Skip to main content

Learning to Look in Different Environments: An Active-Vision Model Which Learns and Readapts Visual Routines

  • Conference paper
From Animals to Animats 11 (SAB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6226))

Included in the following conference series:

Abstract

One of the main claims of the active vision framework is that finding data on the basis of task requirements is more efficient than reconstructing the whole scene by performing a complete visual scan. To be successful, this approach requires that agents learn visual routines to direct overt attention to locations with the information needed to accomplish the task. In ecological conditions, learning such visual routines is difficult due to the partial observability of the world, the changes in the environment, and the fact that learning signals might be indirect. This paper uses a reinforcement-learning actor-critic model to study how visual routines can be formed, and then adapted when the environment changes, in a system endowed with a controllable gaze and reaching capabilities. The tests of the model show that: (a) the autonomously-developed visual routines are strongly dependent on the task and the statistical properties of the environment; (b) when the statistics of the environment change, the performance of the system remains rather stable thanks to the re-use of previously discovered visual routines while the visual exploration policy remains for long time sub-optimal. We conclude that the model has a robust behaviour but the acquisition of an optimal visual exploration policy is particularly hard given its complex dependence on statistical properties of the environment, showing another of the difficulties that adaptive active vision agents must face.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Freeman, New York (1982)

    Google Scholar 

  2. Fermuller, C., Aloimonos, Y.: Vision and action. Image Vision Comput. 13(10), 725–744 (1995)

    Article  Google Scholar 

  3. Ballard, D.: Animate vision. AI 48, 57–86 (1991)

    Google Scholar 

  4. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognit. Psychol. 12(1), 97–136 (1980)

    Article  Google Scholar 

  5. Ullman, S.: Visual routines. Cognition 18(1-3), 97–159 (1984)

    Article  Google Scholar 

  6. Hayhoe, M.: Vision using routines: A functional account of vision. Visual Cognition 7(1-2-3), 43–64 (2000)

    Article  Google Scholar 

  7. Heisz, J.J., Shore, D.I.: More efficient scanning for familiar faces. J. Vis. 8(1), 1–10 (2008)

    Article  Google Scholar 

  8. Sailer, U., Flanagan, J.R., Johansson, R.S.: Eye-hand coordination during learning of a novel visuomotor task. J. Neurosci. 25(39), 8833–8842 (2005)

    Article  Google Scholar 

  9. Land, M.F.: Eye movements and the control of actions in everyday life. Prog. Retin. Eye Res. 25(3), 296–324 (2006)

    Article  Google Scholar 

  10. Ognibene, D., Balkenius, C., Baldassarre, G.: Integrating epistemic action (active vision) and pragmatic action (reaching): A neural architecture for camera-arm robots. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 220–229. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Ognibene, D., Rega, A., Baldassarre, G.: A model of reaching that integrates reinforcement learning and population encoding of postures. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) From Animals to Animats 9: Proceedings of the Ninth International Conference on the Simulation of Adaptive Behavior (SAB 2006), September 2006, pp. 381–393. Springer, Heidelberg (2006)

    Google Scholar 

  12. Schmidhuber, J., Huber, R.: Learning to generate artificial fovea trajectories for target detection. Int. J. Neural Syst. 2(1-2), 135–141 (1991)

    Google Scholar 

  13. Minut, S., Mahadevan, S.: A reinforcement learning model of selective visual attention. In: AGENTS 2001: Proceedings of the Fifth International Conference on Autonomous Agents, pp. 457–464. ACM, New York (2001)

    Chapter  Google Scholar 

  14. Kwok, C., Fox, D.: Reinforcement learning for sensing strategies. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2004 (2004)

    Google Scholar 

  15. de Croon, G.: Adaptive Active Vision. PhD thesis, Universiteit Maastricht (2008)

    Google Scholar 

  16. Suzuki, M., Floreano, D.: Enactive robot vision. Adapt. Behav. 16(2-3), 122–128 (2008)

    Article  Google Scholar 

  17. Mirolli, M., Ferrauto, T., Nolfi, S.: Categorisation through evidence accumulation in an active vision system. Connection Science (subm)

    Google Scholar 

  18. Pouget, A., Ducom, J.C., Torri, J., Bavelier, D.: Multisensory spatial representations in eye-centered coordinates for reaching. Cognition 83(1), B1–B11 (2002)

    Article  Google Scholar 

  19. Pouget, A., Zhang, K., Deneve, S., Latham, P.E.: Statistically efficient estimation using population coding. Neural Comput. 10(2), 373–401 (1998)

    Article  Google Scholar 

  20. Cisek, P.: Integrated neural processes for defining potential actions and deciding between them: a computational model. J. Neurosci. 26, 9761–9770 (2006)

    Article  Google Scholar 

  21. Erlhagen, W., Schöner, G.: Dynamic field theory of movement preparation. Psychol. Rev. 109(3), 545–572 (2002)

    Article  Google Scholar 

  22. Itti, L., Koch, C.: Feature combination strategies for saliency-based visual attention systems. Journal of Electronic Imaging 10(1), 161–169 (2001)

    Article  Google Scholar 

  23. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  24. Houk, J., Adams, J., Barto, A.: A model of how the basal ganglia generate and use neural signals that predict reinforcement, pp. 249–270 (1995)

    Google Scholar 

  25. Mannella, F., Baldassarre, G.: A neural-network reinforcement-learning model of domestic chicks that learn to localise the centre of closed arenas. Phil. Trans. R. Soc. B 362(383-401), 333–356 (2007)

    Google Scholar 

  26. Dominey, P.F., Arbib, M.A.: A cortico-subcortical model for generation of spatially accurate sequential saccades. Cereb. Cortex. 2(2), 153–175 (1992)

    Article  Google Scholar 

  27. Klein: Inhibition of return. Trends Cogn. Sci. 4(4), 138–147 (2000)

    Article  Google Scholar 

  28. Thompson, K.G., Bichot, N.P.: A visual salience map in the primate frontal eye field. Prog. Brain Res. 147, 251–262 (2005)

    Google Scholar 

  29. Treue, S.: Visual attention: the where, what, how and why of saliency. Curr. Opin. Neurobiol. 13(4), 428–432 (2003)

    Article  Google Scholar 

  30. Chun: Contextual cueing of visual attention. Trends Cogn. Sci. 4(5), 170–178 (2000)

    Article  Google Scholar 

  31. Silver, M.A., Kastner, S.: Topographic maps in human frontal and parietal cortex. Trends Cogn. Sci. 13(11), 488–495 (2009)

    Article  Google Scholar 

  32. Cutsuridis, V.: A cognitive model of saliency, attention, and picture scanning. Cognitive Computation 1, 292–299 (2009)

    Article  Google Scholar 

  33. Hikosaka, O., Takikawa, Y., Kawagoe, R.: Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev. 80(3), 953–978 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ognibene, D., Pezzulo, G., Baldassare, G. (2010). Learning to Look in Different Environments: An Active-Vision Model Which Learns and Readapts Visual Routines. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, JA., Mouret, JB. (eds) From Animals to Animats 11. SAB 2010. Lecture Notes in Computer Science(), vol 6226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15193-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15193-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15192-7

  • Online ISBN: 978-3-642-15193-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics