′i be the part that
depends only on ui. Now we construct an a-BWBP that represents the product
e(W,U)α̃(x,W) and is read-once certified in the variables W ∪ U . Let Pi be a
constant width a-BWBP computing α(x, i,Wi); by Proposition 2 we may assume
that each Pi is of width 3 and size poly(p). We interleave the programs Bi,
B′i and Pi as follows. Starting with B, split each node layer common to Bi
and B′i into two node layers connected by a perfect matching. Replace each
edge of the matching by a copy of Pi. See Figure 2. Let B′ be the BP thus
obtained. Clearly B′ computes e(W,U)α̃(x,W) and is read-once certified in
W ∪ U . The size of B′ is bounded by size(B) + width(B)

∑
size(Pi), and its

width is width(B) max{width(Pi)}; these are bounded by 2O(r)size(Q′)poly(p)
and 2O(r) × 3 respectively.

Notice that a(x) is exactly the read-once exponential sum of e(x,W,U)α̃(x,W)
over the variables W ∪U . Thus, applying Proposition 7 to B′, we get an a-BWBP
B′′ of size poly(size(B′)) and width (width(B′))2 computing a(x). Hence we ob-
tain a GapBWBP bound for a(x).

5. The Hierarchy above C=NC1

Since we do not even know if C=NC1 is closed under complementation, we
cannot hope for a direct collapse of the hierarchies above C=NC1 all the way
down to C=NC1. However, we show here two partial collapses. For the analogous
class C=L, it has been shown in [ABO99] that the hierarchy collapses to LC=L,
and that testing feasibility of systems of linear equations FSLE is complete
for this class. At the level of NC1, we show that the analogous situation splits
into two counterparts. We define an appropriate non-trivial notion of constant-
dimension FSLE and show that it is complete for the Boolean hierarchy over
C=NC1, BH(C=NC1). We then show that the constant-depth hierarchy over
C=NC1, AC0(C=NC1), collapses to a certain level within the hierarchy that we
denote AC0 · C=NC1; this is contained in the second level of the hierarchy.

5.1. The Boolean Hierarchy above C=NC1

Definition 27. For any k ∈ N, and any class C of functions from words to
integers, the language class FSLEk[C] is defined as follows: A language L belongs
to the class FSLEk[C] if there are functions Aij ∈ C for 1 ≤ i, j ≤ k and a vector

17

b ∈ Zk such that for each w ∈ {0, 1}∗, w ∈ L if and only if the system Az = b of
linear equations in k variables zj , where Aij = Aij(w), has a feasible solution
over the rationals. The class FSLEbdd[C] is the union of FSLEk[C] over all k.

Proposition 28. The following two containments hold:

coC=NC1 ⊆ FSLE1[GapNC1],
C=NC1 ⊆ FSLE2[GapNC1].

Proof. Given g = g(x1, . . . , xn) ∈ GapNC1, and a word a ∈ {0, 1}n, consider the
system of equations Az = b, where

1. A := (g(a)), b := (1), and z consists of a single variable z1. Clearly, the
system is feasible if and only if g(a) 6= 0.

2. A :=
(
g(a) 0

1 0

)
, b :=

(
0
1

)
, and z consists of two variables. Clearly,

the system is feasible if and only if g(a) = 0.

In fact, we can prove something slightly stronger:

Lemma 29. NC0
d · C=NC1 ⊆ FSLE3(2d+1−1)[GapNC1].

Proof. We use the following constructions:

Claim 30. If (A1, b1), (A2, b2) are FSLEk1 [GapNC1]- and FSLEk2 [GapNC1]-in-
stances respectively, then we can construct an instance of FSLEk1+k2 [GapNC1]-
instance (A, b) which is feasible if and only if both (A1, b1), (A2, b2) are feasible.

Proof of Claim. Let

A :=
(
A1 O1

O2 A2

)
, b :=

(
b1
b2

)
,

where O1, O2 are all zeroes matrices of appropriate dimensions (k1 × k2 and
k2 × k1 respectively). �

Claim 31. FSLEk[GapNC1] ⊆ co-FSLEk+1[GapNC1]

Proof of Claim. We need to show that given an FSLEk[GapNC1]-instance (A, b),
we can construct an FSLEk+1[GapNC1]-instance (A′, b′) such that (A, b) is feasible
if and only if (A′, b′) is infeasible. We essentially mimic the construction in
[ABO99] to achieve this. We set

A′ :=
(
AT O
bT 0

)
, b′ :=

(
O
1

)
,

where O is a k × 1 column vector of all zeroes. For a proof of correctness see
[ABO99]. �

18

Assume that the NC0 circuit consists of ∧- and ∨-gates, with ¬-gates occurring
only at the base level. This is to fix the notion of depth for such circuits.

We proceed by induction on the depth d of the NC0circuit. For the purposes of
the construction, we eliminate all internal ∨ gates, replacing them by equivalent
sub-circuits using ∧ and ¬.

The base case d = 0 is considered in Proposition 28—notice that we do not
include negation gates in our depth computation.

Depending on what the top gate is, we use one or both of the preceding claims.
Notice that the dimension of the FSLEbdd[GapNC1]-instance constructed at most
doubles at an ∧-gate. To simulate an ∨-gate, we need a negation, an ∧, and
then one more negation, so the the dimension of the FSLEbdd[GapNC1]-instance
goes from k to 2k + 3.

Hence, we conclude that a depth-d NC0 circuit over C=NC1 or coC=NC1

translates to an FSLEbdd[GapNC1]-instance of dimension at most 2×3(2d−1)+3 =
3(2d+1 − 1).

Now we will show the converse. Let us fix some notation first. Given a k× k
square matrix A, for S, T ⊆ [k], let AS,T denote the square sub-matrix of A with
exactly the rows in S and columns in T . Also denote by bS the column vector of
b with only the entries indexed in S. Also denote by [A : b] the square matrix
formed by adding the column b to A.

Lemma 32. FSLEk[GapNC1] ⊆ NC0
3k · C=NC1.

Proof. Let Az = b describe the system of linear equations on an input word, and
let r = rank(A). We observe the following.

Proposition 33. The following are equivalent.

1. For every S, T ⊆ [k] such that |S| = |T | = r and rank(AS,T) = r, and for
every j 6∈ S, det([AS′,T : bS′]) = 0, where S′ = S ∪ {j}.

2. For some S, T ⊆ [k] such that |S| = |T | = r and rank(AS,T) = r, and for
every j 6∈ S, det([AS′,T : bS′]) = 0, where S′ = S ∪ {j}.

3. The system Az = b is feasible.

Proof. 1⇒ 2: Obvious.
2⇒ 3: Let S, T be the subsets with the given property. Since rank(AS,T) = r,

AS,T is full-rank, and so the sub-system AS,T zT = bS has a unique solution
zT . Now extend this to a solution by setting z = 0 outside T . Clearly, this
satisfies the equations indexed by S. By the condition det([AS′,T : bS′]) = 0 for
j 6∈ S and S′ = S ∪ {j}, it also satisfies every equation j 6∈ S. So it is a feasible
solution.

3⇒ 1: Let z be a feasible solution, and let S, T be any pair of subsets of [k]
of size r such that AS,T is non-singular. If z is 0 outside T , then AS,T zT = bS
and for each j 6∈ S, A{j},T zT = bj . But A{j},T is expressible uniquely as a linear
combination of the rows of AS,T . It follows that bj is the same combination of
bS , and so det([AS′,T : bS′]) = 0.

19

But we can assume without loss of generality that z is 0 outside T . This is
because the columns indexed by T span all the columns of A. So if for j 6∈ T ,
zj 6= 0, then we can set it to 0 and adjust the values of z in the T part to account
for the contribution of the jth column.

So now, to check if the system Az = b is feasible, we check condition (2)
of Proposition 33. We claim that this can be checked in NC0

k+1 · C=NC1. To
see this, note that A is a matrix of O(1) size. So determinants of all its sub-
matrices can be computed by O(1)-size arithmetic formulas taking the GapNC1

function values as inputs. In terms of the input word, these are themselves
GapNC1 functions. Thus, in particular, using the closure properties of C=NC1

(Proposition 5), computing the rank of A or a sub-matrix of A is in C=NC1.
Now, the condition (2) is a disjunction over

∑k
r=0

(
k
r

)2
< 22k conditions, one

for each S, T ⊆ [k]. Each condition is of the form

[|S| = |T | = rank(A) = rank(AS,T)]⇒
∧

j 6∈S;S′=S∪{j}

[det([AS′,T : bS′]) = 0]

The whole condition can thus be expressed as an NC0 circuit of depth at most
2k +O(log k) ≤ 3k.

From Lemmas 29 and 32, we have shown the following:

Theorem 34. NC0 · C=NC1 = FSLEbdd[GapNC1].

5.2. The AC0 Hierarchy above C=NC1

We now show the collapse of the constant-depth hierarchy over C=NC1, that
is, we prove AC0(C=NC1) = AC0

3 · [C=NC1]. First we set up some notation.
Let AC0

k(C) denote the class of languages accepted by AC0 oracle circuits,
where the oracle gates are for a language in C, and where on any root-to-
leaf path, the number of oracle gates encountered is at most k. (This is in
analogy with AC0

k denoting depth-k AC0 circuits.) Then, AC0
k(C) is exactly

AC0 · [C] · AC0 . . . (k times) . . . [C] · AC0. In particular, when C = C=NC1, using
notation from Proposition 11 we can see that AC0

k(C=NC1) equals a-NC1
= circuits

where the nesting depth of the test gates is at most k.

Proposition 35.

[C=NC1] · AC0 = C=NC1

[coC=NC1] · AC0 = coC=NC1

Proof. The inclusion from right to left is obvious. We prove the left-to-right
inclusion for C=NC1; the proof for coC=NC1 is identical. So let A be a language
in [C=NC1] · AC0. At each length n, there is an AC0 oracle circuit C with a
single oracle gate g at the top. Let r be the number of input wires to g. On
input x = x1x2 · · ·xn, let these wires carry the values zi(x) for i = 1, . . . , r. By
Proposition 3, there are arithmetic a-AC0 circuits and hence a-NC1 circuits Zi

20

such that for all x, Zi(x) = zi(x). By Proposition 6, there is an a-NC1
= circuit

Dg with a single test gate at the output such that Dg(z1(x), . . . , zr(x)) is the bit
computed by the oracle gate g. Replacing the inputs zi(x) in Dg by the circuits
Zi gives an a-NC1

= circuit D′g computing the same function as C. Since D′g has
a single test gate at the top, by Proposition 6, it computes the characteristic
function of a language in C=NC1.

The heart of our collapse result is the following lemma, stating that two
adjacent levels of coC=NC1 oracle gates can be combined into one.

Lemma 36. [coC=NC1] · [coC=NC1] ⊆ AC0 · [coC=NC1]. In particular, the AC0

circuitry is of depth 3, consisting of an OR of ANDs and some negations at the
leaves.

Proof. The result follows immediately from Lemma 37 below.

Lemma 37. Let h : {0, 1}t −→ {0, 1}, f1, f2, . . . , ft : {0, 1}n −→ {0, 1} be
functions in GapNC1, where for all w, fi(w) ≥ 0. Then for some T ∈ tO(1),
there exist GapNC1 functions g1, g2, . . . , gT : {0, 1}n −→ {0, 1} and an AC0

circuit H on T inputs such that, for all w ∈ {0, 1}n,

h(b1, b2, . . . , bt) 6= 0⇐⇒ H(d1, d2, . . . , dT) = 1

where bi :=
{

1 if fi(w) 6= 0,
0 otherwise, and dj :=

{
1 if gj(w) 6= 0,
0 otherwise.

Proof. Let C be an a-NC1 circuit computing h. Without loss of generality,
assume that C is a formula (all gates have out-degree 1), that is is layered with
alternating +- and ×-layers, and that the underlying graph is a complete binary
tree where every root-to-leaf path is of length exactly 2d.

Without loss of generality, assume that each fi is non-negative everywhere.
(If this not the case, use the function f2

i instead of fi; this will not change the
zero-test and hence will not change bi. And f2

i is also in GapNC1.)
Let F denote the set of functions {f1, . . . , ft}. For each i ∈ [t], let Fi denote

the set of functions F \ {fi}. Also, for each w ∈ {0, 1}n, let F(w) and Fi(w)
denote the set (or possibly multiset) of values taken by the functions in F and
Fi on the input w.

Over any set Y of l variables, the symmetric polynomials Skl for 0 ≤ k ≤ l
are defined as follows.

Skl (Y) :=
∑

S⊆Y ;|S|=k

∏
y∈S

y

For each i, k ∈ [t], define the function

F ki (w) := fi(w)St−1
k−1(Fi(w)).

Let Ck be the circuit obtained from C by replacing the constant 1 with the value
Stk(F), and replacing the constant −1 with the value −Stk(F). Now define the
predicate Πk as follows:

Πk(w) ≡
[
Skt (F(w)) 6= 0 ∧ Sk+1

t (F(w)) = 0 ∧ Ck(F k1 (w), . . . , F kt (w)) 6= 0
]

21

Claim 38. For all w ∈ {0, 1}n,

h(b1, b2, . . . , bt) 6= 0⇐⇒ ∃k ∈ {0, 1, . . . , t} : Πk(w).

Proof of Claim. Fix w ∈ {0, 1}n and let kw = r denote the number of functions
fi that evaluate to a non-zero value at w. By the properties of symmetric
polynomials, and the fact that each fi(w) is non-negative, we can see that
Skt (F(w)) 6= 0 is false exactly when k > r, and Sk+1

t (F(w)) = 0 is false exactly
when k < r. So Πk is false whenever k 6= r, and

∃k ∈ {0, 1, . . . , t} : Πk(w) ≡ Πr(w) ≡ Cr(F r1 (w), . . . , F rt (w)) 6= 0.

But at k = r, for each i ∈ [t],

F ki (w) = fi(w)St−1
k−1(Fi(w)) =

{ ∏
fj(w) 6=0 fj(w) if fi(w) 6= 0,

0 if fi(w) = 0.

Let G(w) denote
∏
fj(w) 6=0 fj(w); if no fj(w) is non-zero, then G(w) := 1. Thus

G(w) 6= 0. Then F ri (w) = biG(w) for each i ∈ [t]. Since C was in normal layered
form as a complete binary tree with ×-depth d, and since in Cr we replace each
constant ±1 by ±G(w), and since we evaluate Cr replacing each bit bi by the
value biG(w), we see that Cr(F r1 (w), . . . , F rt (w)) = [G(w)]2

d

C(b1, . . . , bt). Thus
Cr(F r1 (w), . . . , F rt (w)) 6= 0⇔ C(b1, . . . , bt) 6= 0, proving the claim. �

Claim 39. For each k ∈ {0, 1, . . . , t}, there exist GapNC1 functions Nk
t and Dk

t

such that Skt (F(w)) = Nk
t (w)/Dk

t (w).

Proof of Claim. The symmetric polynomials can be computed efficiently over
fields. Since we are dealing with integers, we need to carry the numerators and
denominators separately. The functions Nk

t and Dk
t do just this.

For completeness, we describe the functions explicitly, following notation
from [Tza08]. Consider the symmetric polynomial Skl (Y) over some set Y of
l variables. Then

∏l
i=1(yi + z) =

∑l
k=0 S

k
l (Y)zk. Given values to Y , this

polynomial in z can be computed by interpolation through values at any l + 1
points. So fix any l + 1 distinct constants, without loss of generality they can
be 0, 1, . . . , l. Let B be the (l + 1) × (l + 1) Vandermonde matrix where for
0 ≤ i, j ≤ l, Bij := ij . Then

 B

 ·

S0
l (Y)
S1
l (Y)

...
Sll(Y)

 =


∏l
i=1 yi∏l
i=1(yi + 1)

...∏l
i=1(yi + l)

 .
Since B can be precomputed, and since the vector on the right-hand side is easy
to compute for any given values to the variables in Y , the vector of symmetric
polynomials can be obtained. In particular,

Skl (Y) =
l∑

j=0

B−1
kj

l∏
i=1

(yi + j)

22

Each entry ofB−1 can be written as a rational function with det(B) =
∏

0≤i<j≤l(j−
i) in the denominator. So, as long as the variables in Y take integer values, the
function det(B)Skl (Y) is integral.

Thus to compute Skt (F(w)), set l = t in the argument above. Then Dk
t (w) =

det(B), and Nk
t (w) =

∑l
j=0 det(B)B−1

kj

∏l
i=1(fi(w) + j). The terms det(B) and

det(B)B−1
kj are constants that can be precomputed and can be expressed via

a-NC1 circuits. Since each fi is in GapNC1, the computation of Nk
t is also in

GapNC1. �

Claim 40. For each k, there is a GapNC1 circuit Gk such that Gk(w) = 0 if
and only if Ck(F k1 (w), . . . , F kt (w)) = 0.

Proof of Claim. We do local surgery on the circuit Ck to carry at every gate g
a rational value as a pair of values corresponding to the numerator Ng and the
denominator Dg . At a leaf labelled by a constant c, set Ng = c, Dg = 1. At
a leaf labelled F k1 (w), set Ng and Dg as the output gates of the corresponding
circuits described in the previous claims. The gate g = g1 + g2 has the obvious
implementation: Dg = Dg1 ×Dg2 , and Ng = Ng2 ×Dg1 +Ng1 ×Dg2 . Similarly
at gate g = g1 × g2, set Dg = Dg1 ×Dg2 , and Ng = Ng1 ×Ng2 . In the resulting
circuit, label the wire carrying Ng for the output gate of Ck as the output
gate. �

Now we can complete the proof of the lemma. The required GapNC1 functions
are those computed by the circuits Nk

t and Gk for each k. The AC0 circuit H
implements the check

t∨
k=0

[
Nk
t (F(w)) 6= 0 ∧ Nk+1

t (F(w)) = 0 ∧ Gk(w) 6= 0
]
.

Using Proposition 35 and Lemma 36, we can now establish our collapse
result.

Theorem 41. The AC0 hierarchy over C=NC1 collapses to its first level, requir-
ing a single layer of oracle gates and a depth-3 circuit above it,

AC0(C=NC1) = AC0 · [C=NC1] = AC0 · [coC=NC1] = AC0
3 · [C=NC1].

Proof. Let A be a language in AC0(C=NC1); since the AC0 circuitry is allowed to
use negation gates, equivalently A is in AC0(coC=NC1). Then there is a constant
k such that A ∈ AC0

k(coC=NC1). The circuit for A thus has the form

AC0 · [coC=NC1] · AC0 · . . . · [coC=NC1] · AC0.

Using Proposition 35, we can absorb all except the topmost AC0 circuitry into
the oracle gates, giving a circuit of the form

AC0 · [coC=NC1] · [coC=NC1] · · · · · [coC=NC1]︸ ︷︷ ︸
(k times)

.

23

Using Lemma 36, we replace the bottom two oracle layers by a sub-circuit of
the form AC0 · coC=NC1. Then using Proposition 35 again, we absorb this new
AC0 circuitry into the oracle gate layer above it to get a circuit of the form

AC0 · [coC=NC1] · [coC=NC1] · · · · · [coC=NC1]︸ ︷︷ ︸
(k − 1 times)

.

Repeating this process another k − 2 times gives the desired circuit of the form
AC0 · [coC=NC1]. Since coC=NC1 contains AC0, it can be written in the form
[coC=NC1] · [coC=NC1]. Now using Lemma 36 again, we can replace the top
oracle gate by a depth-3 AC0 circuit.

Acknowledgments

The authors thank the anonymous referees of the MFCS 2010 Conference
(where a preliminary version of this paper appeared, [DMR+10]), and especially
the anonymous referees of this journal, for their comments and suggestions; these
significantly helped improve the presentation of the results.

References

[ABO99] E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank
and feasible systems of linear equations. Computational Complexity,
8(2):99–126, 1999.

[All04] E. Allender. Arithmetic circuits and counting complexity classes.
In Jan Krajicek, editor, Complexity of Computations and Proofs,
Quaderni di Matematica Vol. 13, pages 33–72. Seconda Universita di
Napoli, 2004. An earlier version appeared in the Complexity Theory
Column, SIGACT News 28, 4 (Dec. 1997) pp. 2-15.

[AO96] E. Allender and M. Ogihara. Relationships among PL, #L, and
the determinant. RAIRO Theoretical Information and Applications,
30:1–21, 1996. Conference version in Proc. 9th IEEE Structure in
Complexity Theory Conference (1994), 267–278.

[Bar89] D. A. Barrington. Bounded-width polynomial size branching pro-
grams recognize exactly those languages in NC1. Journal of Computer
and System Sciences, 38:150–164, 1989.

[BRS95] R. Beigel, N. Reingold, and D. A. Spielman. PP is closed under
intersection. Journal of Computer and System Sciences, 50(2):191–
202, 1995.

[CMTV98] H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Non-
deterministic NC1 computation. Journal of Computer and System
Sciences, 57:200–212, 1998. Preliminary version in Proceedings of the
11th IEEE Conference on Computational Complexity, 1996, 12–21.

24

[DMR+10] Samir Datta, Meena Mahajan, B. V. Raghavendra Rao, Michael
Thomas, and Heribert Vollmer. Counting classes and the fine struc-
ture between nc1 and l. In Proceedings of the 35th international con-
ference on Mathematical foundations of computer science, MFCS’10,
pages 306–317, 2010.

[FR96] L. Fortnow and N. Reingold. PP is closed under truth-table reduc-
tions. Inf. Comput., 124(1):1–6, 1996.

[KSW87] J. Köbler, U. Schöning, and K. W. Wagner. The difference and truth-
table hierarchies for NP. Theoretical Informatics and Applications,
21(4):419–435, 1987.

[Lan93] K.-J. Lange. Unambiguity of circuits. Theor. Comput. Sci., 107(1):77–
94, 1993.

[MR09] M. Mahajan and B. V. Raghavendra Rao. Small-space analogues of
Valiant’s classes. In FCT, LNCS vol. 5699, pages 250–261, 2009.

[Ogi98] M. Ogihara. The PL hierarchy collapses. SIAM J. Comput.,
27(5):1430–1437, 1998.

[Tza08] I. Tzamaret. Studies in Algebraic and Propositional Proof Complexity.
PhD thesis, Tel Aviv University, 2008.

[Vol99] H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach.
Springer-Verlag New York Inc., 1999.

[vzGS91] J. von zur Gathen and G. Seroussi. Boolean circuits versus arithmetic
circuits. Information and Computation, 91(1):142–154, 1991.

[Wil85] C. B. Wilson. Relativized circuit complexity. J. Comput. Syst. Sci.,
31(2):169–181, 1985.

25

