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Abstract. The problem of finding a satisfying assignment for a 2-SAT
formula that minimizes the number of variables that are set to 1 (min
ones 2–sat) is NP-complete. It generalizes the well-studied problem of
finding the smallest vertex cover of a graph, which can be modeled using
a 2-SAT formula with no negative literals. The natural parameterized
version of the problem asks for a satisfying assignment of weight at most
k.
In this paper, we present a polynomial-time reduction from min ones
2–sat to vertex cover without increasing the parameter and ensuring
that the number of vertices in the reduced instance is equal to the num-
ber of variables of the input formula. Consequently, we conclude that this
problem also has a simple 2-approximation algorithm and a 2k variables
kernel subsuming these results known earlier. Further, the problem ad-
mits algorithms for the parameterized and optimization versions whose
runtimes will always match the runtimes of the best-known algorithms
for the corresponding versions of vertex cover.

1 Introduction and Motivation

Satisfiability is a fundamental problem that encodes several computational prob-
lems. Variations of the problem appear as canonical complete problems for sev-
eral complexity classes. While it is well known that the satisfiability of a formula
in CNF form is a canonical NP–complete problem, testing whether a CNF for-
mula has a satisfying assignment with weight1 at least k is a canonical complete
problem for the parameterized complexity class W [2] [DF99]. If the number
of variables in each clause is bounded, it is a canonical W [1]-complete prob-
lem [DF99]. These results imply that it is unlikely that these problems are fixed
parameter tractable (FPT). In other words, it is unlikely that they have an al-
gorithm with running time O(f(k)nO(1)) on input formulas of size n.

On the other hand, if the question is whether a d-CNF formula (for fixed d)
has a satisfying assignment with weight at most k, then this generalizes the well-
studied d-hitting set problem and independently, turns out to be fixed parameter
? This work was done when the author was on sabbatical from IIT Madras
1 The weight of an assignment is the number of variables assigned 1 by the assignment.



tractable with the weight as a parameter ([Nie06,MR99], cf. Section 2). When we
restrict our attention to 2-CNF formulas (min ones 2–sat) this problem gener-
alizes the well-studied vertex cover problem. For, given a graph G = (V,E),
a satisfying assignment of weight at most k on the formula ∧(u ∨ v), where the
∧ runs over all edges (u, v) in E, where u and v are variables corresponding
to vertices u and v of G, corresponds to a vertex cover of size at most k in
G. However, notice that we do not require negated literals to encode vertex
cover using 2-CNF formulas, and thus it appears that min ones 2–sat is a
more general version of the vertex cover problem.

Gusfield and Pitt[GP92] considered this min ones 2–sat problem and gave a
2-approximation algorithm. The algorithm that follows a greedy approach, gives
a solution whose weight is at most twice that of the optimum (assuming that
the formula is satisfiable). As satisfiability of 2-CNF-SAT is well known to be
polynomial time solvable, we can assume without loss of generality that the given
2-SAT formula is satisfiable. Hochbaum et al [HMNT93] showed that the classical
Nemhauser-Trotter theorem for vertex cover [NT75] holds for min ones 2–sat
as well. This implies a 2-approximation algorithm for the optimization version,
and a 2k-variable kernel for the parameterized version.

There is a reduction from min ones 2–sat to vertex cover, pointed out by
Seffi Naor (see [Hoc97]). This reduction takes an instance F of min ones 2–sat
on n variables and returns a graph G(F ) that has one vertex for every literal
participating in F (i.e. with up to 2n vertices), and an edge between a pair
of literals whenever they appear together in a clause of F , and an edge (x, x̄)
for every variable x. Further, the reduction introduces, for every variable x, the
edges (u, v) — where u ∈ N(x) and v ∈ N(x̄), and N(l) is the set of all literals
l′ such that (l, l′) is a clause of F . It can be shown that if there is a satisfying
assignment of weight at most k for F , then there is a vertex cover of size n in
G(F ). Conversely, a vertex cover of size n in G(F ) translates to a satisfying
assignment for F (i.e. that the vertex cover never needs to choose both x and x̄
of a variable — however, the weight of such an assignment can be as large as n.

Observe that this reduction produces a graph with the number of vertices equal
to twice the number of variables and, in the parameterized setting, does not
transform k into a function of k alone. Since the reduction loses track of the
weight of the solution, it does not enable us to employ vertex cover to solve
an instance of min ones 2–sat.

In this paper, we demonstrate a simple extension of this reduction that pre-
serves both k and n, and allows us to carry over everything we know about
vertex cover to the more general setting of min ones 2–sat. Thus, we have
that the apparently more general problem of minones can be handled as easily
as vertex cover, in both the optimization and parameterized settings. In partic-
ular, the problem now has a 2k-variable kernel, a 2-approximation algorithm,
and FPT and exact algorithms that will run as fast as the best algorithms for
the corresponding versions of the vertex cover problem (the current best being



O∗(1.27k) [CKX06]2 and O(1.2132n) [KLR09]). In particular, our reduction sub-
sumes the earlier results (2-approximation algorithms, and Nemhauser-Trotter
theorem) on this problem.

2 Preliminaries

A parameterized problem is denoted by a pair (Q, k) ⊆ Σ∗ × N. The first com-
ponent Q is a classical language, and the number k is called the parameter. Such
a problem is fixed–parameter tractable (FPT) if there exists an algorithm that
decides it in time O(f(k)nO(1)) on instances of size n. A kernelization algorithm
takes an instance (x, k) of the parameterized problem as input, and in time poly-
nomial in |x| and k, produces an equivalent instance (x′, k′) such that |x′| is a
function purely of k. The output x′ is called the kernel of the problem and its
size is |x′|. We refer the reader to [DF99,Nie06] for more details on the notion
of fixed-parameter tractability.

Let P be an arbitrary set, whose elements we shall refer to as variables. A
literal is either a variable or its negation. An assignment for P is a function
t : P → {0, 1}. Sometimes, we also refer to an assignment setting (mapping) a
variable to ‘true’ or ‘false’ when we mean to say 1 or 0 respectively.

A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses,
where a clause is a disjunction of literals. A c-SAT formula has at most c literals
in any clause. The weight of an assignment is the number of variables that are
set to one by that assignment. We refer to the problem of finding a smallest
weight satisfying assignment for c-SAT formulae as min ones c–sat.

Simple FPT algorithm for weight at most k assignments. The natural parame-
terized version of min ones c–sat is FPT for any fixed c, when parameterized
by the weight: pick a clause that contains only positive literals (as long as one
exists) and branch by setting each of the variables to 1. This results in a c-way
branch of depth at most k. Notice that at the leaves, every clause has at least
one negated literal and the assignment that sets all the remaining variables to
0 satisfies all such clauses. This results in an O(ckm) algorithm where m is the
number of clauses in the formula.

3 Reduction of min ones 2–sat to vertex cover

In this section, we present a reduction from min ones 2–sat to vertex cover.
Throughout, we use F to denote an instance of min ones 2–sat, and C(F )
denotes the set of clauses in F . Also, let D(F ) denote the implication graph of

2 We use the notation O∗() to “hide” functions that are polynomial in the variables.



F , which has one vertex for every literal of F , and the directed arcs (l̄1, l2) and
(l1, l̄2) for every clause (l1, l2) ∈ C(F ). Also, let A(D(F )) denote the set of arcs
in D(F ).

The implication graph of a 2-CNF formula is very well-studied — for example,
see Section 1.10 in [BJG08]. We begin by recalling Lemma 1.10.2 from [BJG08]
(the proof is reiterated here for completeness).

Lemma 1 ([BJG08]). If D(F ) contains a path from l1 to l2, then, for every
satisfying truth assignment t, t(l1) = 1 implies that t(l2) = 1.

Proof. Observe that F contains a clause of the form x̄ ∨ y when D(F ) contains
the arc (x, y). Further, every clause takes the value 1 under any satisfying truth
assignment. Thus, by the fact that t is a satisfying truth assignment and by the
definition of D(F ), we have that for every arc (x, y) ∈ A(D(F )), t(x) = 1 implies
t(y) = 1. Now the claim follows easily by induction on the length of the shortest
(l1, l2)-path in D(F ).

We now describe a formula that is easier to work with, because we ensure that
such paths are also witnessed by edges. Let F ∗ be the smallest formula which
contains all the clauses of F , and the clause(s) (l1∨ l2), for each pair of literals l1
and l2 such that there is a directed path from l̄1 to l2 in D(F ). We refer to F ∗ as
the closure of F . One way to compute the closure of F is to compute the transitive
closure of the implication graph of F (in polynomial time, see [CLRS01]). The
formula corresponding to the graph thus obtained (when treated also as an
implication graph) is the closure of F . We work with the closed formula F ∗ in
the discussion that follows.

Theorem 1. Given a 2-CNF formula F , let F ∗ be the closure of F , and (F ∗)+
denote the set of all clauses of F ∗ where both literals occur positively. Let G be
the graph that has one vertex for every variable in (F ∗)+, and (u, v) ∈ E(G) if
and only if (u ∨ v) ∈ C((F ∗)+). Then F has a satisfying assignment of weight
at most k if and only if G has a vertex cover of size at most k.

Proof. Suppose that F has a satisfying assignment of weight at most k. Then it
implies that the same satisfying assignment is a satisfying assignment of F ∗ as
well. For, if c = (l1 ∨ l2) is in C(F ∗) \ C(F ), then there is a directed path from
l̄1 to l2, by construction. Hence if the satisfying assignment of F sets l1 to false,
then l̄1 is set to true and hence by Lemma 1, l2 is set to 1 by the assignment,
thus satisfying c. Hence (F ∗)+, a sub formula of F ∗ has a satisfying assignment
of weight at most k, which means that the graph G has a vertex cover of size at
most k.

Conversely let G have a vertex cover of size k. Let t be the truth assignment
corresponding to a minimal vertex cover, say K, of size at most k in G, i.e. let



t(x) = 1 if and only if x ∈ K, and t(x) = 0 otherwise. Clearly, t is a satisfying
assignment of (F ∗)+ and is of weight at most k. We now show that t is indeed a
satisfying assignment of F ∗. The proof is by contradiction. Let us assume that
F ∗ is not satisfied by t. This implies there is a clause C ∈ F ∗ that is not satisfied
by t. Clearly, C 6∈ (F ∗)+. There are two possibilities for C: either C = (x ∨ ȳ),
or C = (x̄ ∨ ȳ), where x and y are variables. In either case, we arrive at a
contradiction to the assumption that t is a satisfying assignment of (F ∗)+.

1. C = (x∨ ȳ): Since C is falsified by t, it follows that t(x) = 0 (or equivalently,
t(x̄) = 1) and t(y) = 1. Since t is obtained from a minimal vertex cover K
(that containts y as t(y) = 1), there is a clause (y ∨ z) ∈ (F ∗)+ such that
t(z) = 0.
Notice that D(F ∗) has arcs from x̄ to ȳ and from ȳ to z, and therefore a
path from x̄ to z. By Lemma 1, therefore, t(x̄) = 1 must imply t(z) = 1, a
contradiction.

2. C = (x̄ ∨ ȳ): Since C is falsified by t, it follows that t(x) = 1 and t(y) =
1. Since t is obtained from a minimal vertex cover K, there are clauses
(y ∨ z1), (x ∨ z2) ∈ (F ∗)+ such that t(z1) = 0, t(z2) = 0 (Note that z1 could
be equal to z2).
As before, we observe that D(F ∗) has a path from x to z1 (through ȳ), and
again by an application of Lemma 1, we observe that t(x) = 1 implies that
t(z1) = 1, a contradiction.

Consequently, our assumption that t is not a satisfying assignment of F ∗ is
wrong and hence F ∗ has a satisfying assignment of weight at most k. Since F is
a sub-formula of F , it follows that so does F .

Corollary 1. Given a 2-CNF formula F on n variables and a positive integer
k, it can be checked if F admits a satisfying assignment of weight at most k in
time O∗(1.27k) [CKX06]. A satisfying assignment of minimum weight may be
obtained in time O(1.2132n) [KLR09].

Observe that the reduction stated in Theorem 1 is valid for the weighted version
of the problem (where each variable has a non-negative real weight, and the
weight of an assignment is the sum of the weights of the variables that it sets to
one), and that the proof remains the same is easily verified.

Corollary 2. Given a 2-CNF formula F on n variables with a weight function
w : V (F )→ R+ such that w(v) ≥ 1, for all v ∈ V (F ) and a positive integer k, it
can be checked if F admits a satisfying assignment of weight at most k in time
O∗(1.37k) [NR03]. A satisfying assignment of minimum weight may be obtained
in time O(1.32n) [DJ02].

The problem of solving a 0− 1 integer program which has at most two variables
per constraint with an assignment of weight at most k is known to be equivalent



to min ones 2–sat. This is due to a reduction that does not increase the number
of variables or the weight of the solution (Section 4, [HMNT93]). The reduction in
[HMNT93] is from a more general integer program, one that assumes a bounded
range (not necessarily 0− 1) for each variable. However, in the general case, the
number of variables created in the reduced instance is a function of the ranges.
For 0− 1 integer programs, the number of variables remains the same as that of
the original. Thus, we also have that a binary integer program may be solved as
fast as weighted vertex cover3.

Corollary 3. Consider a binary integer program where the objective function
is to be minimized, and every constraint has at most two variables. Given such
a program and a positive integer k, it can be checked if the optimum feasible
assignment is at most k in time O∗(1.37k) [NR03], and the optimum assignment
may be obtained in time O(1.32n) [DJ02].

4 Concluding Remarks

We show min ones 2–sat to be equivalent to vertex cover in both the pa-
rameterized and optimization settings, by demonstrating a polynomial-time re-
duction from min ones 2–sat to vertex cover that preserves the optimum
value and keeps the number of vertices of the graph to the number of variables
in the formula. This allows us to employ the best known algorithms for vertex
cover to min ones 2–sat incurring only an additional polynomial cost.

The complexity of min ones c–sat for c > 2 is an interesting line of research.
In this case, the problem is a natural generalization of c-hitting set. While c-
hitting set has a kO(c) kernel [AK07], a polynomial sized kernel is unlikely for
min ones c–sat even for c = 3, as a special case of min ones 3–sat (not-1-in-3
SAT) is unlikely to have a polynomial sized kernel [KW09]. See [KWar] for a
classification of the types of bounded variable constraints for which polynomial
sized kernel is possible. Improving the obvious O(ckm) time bound (mentioned
in Section 2) for the parameterized question is a natural open problem.
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