Skip to main content

From Force Control and Sensory-Motor Informations to Mass Discrimination

  • Conference paper
Book cover From Animals to Animats 11 (SAB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6226))

Included in the following conference series:

  • 1396 Accesses

Abstract

Human adults know that usually, big objects are heavier than small ones if these objects are quite similar, in the same material for example. They have a general idea of the weight affordances about the every-day life objects. This paper presents a neural network architecture coupled with a simple linear actuator using force control, designed to use sensory-motor and visual informations during manipulation to learn how to recognize objects of different masses. After learning the association of sensory-motor informations through time with a particular object, our architecture can discriminate different masses and give relevant information for unknown objects, consequently, the objects are associated to some of their inferred physical properties.

This work is within the ANR project Interact ANR-09-CORD-014. The authors would like to thank P. Andry and Y. Delevoye for their help.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pfeifer, R., Bongard, J.: How the Body Shapes the Way We Think: A New View of Intelligence. MIT Press, Cambridge (2007)

    Google Scholar 

  2. Paolo, E.D., Buehrmann, T.: Biological actuators are not just springs. From Animals to Animats 9, 89–100 (2006)

    Google Scholar 

  3. Bullock, D., Fiala, C., Grossberg, S.: A neural model of timed response learning in the cerebellum. Neural Networks 7(6-7), 1101–1114 (1994)

    Article  MATH  Google Scholar 

  4. Grossberg, S.: On learning of spatiotemporal patterns by networks with ordered sensory motor components. Studies in Applied Mathematics 48, 105–132 (1969)

    Google Scholar 

  5. Banquet, J., Gaussier, P., et al.: Cognitive Science perspectives on personality and emotion. In: Matthews, G. (ed.) Space-Time Order and Hierarchy in Fronto-Hippocampal System: A nNeural Basis of Personality, ch. 4 (1997)

    Google Scholar 

  6. Gibson, J.: The ecological approach to visual perception. Lawrence Erlbaum Associates, Mahwah (1986)

    Google Scholar 

  7. Kohonen, T.: Self-organization formation of topologically correct feature maps. Biological Cybernetics 43, 59–69 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Widrow, B., Hoff, M.: Adaptive switching circuits. In: IRE WESCON Convention Records, pp. 96–104 (1960)

    Google Scholar 

  9. Rescorla, R., Wagner, A.: A theory of pavlovian conditioning: Variations in the effectiveness or reinforcement and non-reinforcement. In: Black, A.H., Prokasy, W.E. (eds.) Classical Conditioning II: Current Research and Theory (1972)

    Google Scholar 

  10. Sutton, R., Barto, A.: Toward a modern theory of adaptative networks: Expectation and prediction. Psychological Review, 135–170 (1981)

    Google Scholar 

  11. Amazeen, E.L., Turvey, M.: Weight perception and haptic size-weight illusion are function of the inertia tensor. Journal of Experimental Psychology 22, 213–232 (1996)

    Google Scholar 

  12. Charpentier, A.: Analyse experimentale de quelques elements de la sensation de poids |experimental study of some aspects of weight perception|. In: Archives de Physiologie Normales et Pathologies, pp. 122–135 (1891)

    Google Scholar 

  13. Flanagan, J., Beltzner, M.A.: Independence of perceptual and sensorymotor predictions in the size-weight illusion. Nature Neuroscience 3, 737–741 (2000)

    Article  Google Scholar 

  14. Brenner, E., Smeets, J.: Size illusion influences how we lift but not how we grasp and object. Experimental Brain Research, 473–476 (1996)

    Google Scholar 

  15. Berthouze, L., Tijsseling, A.: A neural model for context-dependent sequence learning. Neural Processing Letters 23, 27–45 (2006)

    Article  Google Scholar 

  16. Wolpert, D., Doya, K., Kawato, M.: A unifying computational framework for motor control and social interaction. The Royal Society, pp. 593–602 (2003)

    Google Scholar 

  17. Haruno, M., Wolpert, D., Kawato, M.: Mosaic model for sensorimotor learning and control. Neural Computation 13, 2201–2220 (2001)

    Article  MATH  Google Scholar 

  18. Flanagan, J., Roland, P., Johansson, S., Wolpert, D.: Prediction precedes control in motor learning. Current Biology, 146–150 (2003)

    Google Scholar 

  19. Shadmehr, R.: Computational approaches to motor control. Encyclopedia of Neuroscience 3, 9–17 (1986)

    Google Scholar 

  20. Delevoye, Y., et al.: Efficiency of grip force adjustments for impulsive loading during imposed and actively produced collisions. Quarterly Journal of Experimental Psychology, 1113–1128 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Razakarivony, S., Gaussier, P., Ben Ouezdou, F. (2010). From Force Control and Sensory-Motor Informations to Mass Discrimination. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, JA., Mouret, JB. (eds) From Animals to Animats 11. SAB 2010. Lecture Notes in Computer Science(), vol 6226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15193-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15193-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15192-7

  • Online ISBN: 978-3-642-15193-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics