Skip to main content

A Supramodal Vibrissa Tactile and Auditory Model for Texture Recognition

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6226))

Abstract

Audition and touch endow spectral processing abilities allowing texture recognition and discrimination. Rat whiskers sensory system exhibits, as the cochlea, resonance property decomposing the signal over frequencies. Moreover, there exists strong psychophysical and biological interactions between auditory and somatosensory corteces concerning texture analysis. Inspired by these similarities, this paper introduce a ”supramodal” model allowing both vibrissa tactile and auditory texture recognition. Two gammatone based resonant filterbanks are used for cochlea and whiskers array modeling. Each filterbank is then linked to a feature extraction algorithm, inspired by data recorded in the rats barrel cortex, and finally to a multilayer perceptron. Results clearly show the ability of the model for texture recognition in both auditory and tactile tuning. Moreover, recent studies suggest that this resonance property plays a role in texture discrimination. Experiments presented here provide elements in the direction of this resonance hypothesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lederman, S.J.: Auditory texture perception. Perception 8, 93–103 (1979)

    Article  Google Scholar 

  2. Carvell, G.E., Simons, D.J.: Biometric analyses of vibrissal tactile discrimination in the rat. J. Neurosci. 10(8), 2638–2648 (1990)

    Google Scholar 

  3. Brecht, M., Preilowski, B., Merzenich, M.M.: Functional architecture of the mystacial vibrissae. Behav. Brain Res. 84, 81–97 (1997)

    Article  Google Scholar 

  4. Neimark, M.A., Andermann, M., Hopfield, J., Moore, C.: Vibrissa resonance as a transduction mechanism for tactile encoding. J. Neurosci. 23(16), 6499–6509 (2003)

    Google Scholar 

  5. Hartmann, M.J., Johnson, N.J., Towal, R.B., Assad, C.: Mechanical characteristics of rat vibrissae: Resonant frequencies and damping in isolated whiskers and in the awake behaving animal. J. Neurosci. 23(16), 6510–6519 (2003)

    Google Scholar 

  6. Andermann, M., Moore, C.: Mechanical resonance enhances the sensitivity of the vibrissa sensory system to near-threshold stimuli. Brain Res. 1235, 74–81 (2008)

    Article  Google Scholar 

  7. Warren, R.M.: Auditory Perception: An Analysis and Synthesis. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  8. Arabzadeh, E., Panzeri, S., Diamond, M.E.: Whisker vibration information carried by rat barrel cortex neurons. J. Neurosci. 24(26), 6011–6020 (2004)

    Article  Google Scholar 

  9. Foxe, J.J.: Multisensory integration: frequency tuning of audio-tactile integration. Curr. Biol. 19(9), R373–R375 (2009)

    Article  Google Scholar 

  10. Yau, J.M., Olenczak, J.B., Dammann, J.F., Bensmaia, S.J.: Temporal frequency channels are linked across audition and touch. Curr. Biol. 19(7), 561–566 (2009)

    Article  Google Scholar 

  11. Yau, J.M., Hollins, M., Bensmaia, S.J.: Textural timbre: the perception of surface microtexture depends in part on multimodal spectral cues. Commun. Integr. Biol. 2(4), 1–3 (2009)

    Google Scholar 

  12. Patterson, R., Robinson, K., Holdsworth, J., McKeown, D., Zhang, C., Allerhand, M.: Complex sounds and auditoty images. In: Auditory Physiology and Perception, Proc. 9th Int. Symp. on Hearing (1992)

    Google Scholar 

  13. Givelberg, E., Bunn, J.: A comprehensive three-dimensional model of the cochlea. J. Comput. Phys. 191(2), 377–391 (2003)

    Article  MATH  Google Scholar 

  14. Lyon, R.: A computational model of filtering, detection, and compression in the cochlea. In: IEEE Int Conf. of Acoustics, Speech, and Signal Processing, pp. 1282–1285 (1982)

    Google Scholar 

  15. Fend, M., Bovet, S., Yokoi, H., Pfeifer, R.: An active artificial whisker array for texture discrimination. In: IROS IEEE/RSJ Int. Conf., pp. 1044–1049 (2003)

    Google Scholar 

  16. N’Guyen, S., Pirim, P., Meyer, J.-A.: Tactile texture discrimination in the robot-rat psikharpax. In: BIOSIGNALS 2010, 3rd Int. Conf. on Bio-Inspired Systems and Signal Processing, Valencia, Spain (2010)

    Google Scholar 

  17. Pearson, M.J., Pipe, A.G., Melhuish, C., Mitchinson, B., Prescott, T.J.: Whiskerbot: A robotic active touch system modeled on the rat whisker sensory system. Adapt. Behav. 15, 223–240 (2007)

    Article  Google Scholar 

  18. Slaney, M.: An efficient implementation of the patterson-holdsworth auditory filter bank. Technical report, Apple Computer Technical Report 35 (1993)

    Google Scholar 

  19. Glasberg, B., Moore, B.: Derivation of auditory filter shapes from notched-noise data. Hear. Res. 47, 103–138 (1990)

    Article  Google Scholar 

  20. Andermann, M., Ritt, J., Neimark, M.A., Moore, C.: Neural correlates of vibrissa resonance: Band-pass and somatotopic representation of high-frequency stimuli. Neuron 42, 451–463 (2004)

    Article  Google Scholar 

  21. Licklider, J.C., Pollack, I.: Effects of differentiation, integration and infinite peak clipping upon the intelligibility of speech. Am. Acoust. Soc. J. 20(1), 42–51 (1948)

    Article  Google Scholar 

  22. N’Guyen, S., Pirim, P., Meyer, J.-A.: Elastomer-based tactile sensor array for the artificial rat psikharpax. In: ISEF 2009 - XIV Int. Symp. on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (2009)

    Google Scholar 

  23. Petersen, R.S., Diamond, M.E.: Spatial-temporal distribution of whisker-evoked activity in rat somatosensory cortex and the coding of stimulus location. J. Neurosci. 20(16), 6135–6143 (2000)

    Google Scholar 

  24. Nissen, S.: Implementation of a fast artificial neural network library. Technical report, Department of Computer Science University of Copenhagen (2003)

    Google Scholar 

  25. Igel, C., Hüskel, M.: Improving the rprop learning algorithm. In: Second International Symposium on Neural Computation, pp. 115–121 (2000)

    Google Scholar 

  26. Meyer, J.-A., Guillot, A., Girard, B., Khamassi, M., Pirim, P., Berthoz, A.: The Psikharpax project: Towards building an artificial rat. Robot Auton. Syst. 50(4), 211–223 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bernard, M., N’Guyen, S., Pirim, P., Guillot, A., Meyer, JA., Gas, B. (2010). A Supramodal Vibrissa Tactile and Auditory Model for Texture Recognition. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, JA., Mouret, JB. (eds) From Animals to Animats 11. SAB 2010. Lecture Notes in Computer Science(), vol 6226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15193-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15193-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15192-7

  • Online ISBN: 978-3-642-15193-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics