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Abstract

Logics of announcements are logics of knowledge to reason about agents that com-
municate by broadcasting interpreted messages. These logics are typically given a se-
mantics in terms of updatable Kripke structures, which tend to be abstract. We revisit
the semantics of logics of announcements and develop a concrete semantics using runs
and systems. The advantage is that we can devise models that capture scenarios without
having to express properties of those scenarios within the logic itself. In this concrete
setting, we study honesty as well as belief in the presence of announcements that are
not broadcast to all agents in a system.

1 Introduction

Logics of knowledge provide the ability to reason about knowledge of agents in situations
where they interact. Roughly speaking, logics of knowledge, or epistemic logics, are logics
with an operator typically written Kiϕ used to capture the notion that agent i knows
fact ϕ. Such logics have found applications in philosophy, artificial intelligence, economics,
game theory, and distributed computing. How knowledge is interpreted varies widely, but a
common interpretation based on possible worlds goes back to Hintikka [7], where an agent
knows a fact if that fact is true at all the worlds that the agent consider possible alternatives
to the actual world. Kripke structures [8] are used to formalize this semantics for knowledge.

Most early uses of logics of knowledge involved reasoning about agents that communicate
by exchanging uninterpreted messages. Here, by uninterpreted messages, we mean messages
that are not intended to be interpreted as formulas, and therefore do not require a priori
knowledge of the semantics of the logic to make sense. For instance, an agent in a system
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sending a message containing the agent’s name is sending an uninterpreted message. In
contrast, there are situations where agents interact by exchanging interpreted messages,
that is, messages intended as logical formulas whose meaning depends on the semantics of
the logic such as statements about their own knowledge. To reason about such scenarios,
logics of announcements were developed [14, 5, 2, 1, 16]. Logics of announcements can be
seen as a combination of epistemic logic and dynamic logic [6]. Dynamic logic takes as a
basic logical operator the operator [α]ϕ, interpreted as ϕ holding after actions α have been
performed. Logics of announcements specialize the actions to dynamic logic by permitted
agents to announce statements, including statements about their own knowledge. Logics of
announcements are traditionally given a semantics in terms of updating Kripke structures.
Roughly speaking, a formula such as “ϕ is true after announcing that agent i knows ψ”
is true at a state of some Kripke structure M if ϕ is true in the new Kripke structure
obtained by updating M with the result of announcing Kiψ. There are several difficulties
with this approach to reasoning about announcements. How to update Kripke structures
after a particular announcement is not immediately clear, for instance. But from a practical
perspective, one difficulty is that traditional models for logics of announcements are quite
abstract. It is usually nontrivial to take a given scenario and model it for analysis.

In this paper, we revisit the semantics of logics of announcements, and focus on giving
a concrete independently motivated semantics to such logics. The idea is simple: our
models, based on the runs-and-systems framework of Fagin et al. [4, 11], describe a concrete
scenario to be analyzed in terms of the possible evolutions of a situtation, where the possible
evolutions include announcements made by the various agents in the scenario. The models
are purely descriptive. The logic is used to state properties of the scenario via an intuitive
notion of truth. This approach is in contrast to that used in DEL [2], for instance, where
modeling a scenario is done completely within the logic, by stating properties of the scenario
within the logic itself as axioms, and reasoning about what can be derived from those axioms.
As we argue, this sometimes raises the question of how to ensure that the scenario has been
accurately captured in the logic. Such a question is less problematic to answer with a
concrete semantics, because the model of a scenario is a description that is very close to the
way in which the scenario is informally described.

Our models are quite simple, and they already highlight several subtle issues with rea-
soning about announcements. For instance, synchrony, that is, whether agents know the
time, impacts what knowledge agents gain after hearing an announcement, which is espe-
cially relevant when agents only announce statements that they know to be true. Another
subtlety that our framework highlights is the role of strategies to understand how to model
belief. Belief arises naturally when considering announcements that are not broadcast to
all agents, but instead are heard by only a subset of agents. Belief, according to some
approaches, can be taken to be what an agent knows if she assumes that not having heard
an announcement means that that announcement was never made. Making this precise, we
argue, can only be done if agents already have an idea about what strategies other agents
in the systems are using to choose their actions.

This paper is structured as follows. In §2, we introduce the syntax and semantics of the
logic of announcement we use. In §3, we try to make precise the notion of honesty, where
agents only announce true statements. In §4, we compare our approach with traditional
logics of announcements. In §5, we turn to the question of announcements that are not
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broadcasted to all agents, and try to develop reasonable notions of belief in this context.
We conclude in §6.

2 A Logic of Announcements

We start by defining a class of structures that correspond somewhat closely to execution of
protocols or programs. We use the runs and systems framework of Fagin et al [4], which
takes as models sets of execution traces.

An interpreted system is a pair (R, π), where R is a set of runs, each run representing a
possible execution of the system, and π is an interpretation for the primitive positions (or
atoms). A run is a map from time to global states, where r(m) is the global state in run
r at time m. (For simplicity, we take time to range over the natural numbers.) We call a
pair (r,m) a point of r. Thus, each point corresponds to a global state of the system.

A global state is of the form (se, s1, . . . , sn), where se is the local state of the environment,
and s1, . . . , sn are local states for each agent. If r(m) = (se, s1, . . . , sn), we write re(m) for
se and ri(m) for si. Intuitively, the local state for an agent records the observations that the
agent has made. Here, we consider observations to be announcements that the agent has
received. We also record in the local state possible initial observations made by the agent.
For instance, in the muddy children puzzle, initial observations for an agent include which
other children are dirty. The local state of the environment records information which is not
available to the agents. For example, in a coin-tossing scenario, the result of the coin toss
and also the sequence of all announcements that have been made can be stored in the local
state of environment. The announcements that an agent has received will be a subsequence
of this sequence of announcements.

An announcement consists of a message θ (in some language that we describe below,
but is irrelevant for now), with an associated announcer a and a group β of recipients. We
require that the announcer a be in β. We represent an announcement by the event θ!aβ
appearing in the local state of agents receiving the announcement, that is, agents in β. As
we will see below, for bookkeeping purposes, we record all announcements in the local state
of the environment as well. An announcement is public if its associated group of recipients
is {1, . . . , n}, otherwise, it is private.

Building announcements out of a language raises subtle issues, including whether we
want to distinguish announcements that are logically equivalent. For instance, announce-
ment (p∧ q)!β is often taken to be the same announcement as (q ∧ p)!β. However, there are
situations where “how” the announcement is presented is relevant. After all, an announce-
ment is a message, and concretely, the message has a representation in the system. For
instance, an announcement may be represented as a bit-string sent over a network link, and
an agent may be able to distinguish two different bit-strings corresponding to two different
presentations of the same announcement. If all one cares about is the interpretation of the
announcement, as is the case in several announcement logics where announcements are taken
to be sets of states, then there is no distinction between announcing p ∧ q and announcing
q ∧ p. But this view is somewhat limiting. It turns out that the results of this paper do
not depend on how we resolve this choice. For simplicity, we take two announcements to be
the same when they are structurally equal, with the understanding that we could impose
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an arbitrary equivalence relation over announcements to capture announcements we want
to consider equivalent (such as logical equivalence).

We want to interpret knowledge in such systems. We take a standard Hintikka semantics
for knowledge, where an agent knows a fact in some global state s if that fact is true at
all the global states she considers possible alternatives to state s. To do so, we define, for
each agent i, a relation over points of the system capturing which points agent i cannot
distinguish. Intuitively, two points are indistinguishable to agent i if i has the same local
state at both points. We define (r,m) ∼i (r′,m′) if ri(m) = r′i(m). Note that this makes
∼i an equivalence relation. We also define the reflexive transitive closure of ∼i relative to a
subset β of agents, by taking (r,m) ∼∗

β (r′,m′) if there exists a sequence i1, . . . , ik of agents
in β with (r,m) ∼i1 (r1,m1) ∼i2 · · · ∼ik−1

(rk−1,mk−1) ∼ik (r′,m′).
The above description of systems is extremely general, suitable for defining a broad class

of multiagent systems, and in fact more general than we want for defining announcement
systems. In particular, we assume a specific structure to the local state of agents and
the environment in announcement systems. We assume that the local state of an agent
(including the environment) contains an initial local state ι and a list of sets of observations
Sj , that is si = 〈ι, S1, · · · , Sm〉 where ι is an initial local state and each Sj is a set of
observations, for i ∈ {e, 1, . . . , n}. We write θ!aβ ∈ ri(m) if θ!aβ appears in one of the sets of
observations in the local state of agent i, including the environment, that is, if θ!aβ ∈ Sj for
1 ≤ j ≤ m and ri(m) = 〈ι, S1, . . . , Sm〉 .

The following properties of a run r capture these properties and characterize systems
that interest us:

R1. Facts do not change during the run. Thus, for all primitive propositions p and times
m,m′ ≥ 0, we have π(r,m)(p) = true if and only if π(r,m′)(p) = true.

R2. Announcements are accumulated in the local state of the environment. Thus, for all
times m ≥ 0, if re(m) = 〈ι, S1, . . . , Sm〉 where ι is an initial state and S1, . . . , Sm

are sets of announcements, then re(m + 1) = 〈ι, S1, . . . , Sm, Sm+1〉, where Sm+1 is a
(possibly empty) set of announcements.

R3. An announcement θ!aβ appears in the local state of the environment if and only if it
appears in the local state of every agent in β. Thus, for all times m ≥ 0, announce-
ments θ!aβ and agents i ∈ β, we have θ!aβ ∈ re(m) (as defined above) if and only if
θ!aβ ∈ ri(m).

R4. The local state for agent i at every point is obtained from the local state of the
environment at that point, filtered to keep only announcements pertaining to i. Thus,
for all times m ≥ 0 and agents i ∈ β, if re(m) = 〈ι, S1, . . . , Sm〉 where ι is an initial
state and S1, . . . , Sm are sets of announcements, then ri(m) = 〈ι′, S′1, . . . , S′m〉 where
S′j = {θ!aβ ∈ Sj | i ∈ β} for all j ∈ {1, . . . ,m}.

Properties R2 and R3 together ensure that agents have perfect recall, that is, they do
not forget announcements that they have heard in the past. R3 imposes no constraint on
how the local state of agents records announcements, beyond the fact that all pertinent
announcements that have been made appear in the local state. In particular, from a round
to the next, if no new announcement is heard by the agent, then the local state of the agent
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need not change. In other words, an agent need not be aware of time passing if she has not
heard any new announcements. Thus, R3 allows for asynchronous behavior [4]. Property
R4 forces the representation of agent local states to record the number of rounds and the
announcements made at each round. Thus, in a precise sense, if every run has property R4
in a system, then agents know the current time in a system—at a point (r,m), they will
not consider a point with a different time m′ possible.

Definition 2.1. An announcement system is a system in which every run satisfies R1–3.
An announcement system is synchronous if every run additionally satisfies R4.

All our work until now has remained completely independent of the language of an-
nouncements. We write announcements in an epistemic propositional language. Start with
a set Φ0 of primitive propositions, representing the basic facts that we care about, and form
the language LK

n of announcements over n agents by closing Φ0 under ∧, ¬, and the modal
operator Ki. As usual, we take ϕ∨ψ to be an abbreviation for ¬(¬ϕ∧¬ψ), and ϕ⇒ ψ an
abbreviation for ¬ϕ ∨ ψ. We use θ to range over formulas in LK

n .
We define a simple logic LK,A

n for reasoning about announcements, which includes LK
n

as a sublanguage. The logic has essentially only epistemic operators. Again, we start
with the set Φ0 of primitive propositions. We consider two additional kinds of propositions
specifically for dealing with announcements: propositions of the form annj(θ, β), read “agent
j has just announced θ to agents in β”, and announced(j, θ, β), read “agent j announced θ to
agents in β at some point in the past.” There is some flexibility in the choice of propositions
for the logic, as usual, and making a distinction between current announcements and past
announcements turns out to be convenient for some classes of specifications. Formulas of
LK,A

n include ϕ1 ∧ ϕ2, ¬ϕ, Kiϕ (read “agent i knows ϕ”), and Cβϕ (read “it is common
knowledge among the agents in β that ϕ”).

ϕ,ψ ::= p | anna(θ, β) | announced(a, θ, β) | ϕ ∧ ψ | ¬ϕ | Kiϕ | Cβϕ

Again, we take ϕ ∨ ψ to be an abbreviation for ¬(¬ϕ ∧ ¬ψ), and ϕ ⇒ ψ an abbreviation
for ¬ϕ∨ψ. We also write EGϕ as an abbreviation for ∧i∈GKiϕ. Since LK

n is a sublanguage
of LK,A

n , we consider θ as a formula of LK,A
n . Working with a two-layered syntax yields a

simple logic with a straightforward semantics, avoiding problems caused by announcements
such as anna(annb(θ, γ), β)—expressing, for instance, that the statement of an announce-
ment has just been announced—which are difficult to interpret semantically. These nested
announcements tend to be uncommon in applications.

We interpret LK,A
n with respect to announcement systems and say formula ϕ is true at

a point (r,m) of system A, written (A, r,m) |= ϕ, defined inductively as

(A, r,m) |= p iff π(r,m)(p) = true

(A, r,m) |= anna(θ, β) iff θ!aβ ∈ re(m) and (m = 0 or θ!aβ 6∈ re(m− 1))

(A, r,m) |= announced(a, θ, β) iff θ!aβ ∈ re(m)

(A, r,m) |= ϕ1 ∧ ϕ2 iff (A, r,m) |= ϕ1 and (A, r,m) |= ϕ2

(A, r,m) |= ¬ϕ iff (A, r,m) 6|= ϕ
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(A, r,m) |= Kiϕ iff for all (r′,m′) ∼i (r,m), (A, r′,m′) |= ϕ

(A, r,m) |= Cβϕ iff for all (r′,m′) ∼∗
β (r,m), (A, r′,m′) |= ϕ

Some remarks about this semantics are in order. First, note that anni(θ, β) is true the
first time θ!iβ is announced; subsequent announcements of θ!i]β will make the proposition
false. This is not a problem for the examples we will consider in this paper, and indeed,
for most scenarios of interest. If repeated announcements are needed, one possibility is to
add primitive propositions to the announcements along the lines of “this is the second such
announcement”.1 Second, there is no specific proposition expressing that an agent i has
actually heard an announcement. It is already expressible in our logic: Kiannounced(j, θ, β)
captures agent i hearing annoucement θ!jβ. We sometimes write ann(θ, β) for

∨
i∈β anni(θ, β),

which can be interpreted as “some agent (necessarily in β) just announced θ to agents in
β.”

We say ϕ is valid in A if (A, r,m) |= ϕ for all r and m. A formula ϕ is valid with respect
to a class of announcement systems C if A |= ϕ for all A in C.

Example 2.2 (The muddy children puzzle). Consider a scenario with n+ 1 agents,
n of which are children (numbered 1, . . . , n), one of which is their father (numbered 0). The
primitive propositions are dirty [1], . . . , dirty [n], interpreted as “child i is dirty”. We can
construct a system Amuddy for this scenario, with a run rD for every subset of {1, . . . , n}
that we interpret as the children that are initially dirty. The initial local state of each child
is a single bit recording whether that child is dirty or not. The interpretation π of primitive
propositions is chosen so that dirty [i] is true in a run exactly when the bit of agent i in the
initial local state is set. In the first round, if at least one child is dirty, the father announces
to everyone that there is a dirty child:

θ1 ,
( n∨

i=1

dirty [i]
)
!0{0,1,...,n}

For the following k−1 rounds, where k is the number of dirty children in the run, the father
announces at round j:

θj ,
( n∧

i=1

¬Kidirty [i] ∧ ¬Ki¬dirty [i]
)
!0{0,1,...,n}

Note that the run r∅ corresponding to the case where there are no dirty children has no
announcement.

Let Cann be the class of all announcement systems. Let Csyn be the class of all synchronous
announcement systems.

We can axiomatize reasoning in announcement systems as follows. The first set of
axioms concerns propositional reasoning:

1Another possibility is to augment announcements in local state of agents with tags to differentiate the
same textual announcement made at different times. A cursory look at our results reveals they would not
be affected by this change.
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Prop. Any instance of a valid formula of propositional logic

MP. From ϕ and ϕ⇒ ψ infer ψ

The second set of axioms concerns reasoning about knowledge and common knowledge, and
is the usual S5 semantics:

K1. Kiϕ ∧Ki(ϕ⇒ ψ) ⇒ Ki(ψ)

K2. Kiϕ⇒ ϕ

K3. Kiϕ⇒ KiKiϕ

K4. ¬Kiϕ⇒ Ki¬Kiϕ

K5. From ϕ infer Kiϕ

The following axioms concern common knowledge:

C1. CGϕ⇒ EG(ϕ ∧ CGϕ)

C2. From ϕ⇒ EG(ψ ∧ ϕ) infer ϕ⇒ CGψ

Finally, the following axioms capture properties of announcements:

A1. annj(θ, β) ⇒ announced(j, θ, β)

A2. announced(j, θ, β) ⇒ Kiannounced(j, θ, β), where i ∈ β

Axiom A2 extends to common knowledge immediately.

Proposition 2.3. announced(j, θ, β) ⇒ Cβannounced(j, θ, β) is provable from the previous
axioms.

Proof. A straightforward derivation using C2 and A2.

Let AXann be the axiomatization {Prop,MP,K1–5,C1–2,A1–2}. Recall that an
axiomatization is sound relative to a class of models M if whenever a formula L is provable
from the axioms, then that formula is valid in M.

Theorem 2.4. AXann is a sound axiomatization for LK,A
n relative to Cann .

Proof. To prove soundness, it suffices to prove that every axiom in AXann is valid, and that
every inference rule in AXann preserves validity. Axioms and inference rules Prop, MP,
K1-5, and C1-2 are straightforward.

Axiom A1 is clearly valid: if (A, r,m) |= annj(θ, β), then θ!jβ ∈ re(m) and either m = 0

or θ!aβ 6∈ re(m− 1); because θ!jβ ∈ re(m), then (A, r,m) |= announced(j, θ, β).

Axiom A2 is also clearly valid: if (A, r,m) |= announced(j, θ, β), then θ!jβ ∈ re(m); be-

cause θ!jβ ∈ re(m) and i ∈ β, by property R3 of announcement systems, we have θ!jβ ∈ ri(m).

Let (r′,m′) ∼i (r,m). By definition of ∼i, θ!
j
β ∈ r

′
i(m

′), and again by R3, θ!jβ ∈ r
′
e(m

′), so
(A, r′,m′) |= announced(j, θ, β). Therefore, we have (A, r,m) |= Kiannounced(j, θ, β).
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Consider the following seemingly reasonable alternative to A2:

A2’. annj(θ, β) ⇒ Kiannj(θ, β)

Axiom A2’ is not in fact sound for announcement systems. Roughly, this is because agents
cannot know exactly when an announcement is made, since they may not be aware of time
passing. If we restrict ourselves to synchronous announcement systems, however, A2’ is
now sound. Let AXsyn be the axiomatization obtained by adding A2’ to AXann .

Theorem 2.5. AXsyn is a sound axiomatization for LK,A
n relative to Csyn .

Proof. We show the validity of A2’. If (A, r,m) |= annj(θ, β), then θ!jβ ∈ re(m) and

either m = 0 or θ!jβ 6∈ re(m − 1). Take any (r′,m′) ∼i (r,m). By definition of ∼i,

θ!jβ ∈ r′e(m
′). Because A is synchronous, we have m′ = m. Consider two cases. If m = 0,

then m′ = 0, so (A, r′,m′) |= annj(θ, β). Otherwise, θ!jβ 6∈ re(m − 1). By property R4,

θ!jβ 6∈ ri(m − 1). By definition of ∼i, θ!
j
β 6∈ r′i(m − 1). By property R3 and m′ = m,

θ!jβ 6∈ r
′
e(m

′− 1), and thus (A, r′,m′) |= annj(θ, β). Since (r′,m′) was chosen arbitrarily, we
have (A, r,m) |= Kiannj(θ, β).

Note that A2 is in fact immediately derivable from A1 and A2’ via K1 and K5. We
leave this easy verification to the reader.

2.1 Public Announcement Systems

A special class of announcement systems studied in the literature are public announcement
systems. For instance, the announcement system in Example 2.2 is a public announcement
system.

Definition 2.6. An announcement system A is public if for every announcement θ!aβ in
A, we have β = {1, . . . , n}.

Let Cpub be the class of all public announcement systems.
The following axiom distinguishes public announcement systems:

A3. ¬announced(j, θ, β), for β a proper subset of {1, . . . , n}

As usual, axiom A3 is really an axiom schema; sample instances of A3 in LK,A
3 include

¬announced(1, p, {1, 2}) and ¬announced(2, p ∨K2q, {2, 3}). Let AXpub be the axiomatiza-
tion AXann ∪ {A3}.

Theorem 2.7. AXpub is a sound axiomatization for LK,A
n relative to Cpub.

Proof. Public announcement systems are announcement systems, so by Theorem 2.4, all
axioms and inference rules in AXann are sound. Axiom A3 is trivially valid, because there
is no announcement θ!aβ with β 6= {1, . . . , n} in any public announcement system.

As before, we can obtain a sound axiomatization for synchronous public announcement
systems by adding A2’ to AXpub .
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3 Honest Announcements

Up until now, we have been unable to reason about the content of announcements. In-
tuitively, this inability comes from there being no restrictions on what can be announced.
If we do restrict what can be announced, then we can reason to some extent about the
content of announcements. A common restriction is to have agents be honest. Intuitively,
an announcement is honest if its content is true. One interpretation of honesty, then, is to
simply require that whenever an announcement θ!aβ is made, θ holds. But this seems too
weak. In particular, it permits agents to be honest “by accident”, so to speak. We tend
to think of honesty as a mental attitude of an agent saying true things. Not only is the
agent saying true things, but the agent knows that the things she is saying are true. This
interpretation of honesty is used in the security literature, where it is often weakened to
require agents to simply believe that what they say is true [3]. We will have more to say
about belief in §5.

If we take this last definition of honesty, then we can define an honest announcement
system to be an announcement system in which agents only announce what they know is
true. For instance, the announcement system in Example 2.2 is honest.

We can characterize honest announcement systems semantically. Doing so is somewhat
subtle because we have to take time into account. In particular, an honest announcement
of θ!aβ requires that agent a knows θ. But when is that knowledge supposed to hold?

Intuitively, knowledge that the announcement is true should hold just before the an-
nouncement is made. Because we take announcements to be instantaneous relative to the
granularity of time in our models—an announcement is heard at the same time step it is
made—it is easy to be inconsistent were we to require an announcement to be known to be
true exactly when it is made, which is the same as when it is heard.

To see this, consider the announcement (p ∧ ¬K1p)!2{1,2} of the Moore sentence [10]
p∧¬K1p. Suppose for simplicity that this announcement is made in a synchronous system.
(This argument does not depend on synchrony, but synchrony enables a simpler example.)
If this is an honest announcement, then agent 2 knows p ∧ ¬K1p when the announcement
is made, and in particular K2¬K1p holds at the time the announcement is made. When
the announcement is heard by agent 1, then by synchrony agent 1 knows that agent 2
knows p∧¬K1p, and in fact agent 2 knows that agent 1 knows p∧¬K1p, and in particular,
because K2p implies p, we have K2K1p holding when the announcement is heard by agent
1. If knowledge of the content of an announcement for honesty is determined at the same
time as the announcement is heard, then we have both K2¬K1p and K2K1p holding at the
same time, an impossibility given our S5 interpretation of knowledge.

This argument justifies a temporal characterization of honest announcements:

R5. For all r, θ, a, β: (A, r, 0) |= ¬anna(θ, β) and for all m ≥ 1, if (A, r,m) |= anna(θ, β),
then (A, r,m− 1) |= Kaθ.

Note that Unlike R1–4, property R5 is not a property of individual runs, but rather a
property of systems as a whole, because of the presence of the knowledge operator. Thus,
honesty is a global property of a system.

Definition 3.1. An announcement system is honest if it satisfies property R5.
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Let Chon be the class of all honest announcement systems.
To axiomatize honest announcement systems, we need a more expressive language than

the one we have been considering. In particular, we need to have formulas that relate two
different time steps, to capture knowledge update. There are a few ways of doing this, and
it is not clear a priori which is the more reasonable. For now, we add a past time temporal
operator [9], ©- ϕ, read “ϕ is true in the previous time step, if one exists”, with the following
semantics.

(A, r, 0) |= ©- ϕ

(A, r,m+ 1) |= ©- ϕ iff (A, r,m) |= ϕ

This is a so-called weak previous-time operator, meaning that it does not guarantee that a
previous time actually exists. Let LK,A,©-

n be the logic obtained by augmenting LK,A
n with

operator ©- .
To axiomatize honest announcement systems, we need axioms to capture ©- ϕ, on top of

an axiom to capture property R5. Axioms for ©- ϕ are straightforward.

P1. ©- ϕ ∧©- (ϕ⇒ ψ) ⇒ ©- ψ

P2. ©- ϕ⇔ (©- false ∨ ¬©- (¬ϕ))

P3. ¬©- false ∧©- p⇒ p

P4. p⇒ ©- p

P5. ¬©- false ∧©- announced(j, θ, β) ⇒ announced(j, θ, β)

P6. from ϕ infer ©- ϕ

Note that P2 essentially says that ϕ holds in the previous time step either when there is no
previous time step (which can be conveniently expressed as ©- false) or if ¬ϕ does not hold
in the previous time step. Axioms P3–4 capture the fact that primitive propositions do not
change truth value during a run. Axiom P5 captures the fact that once an announcement
has been made it remains in the local state of the receiving agents. Axiom P6 is the
necessitation rule for the previous time modality.

The honesty property R5 of announcement systems is now easy to capture:

A4. ©- false ⇒ ¬anna(θ, β)

A5. anna(θ, β) ⇒ ©- Kaθ

Let AXhon be the axiomatization AXann ∪ {P1–5,A4–5}.

Theorem 3.2. AXhon is a sound axiomatization for LK,A,©-
n relative to Chon .

Proof. It is trivial to check that P1–5 are valid in all announcement systems, not just
honest ones. Clearly, A4 is valid in honest announcement systems, which do not allow
announcements at time 0 by R5. We check that A5 is valid in honest announcement systems.
Let (A, r,m) |= anna(θ, β). We consider two cases. If m = 0, then (A, r,m) |= ©- Kaθ
trivially by the semantics of ©- . If m > 0, then by property R5, (A, r,m − 1) |= Kaθ, so
that (A, r,m) |= ©- Kaθ.
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What about what other agents can infer when an honest message is announced? The
best we can do is to prove the following property.

Proposition 3.3. For all agents i, Kianna(θ, β) ⇒ Ki©- θ is provable in AXhon .

Proof. This is a straightforward derivation first using A5 and K2 together with P6 to
derive anna(θ, β) ⇒ ©- θ, and then using K1 and K5 to derive Kianna(θ, β) ⇒ Ki©- θ, along
with the usual propositional reasoning involved in such derivations.

In other words, if an agent i knows that θ has been announced, then that agent knows
that θ was true in the previous time step. If all the agents know that θ has been announced,
we can derive a similar result for common knowledge:

Proposition 3.4. For all groups G of agents, CGanna(θ, β) ⇒ CG©- θ is provable in
AXhon .

Proof. Similar to the derivation in the proof of Proposition 3.3, except for using the S5
properties of Cβ instead of Ki, and using C2 instead of the necessitation rule K5.

Note that this result is completely independent of whether the group G is the same as the
group β of recipients of the announcement.

We see now that announcing a Moore sentence such as p∧¬K1p, of the kind we saw at
the beginning of this section, is not a problem with our interpretation of honesty. Again,
consider making such an announcement in the context of a synchronous system. By Propo-
sition 3.3 and P1-P3, we have that when agent 1 hears agent 2’s announcement (given
that he knows when exactly the announcement has been made), he gets to know that p,
but also that before the announcement p was true and he did not know it then, that is
ann2(p ∧ ¬K1p, {1, 2}) ⇒ K1p ∧ K1©- ¬K1p. For agent 2 by axiom A5 we have that just
before he made his announcement agent 2 knew that p was true and agent 1 did not know
p, that is, ann2(p ∧ ¬K1p, {1, 2}) ⇒ ©- K2(p ∧ ¬K1p).

To look at another example, consider the honest announcement system Amuddy for the
muddy children puzzle in Example 2.2. By proposition 3.3 we have that when the children
hear their father’s announcement and k − 1 rounds of children’s announcements (given
that they know exactly when each announcement has been made—note that Amuddy is a
synchronous system), each of the dirty children i ∈ {1, · · · , n} knows that he must have
previously been dirty, that is, if i ∈ D in run rD, then (Amuddy , rD, k) |= Ki©- dirty[i]. But
they learn this after exactly k− 1 rounds, while just after they heard k− 2 announcements,
they did not know that they are dirty, i.e. (Amuddy , rD, k − 1) |= ¬Ki©- dirty[i].

Clearly, a sound axiomatization for honest public announcement systems, in which all
announcements are honest and public, can be obtained by taking AXhon ∪ {A3}.

When the system under consideration is synchronous, then we can do a bit better than
Propositions 3.3 and 3.4. First, synchronous systems induce a new axiom relating time and
knowledge.

KP. ©- Kiϕ⇒ Ki©- ϕ.

Intuitively, KP says that agents have total recall, and do not forget that they knew facts
in the past—if an agent knew ϕ, then that agent knows now that ϕ was true then. The
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converse is not valid, as the following system A illustrates: suppose a system with two runs,
r1 and r2, and a primitive proposition p. Suppose that p is true on run r1 and false on
run r2. Suppose further that agent 1 consider (r1, 0) and (r2, 0) equivalent (and no other
points equivalent to those), but does not consider any point equivalent to (r1, 1). It is easy
to check that (A, r1, 1) |= K1©- p, but that (A, r1, 1) 6|= ©- K1p.

Let AXhs = AXhon ∪ {A2’,KP}.

Theorem 3.5. AXhs is a sound axiomatization for LK,A,©-
n relative to synchronous an-

nouncement systems in Chon .

Proof. We show KP is valid in every synchronous announcement systems, not just honest
ones. Suppose (A, r,m) |= ©- Kϕ. We show (A, r,m) |= K©- ϕ. Consider two cases. First,
the case where m = 0. Let (r′,m′) ∼i (r,m). By synchrony, m′ = 0. By definition of ©- ,
(A, r′,m′) |= ©- ϕ. Because (r′,m′) was arbitrary, (A, r,m) |= K©- ϕ. Second, the case where
m > 0. Let (r′,m′) ∼i (r,m). We claim that (A, r′,m′) |= ©- ϕ. By synchrony, m′ = m > 0.
So, consider (r′,m − 1). By property R4 of synchronous announcement systems, because
(r′,m) ∼i (r,m), we have (r′,m − 1) ∼i (r,m − 1). By assumption (A, r,m − 1) |= Kϕ,
meaning that (A, r′,m − 1) |= ϕ. Thus, (A, r′,m) |= ©- ϕ. Since (r′,m′) was arbitrary, we
have (A, r,m) |= K©- ϕ, as required.

In honest synchronous announcement systems, when an announcement is made, then
every recipient of the announcement knows that θ was true before the announcement was
made, and in fact, it is common knowledge amongst every subset of the recipients.

Proposition 3.6.

(a) anna(θ, β) ⇒ Ki©- θ is provable in AXhs , for i ∈ β;

(b) anna(θ, β) ⇒ Cβ′©- θ is provable in AXhs , for β′ ⊆ β.

Proof. Part (a) follows directly from A2’ and Proposition 3.3. Part (b) follows from part
(a) and C2.

A sound axiomatization for synchronous honest public announcement systems is ob-
tained by taking AXhps = AXhon ∪ {A2’,A3,KP}.

A variant of honest announcement systems are dishonest announcement systems in which
agents can only lie, that is announce the negation of something they know is true. These
are defined by replacing Kaθ by ¬Kaθ in the definition of honest announcement systems.
A sound axiomatization can be obtained by replacing Kaθ by ¬Kaθ in A5.

4 Relationship with Public Announcement Logic

We compare our logic LK,A
n with Public Announcement Logic (PAL) [18] The syntax of PAL

is as follows
F,G ::= p | F ∧G | ¬F | KiF | [N !j ]F
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where KiF stands for “agent i knows that F holds” and [N !j ]F stands for “after agent j
announces N , proposition F holds”,2 where N is given by

N,M ::= p | N ∧M | ¬N | KiN

In order to be compatible with the syntax of our logic, we work here with the original
syntax of PAL where announcement formulas cannot themselves be announced. As we
pointed out in Section 2, it is not immediately clear how to concretely interpreted nested
announcements, and indeed even the abstract semantics of PAL is not entirely intuitive on
this subject. We therefore focus on the simpler logic here, and save the investigation of
nested announcements for future work.

We show that our models validate the axioms of PAL. To make this statement precise,
we translate PAL formulas to formulas in our logic in a way that translates PAL-provable
formulas to provable formulas with a similar interpretation in our logic. We denote the
translation of a PAL formula F by [[F ]] and define it inductively as follows

[[p]] , p

[[F ∧G]] , [[F ]] ∧ [[G]]

[[¬F ]] , ¬[[F ]]

[[KiF ]] , Ki[[F ]]

[[[N !j ]F ]] , [[N !j ]]([[F ]])

where

[[N !j ]]([[F ]]) , annj([[N ]], {1, · · · , n}) ⇒ [[F ]]

Other than the usual propositional logic and epistemic axioms of S5, PAL uses the following
specialized axioms to deal with announcements

D1. [N !j ]p⇔ (prec(N !j) ⇒ p)

D2. [N !j ]¬F ⇔ (prec(N !j) ⇒ ¬[N !j ]F )

D3. [N !j ]KiF ⇔ (prec(N !j) ⇒ Ki[N !j ]F )

D1 is referred to as preservation of facts and says that epistemic actions do not affect the
truth value of primitive propositions. D2 is referred to as partial functionality, and D3 is
the action-knowledge axiom and says that agents know the consequences of announcements:
they know a proposition after an announcement exactly when they know that making the
announcement yields that proposition.

The prec(N !j) stands for the precondition of an announcement, that is, the formulas that
should be true in order for the announcement to be made. Since the runs of our systems
correspond to the actual evolution of a scenario independently of the logic, our runs encode

2Strictly speaking, the syntax of PAL does not explicitly mention announcers. Announcements are simply
written N !. Announcers can usually be inferred from the context; here we make them explicit to more easily
compare PAL to our logic.
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when each announcement is being made. So we can simply translate the precondition of
an announcement to the proposition that says the announcement has just been made, as
follows:

[[prec(N !j)]] , annj([[N ]], {1, · · · , n})

For instance, in honest public announcement systems, this will imply ©- Kj [[N ]] and thus
©- [[N ]]; in dishonest public announcements it implies ©- ¬[[N ]]. It is this flexibility, this
possibility we have of interpreting preconditions in different ways, that lets our logic be
more flexible than PAL, for instance by not being restricted to scenarios where every agent
is honest.3

Consider the axiomatization AXhps for synchronous honest public announcement sys-
tems given in §3. The following theorem shows that our translation of PAL formulas pre-
serves provability.

Theorem 4.1. If F is a formula provable in PAL, then [[F ]] is provable in AXhps .

Proof. It suffices to show that all the axioms of PAL are provable in AXhps . The proposi-
tional axioms of PAL translate to the propositional axioms Prop and MP, and the epistemic
axioms translate to axioms K1–5, so it is enough to show that PAL’s announcement axioms
are provable in AXhps .

For simplicity, in this proof, we shorthand the translation of a formula as the formula
itself, that is we write N instead of [[N ]] and F instead of [[F ]]. Since all the announcements
in the proof are to the same receivers, we also shorthand annj(N, {1, · · · , n}) to annj(N).

• D1 translates to the following tautology.(
annj(N) ⇒ p

)
⇔

(
annj(N) ⇒ p

)
• D2 translates to the following, which is easily derivable using Prop.(

annj(N) ⇒ ¬F
)
⇔

(
annj(N) ⇒ ¬(annj(N) ⇒ F )

)
• D3 translates to(

annj(N) ⇒ KiF
)
⇔

(
annj(N) ⇒ Ki

(
annj(N) ⇒ F

))
We first show (annj(N) ⇒ KiF ) ⇒

(
annj(N) ⇒ Ki(annj(N) ⇒ F )

)
. Using Prop,

this is equivalent to (annj(N) ∧ annj(N) ⇒ KiF ) ⇒ Ki(annj(N) ⇒ F ). To prove
this implication, we first assume annj(N) and annj(N) ⇒ KiF . By MP, we get
KiF . By synchrony (A2’) and MP we also get Kiannj(N). Therefore, we can
conclude Ki(annj(N))∧KiF , which is equivalent to Ki(annj(N)∧F ) by K1–5, which
is equivalent toKi(annj(N)∧(annj(N) ⇒ F )) by K1–5 and Prop, which is equivalent

3In most versions of PAL, the precondition is the formula that is being announced prec(N !j) = N , which
implies that in a scenario every true formula could be announced. This is of course not the case for most
scenarios. In more general versions of PAL, such as Dynamic Epistemic Logic (DEL) [2], the precondition
is kept as a variable whose instantiation depends on the scenario under examination.
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toKiannj(N)∧Ki(annj(N) ⇒ F ) by K1–5, which in turns impliesKi(annj(N) ⇒ F ).
Thus, (annj(N) ∧ annj(N) ⇒ KiF ) ⇒ Ki(annj(N) ⇒ F ), as required.

The reverse implication is similar, and simpler. To show
(
annj(N) ⇒ Ki(annj(N) ⇒

F )
)
⇒ (annj(N) ⇒ KiF ), it is sufficient to prove the equivalent (by Prop)

(
annj(N)∧

annj(N) ⇒ Ki(annj(N) ⇒ F )
)
⇒ KiF . Therefore, assume annj(N) and annj(N) ⇒

(Ki(annj(N) ⇒ F )). By MP, we get Ki(annj(N) ⇒ F ). By K1 and Prop, this last
is equivalent to Kiannj(N) ⇒ KiF . By synchrony (A2’) and by the assumption that
annj(N) holds, we know that Kiannj(N) holds, and therefore by MP that KiF holds,
which is what we wanted. Thus

(
annj(N) ∧ annj(N) ⇒ Ki(annj(N) ⇒ F )

)
⇒ KiF ,

as required.

Informally speaking, for the ⇒ direction, assume that if an announcement has just hap-
pened, then agent i gets to know that F is true. By synchrony, this also implies that he
knows that the announcement has just happened, so he knows the conjunction of both,
which implies the right hand side. For the ⇐ direction, assume that if an announcement
has just happened, then if agent i knows that the announcement has just happened then he
knows that F is true. But by synchrony, i already knows that an announcement has just
happened, so he knows that F is true, which is what the left-hand side is expressing.

Thus every derivable formula of PAL is derivable (after translation) in AXhps . Although
we do not yet have a similar result for truth (that our translation preserves the truth
of PAL formulas), a weaker corollary about preservation of validity (truth in all models)
immediately follows. Proving that our translation preserves truth of PAL formulas within
a specific model requires developing a faithful translation of the PAL models to the models
of our logic. We save this for future work, and return to this topic in the conclusion.

Corollary 4.2. If F is a valid formula of PAL, then [[F ]] is valid in synchronous honest
public announcement systems.

Proof. Assume that F is a valid formula of PAL, since PAL is complete, F is derivable from
the axioms of PAL. As a result, by theorem 4.1 its translation [[F ]] becomes derivable in
AXhps and since AXhps is sound, we obtain that [[F ]] is valid in synchronous honest public
announcement systems.

Example 4.3. In the muddy children puzzle in Example 2.2,[( n∨
i=1

dirty [i]
)
!0

]
Ki

n∨
i=1

dirty [i]

is derivable in PAL. Its translation to our logic

ann0(
n∨

i=1

dirty [i], {0, 1, . . . , n}) ⇒ Ki

n∨
i=1

dirty [i]

is derivable: Proposition 3.6 derives ann0(
∨n

i=1 dirty [i], {0, 1, . . . , n}) ⇒ Ki©-
∨n

i=1 dirty [i].
This implies ann0(

∨n
i=1 dirty [i], {0, 1, . . . , n}) ⇒ Ki

∨n
i=1©- dirty [i], since ©- preserves dis-

junction in one direction. The latter implies ann0(
∨n

i=1 dirty [i], {0, 1, . . . , n}) ⇒ Ki
∨n

i=1 dirty [i]
by P3 and the fact that there is a previous time step before the father’s announcement.
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So PAL is interpretable in our logic. What about the other way around? Is our logic
interpretable in PAL, or is our logic more expressive? One way to answer this question
is to provide a converse to Theorem 4.1. Part of the problem here is the previous-time
modality of our logic.4 As we saw, the previous-time modality seems necessary to handle
Moore sentences. This suggests that our logic is more expressive, in some sense, than
PAL. Recently, PAL has been extended with temporal modalities, including a previous-
time operator [13, 19]. The study of how these logics relate to ours is left to future work.

Theorem 4.1 and corollary 4.2 extend to Public Announcement Logic with Common
Knowledge. The syntax of this logic is an extension of PAL’s with a common knowledge
operator CβF , which we translate as

[[CβF ]] , Cβ [[F ]].

Its axiomatization is the same as PAL’s except that axiom D3 changes to

D3’. [N !]CβF ⇔ (prec(N !) ⇒ Cβ[N !]F ).

Theorem 4.4. If F is a formula provable in PAL with common knowledge, then [[F ]] is
provable in AXhps .

Proof. The validity of D3’ follows from Cβannj(N, {1, · · · , n}) ⇔ annj(N, {1, · · · , n}), which
is derivable from axioms of common knowledge and synchrony.

Corollary 4.5. If F is a valid formula of PAL with common knowledge, then [[F ]] is valid
in synchronous honest public announcement systems.

Proof. Assume that F is a valid formula of PAL with common knowledge, since PAL with
common knowledge is complete, F is derivable from the axioms of PAL with common knowl-
edge. As a result, by theorem 4.1 its translation [[F ]] becomes derivable in AXhps and since
AXhps is sound, we obtain that [[F ]] is valid in synchronous honest public announcement
systems.

5 Private Announcements and Belief

Private announcements, that is, announcements not broadcasted to every agent in the
system, have held no special status in this work until now. Several researchers have ar-
gued, however, that we can say something more in the presence of private announcements.
Roughly speaking, they propose that when an agent does not hear an announcement, she
should assume that no announcement has been made, and reason accordingly.

Consider the following sample scenario with three agents, Alice, Bob, and Zoe. Alice
tosses a coin, the outcome of which is not seen by any agent other than Alice. Alice then
announces to herself and to Bob the result of the toss. Suppose we have two propositions,

4A natural translation that comes to mind is the map that simply forgets the previous-time modality, that
is, the map [[ ]]−1 from LK,A

n to PAL, such that [[©- ϕ]]−1 , [[ϕ]]−1, sends the implication by an announcement
(for both ann and announced formulas) to the dynamic modality, i.e. [[annj(ϕ, β) ⇒ ψ]]−1 , [[[ϕ]]−1!j ][[ψ]]−1,
and acts as identity on all other formulas. It is not hard to show that this translation does not preserve
provability; the announcement of a Moore sentence such as the one in §3 provides a counterexample.
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H and T , true when the result of the coin toss is heads and tails, respectively. It is simple
to model this scenario in our framework using a system consisting of two runs rH and
rT , where the initial state of Alice and the environment in each run records whether the
coin lands heads (run rH) or tails (run rT ). At time 1, Alice announces the result of the
coin toss, her announcement is recorded in the local states of Alice and Bob. Thus, the
local states of the environment are rT

e (1) = 〈T, T !A{A,B}〉, and the local states of agents are
rT
A(1) = 〈T, T !A{A,B}〉, r

T
B(1) = 〈−, T !A{A,B}〉, but rT

Z(1) = 〈−〉, and similarly for rH
Z (1). It

is easy to check that (rH , 0) |= ¬KB(H) ∧ ¬KB(T ), while (rH , 1) |= KA(H) ∧ KB(H) ∧
¬KZ(H) ∧ ¬KZ(T ), and (rH , 1) |= ¬KZKBH.

If we do take for granted an interpretation of private announcements with the view
that an agent having not heard an announcement assumes that that announcement was
never made, then Zoe thinks that ¬KB(H) at the second state of rH . We say “thinks”
here instead of “knows” because knowledge is generally taken to satisfy the truth axiom
Kiϕ⇒ ϕ, and so clearly Zoe cannot know ¬KB(H).

In some sense, this interpretation of private announcements, and most importantly, of
what information agents can derive from private announcements, amounts to a form of
belief. Intuitively, Zoe believes that Bob does not know H because, having not seen the
private announcement, she assumes that there was no announcement. DEL [2], for instance,
defines 2i to be a belief operator with that kind of interpretation. In DEL, for the above
scenario, it is possible to derive that 2Z¬2B(H). DEL’s definition of belief is somewhat
abstract, however, and given a purely proof-theoretic interpretation.

Our concrete semantics, based on actual system evolution, let us explore how to ratio-
nally capture such an interpretation for belief. Intuitively, to capture such an interpretation,
we need to define belief in such a way that the outsider agent i who did not hear any an-
nouncement considers possible other states where other agents have in fact not received
the purported private announcement. But of course, those states where agents have not
received the announcement are not “real” states, that is, they are not states in the scenario
being modeled, and therefore need to be added to the model. The question becomes, then,
what states, and therefore what runs, should be added to the system to capture this kind of
belief. It turns out that it is in general not wholly possible to extract such an interpretation
for a description of the scenario being modeled, but rather we have to make assumptions
on the initial knowledge of the various agents in the scenario about the strategy followed by
all the agents in the scenario.

In order to make all of this precise, we need to carefully examine how systems are, in
fact, generated. We follow an approached inspired by [4, Chapter 5]. Intuitively, a system
is generated by each agent following a strategy (a protocol, a program), which is simply a
description of what actions the agent may take as a function of her local state. Actions, for
our purposes, will consist of making announcements (although we could incorporate other
actions, such as tossing coins to randomize strategies). A joint strategy P consists of a
strategy for every agent in the system, and describes how the system evolves.

We can formalize the general idea above as follows. For illustration purposes, here, we
define only how to generate synchronous announcement systems. Fix a set Li of local states
for agent i (the local states that arise in some system) and a set Ai of possible actions that
agent i can perform. An action is any (finite) number of announcements. This can be
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formalized by taking Ai to be the class of all finite subsets of {ann(θ, β) | θ ∈ LK
n , β ⊆

{1, . . . , n}}; we view ∅ as the action of making no announcement.
A strategy Pi for agent i is a function that associates with every local state in Li a

nonempty subset of actions in Ai. Intuitively, Pi(s) is the set of actions that agent i may
perform in local state s. Notice that agent i’s actions can depend only on her local state.
Also, and in contrast to some definitions of strategy in other fields, strategies for us are
nondeterministic—they do not prescribe which actual action to take in a specific state, but
give the set of possible actions that can be performed.

To consider the effect of all the agents’ strategies on the global state of the system,
we define a joint strategy (P1, . . . , Pn), consisting of a strategy for each of the agents,
that associates with each global state a subset of possible joint actions, a subset of A ⊆
A1 × · · · ×An.

Joint actions transform global states. To capture their effect, associate with every
joint action (a1, . . . ,an) a function from global states to global states. Formally, we let
τ(a1, . . . ,an) be a function taking a global state (se, s1, . . . , sn) to (s′e, s

′
1, . . . , s

′
n), where

s′i = si · 〈{θ!jβ | ann(θ, β) ∈ aj and i ∈ β}〉 for i ∈ {1, . . . , n}

s′e = se · 〈{θ!jβ | ann(θ, β) ∈ aj}〉

and · denotes sequence concatenation.
Given a joint strategy (with the above associated interpretation τ for joint actions) and

a set of initial global states, we can generate a system in a straightforward way. Intuitively,
the system consists of all the runs that are obtained by running the joint strategy from
one of the initial global states. More formally, say that run r is consistent with joint
strategy P if it could have been generated by P , that is, for all m, r(m+ 1) is the result of
applying a joint action a that could have been performing according to joint strategy P to
r(m). (More precisely, there exists a joint action (a1, . . . ,an) such that ai ∈ Pi(ri(m)) and
r(m+ 1) = τ(a1, . . . ,an)(r(m)).) Given a set I of global states, a joint strategy P , and an
interpretation π, the announcement system AP,I = (RP,I , π) consists of all the runs RP,I

consistent with joint strategy in P that starts in some initial global state in I.
In our example at the beginning of the section, initial states for Alice include the result

of the coin toss, either T or H, the initial state for Bob is empty, the initial state for Zoe
is empty. Let IABZ be the corresponding set of initial states. The strategy PA for Alice is
to announce H or T to {A,B} in the first state, and do nothing thereafter. The strategy
PB for Bob is to do nothing. The strategy PZ for Zoe is to do nothing. The strategies are
simple, and it is easy to check that (with the appropriate interpretation for the primitive
propositions) A(PA,PB ,PZ),IABZ is the system we described at the beginning of the section.

To understand the notion of belief where an agent behaves as though no announcement
has been made at all when she does not hear an announcement, we need to understand
what states the agent believes exist, and we propose to use the notion of strategy, and most
importantly, those strategies that an agent believes other agents are using, as opposed to
the real ones they are using.

Presumably, in the actual scenario, each agent is using a strategy.5 What we need to
add to the scenario is the strategy that each agent believes the other agents are using. Thus,

5For simplicity, here, we consider scenarios where agents use a single strategy. It is not difficult to
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for instance, Zoe, in the above example, may believe that Alice tosses a coin but does not
send an announcement to anyone. (This is of course not Alice’s actual strategy, who does
in fact make an announcement to Bob.)

We take an announcement system for belief to be an announcement system generated
by a joint strategy P = (P1, . . . , Pn) and a set of initial states I, along with a map Pi for
every agent i indicating the strategy Pi(j) that agents i believes agent j is using. Because
agents are generally not mistaken about their own strategy, we take Pi(i) to be the actual
strategy Pi that agent i is using, If A is the system for belief as defined above, define
Ai = A(Pi(1),...,Pi(n)),I for each agent i, that is, the system generated by the strategies that
agent i believes the other agents are using. In other words, Ai represents agent i’s view of
the scenario.

Returning to our coin-tossing example, we can suppose that Zoe does not believe Alice
does any announcement, meaning that PZ(A) is the strategy where Alice does nothing. We
can take PZ(B) to be the strategy where Bob does nothing as well. (PZ(Z) is Zoe’s actual
strategy, again to do nothing.) Thus, AZ here is the announcement system where there are
no announcement made on any run.

We can define a new modality Bi that captures what agents believe in an announcement
system for belief. At a point (r,m) of A, take

(A, r,m) |= Biϕ iff for all (r′,m′) in Ai with (r′,m′) ∼i (r,m), (Ai, r
′,m′) |= ϕ

We extend ∼i to all points of A and Ai by again taking two points to be ∼i-equivalent if
agent i has the same local states at both points. An agent believes ϕ at some point (r,m)
of A if ϕ is true at every point of the system that the agent believes is the system describing
the actual scenario in which she has the same local state.

We can now check that if A is the announcement system for belief generated by joint
strategy (PA, PB, PAZ) and initial states IABZ corresponding to the coin-tossing example,
and letting PZ be as above, we get (A, rH , 1) |= BZ¬KB(H), that is, Zoe believes that Bob
does not know that H was the result of the coin toss, clearly a false belief, but consistent
with the interpretation of belief we set out to capture.

That Biϕ represents belief is justified by the fact that it satisfies the KD45 axioms for
belief—it satisfies all the axioms for knowledge except for Biϕ ⇒ ϕ, at least on the runs
corresponding to the real system A. It is then easy to show that the translation of axiom D3
where Ki is replaced with Bi is still derivable in our logic. Note that if an agent i believes
that Pi(j) = Pj for all j, that is, that the strategies that the other agents are using are the
actual strategies they are using, then Biϕ⇒ Kiϕ holds for all runs of A, so that Biϕ⇒ ϕ
holds for all runs of A.

6 Conclusion

Logics of announcements have proved popular as formal languages for reasoning about
agents that explicitly exchange messages involving statements about their and other agents’
knowledge. The main question that these logics must address is how to update the state of

generalize to agents using one of a set of strategies, but the result does not offer more insight, although it
may prove more applicable in practice.
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knowledge of an agent based on hearing an announcement of some other agent’s knowledge.
Assessing whether this knowledge update is suitable for a specific application of a logic
of announcements requires a clear semantics that makes the interpretation of the update
apparent. Unfortunately, the semantics of most logics of announcements has remained
fairly abstract. There has been comparatively little work on developing natural semantics
for logics of announcement grounded in the actual execution of a system, or evolution of a
scenario.

We have initiated such a development in this paper, describing a concrete semantics for
a simple logic of announcements, where the semantics is given in terms of sets of runs of a
system, each run recording exactly what is happening in the system during each execution.
This means, in particular, that our models are independent of the choice of the logic used
to reason about them. In fact, announcements have no special status in our models. An
announcement is just a message like any other. Announcements impact the knowledge of
other agents like any other message in systems of communicating agents. And to model
situations where announcements have a specific meaning that can affect other agents in
specific ways, it suffices to impose constraints on the possible executions of a system. We
examine honesty as a particularly simple instance of constraints on executions allowing for
a connection to be made between a message being announced and information about the
content of the message being disseminated.

Our work here is a first step in the development of natural grounded semantics for logics
of announcements. There are several questions to be resolved, several choices to explore.
A question that we have tried to address, but to which we do not yet have a satisfactory
answer, is that of the exact relationship between PAL (for instance), and our logic. As
it stands, the relationship we exhibit in this paper is a preservation of provability (and
therefore of validity): if a formula F is provable in PAL, then its translation is provable in
our logic. While this is the right starting point, it does not completely capture the intuition
that our translation preserves the meaning of PAL formulas. A stronger theorem would
establish that a PAL formula that is true in a model M remains true after translation in
the systems AM corresponding to model M . This aspect of the relationship between PAL
and our logic remains to be studied, possibly along the lines of recent results of [15, 13] on
relating models of ETL [12] to models of DEL [2].

To more firmly ground our concrete semantics, we need to extend our logic to be able
to interpret more expressive logics of announcements [18], dynamic versions of PAL such
as DEL. The issues that arise here amounts to understanding the relationship between
the branching time semantics of DEL with the more linear time semantics of the runs-
and-systems framework. One possibility is to move to a branching-time form of runs and
systems, such as found in [17]. Aside from looking at more dynamic forms of PAL, it would
also be interesting to look at temporal extensions of PAL, such as recent work by Sack [13]
and Yap [19]. Finally, we believe some of the sound axiomatizations we presented in this
paper are in fact complete for their respective classes of announcement systems, or close to
be. It would be interesting to establish such completeness results.
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