
HAL Id: hal-03124272
https://hal.science/hal-03124272

Submitted on 28 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Texdyna: hierarchical reinforcement learning in factored
mdps

Olga Kozlova, Olivier Sigaud, Christophe Meyer

To cite this version:
Olga Kozlova, Olivier Sigaud, Christophe Meyer. Texdyna: hierarchical reinforcement learning in
factored mdps. From Animals to Animats: Proceedings of the 11th International Conference on
Adaptive Behaviour (SAB 2010), 2010, Paris, France. pp.489-500. �hal-03124272�

https://hal.science/hal-03124272
https://hal.archives-ouvertes.fr


TeXDYNA: Hierarchical Reinforcement Learning in
Factored MDPs ?

Olga Kozlova1,, Olivier Sigaud1 and Christophe Meyer2

1 Institut des Systèmes Intelligents et de Robotique
Université Pierre et Marie Curie - Paris 6, CNRS UMR 7222

4 place Jussieu, F75252 Paris Cedex 05
Olivier.Sigaud@upmc.fr, Olga.Kozlova@isir.upmc.fr

2 Thales Security Solutions & Services, ThereSIS Research and Innovation Office
Route départementale 128, F91767 Palaiseau Cedex
Christophe.Meyer@thalesgroup.com

Abstract. Reinforcement learning is one of the main adaptive mechanisms that
is both well documented in animal behaviour and giving rise to computational
studies in animats and robots. In this paper, we present TeXDYNA, an algorithm
designed to solve large reinforcement learning problems with unknown structure
by integrating hierarchical abstraction techniques of Hierarchical Reinforcement
Learning and factorization techniques of Factored Reinforcement Learning. We
validate our approach on the LIGHT BOX problem.

1 Introduction

One central issue in animat research consists in facing the complexity of the real world
with adaptive methods. Among such adaptive methods, reinforcement learning (RL) is
one of the most studied. However, due to the ”curse of dimensionality” inherent to the
Markov Decision Process (MDP) framework, standard RL algorithms cannot address
large scale real world problems mostly because they must enumerate all states [1]. In
order to apply RL to robotics problems, two main lines of research can be followed.
One consists in making profit of the structure of the sensory system of the robot using
Factored MDPs (FMDPs), using a representation where a state is implicitly described
by an assignment of values to some set of state variables. Then, one can exploit the
dependencies between variables to get a compact representation [2]. The second line of
research consists in making profit of the structure of the decision problem itself, using
Semi-MDPs (SMDPs), an extension of MDPs where the number of time steps between
one decision and the next is a random variable. The SMDP framework is the basis for
Hierarchical Reinforcement Learning (HRL) algorithms as it decomposes the original
task into subtasks that are easier to solve individually [3].

The methods to solve FMDPs and SMDPs usually assume that the structure of the
problem is given, though that structure is rarely available in practice. As to hierarchical
representations, HEXQ [4] and VISA [5] are two algorithms designed to solve this prob-
lem. Besides, for FMDPs, [6] have proposed SDYNA to solve Factored Reinforcement
? This work was founded by CIFRE convention - 1032/2006



Learning (FRL) problems. Here, we propose TeXDYNA, an algorithm that combines the
benefits of HRL and FRL, building an HRL-augmented version of SDYNA.

The paper is organized as follows. First, in Section 2, we give the minimal back-
ground necessary to understand what follows. In Section 3, we present TeXDYNA, in-
troducing the method for discovering options from the internal structure of the problem
and showing how to introduce options into FRL algorithms. In Section 4, we present an
experimental study of our system based on the LIGHT BOX problem. In Section 5, we
discuss the contributions and limitations of our work as well as related work.

2 A quick index to the background

An FMDP is described by a set of state variables S = {X1, . . . , Xn}, where each Xi

takes its value in a finite domain Dom(Xi). Structured Dynamic Programming (SDP)
algorithms such as SVI [7] make profit of this structure to compute a policy compactly.
Structured-DYNA (SDYNA) [6] is a general framework that adapts indirect RL of the
DYNA family [8] to the FMDP framework. SPITI is a particular instance of SDYNA based
on a decision trees induction process to learn the structure of the problem and on SVI to
obtain an efficient policy. While the FMDP representation technique reduces the size of
the representation of state-action space of large problems by decomposing states into a
set of random variables, the HMDP representation decomposes the overall state-action
space into a set of smaller state-action spaces each of which can be factored. SMDPs
are an extension to MDPs where the number of time steps between two decisions is a
random variable. Among several other frameworks (see [3] for an overview), the options
framework [9] is designed to solve SMDPs by building a hierarchy of options. An option
is a tuple 〈I, π, β〉, where I ⊆ S is an initiation set, that is a subset of states in which it
is possible to execute o, π : S×O → [0, 1] is a policy executed in o, and β : S → [0, 1]
is a termination condition function, that is the probability of terminating the option
in each state. Options are a generalization of primitive actions including temporally
extended courses of actions. As a result, the algorithms deal only with options and do
not have to distinguish options from primitive actions. Previous algorithms combining
FMDP representation and HMDP structure learning are HEXQ [4] and VISA [10]. The
work most closely related to ours, Incremental-VISA [11, 12] is discussed in Section 5.

3 TeXDYNA

TeXDYNA hierarchically decomposes an FMDP by automatically splitting it into a set
of options. Meanwhile, the local policy of each option is incrementally improved by a
SDYNA-like approach. The central contribution of this work comes from the fact that
the discovery of options and the construction of the model of the FMDP, as well as
policy computation, are simultaneous. To achieve simultaneous SMDP structure learn-
ing, FMDP structure learning as well as local and global policy computation, TeXDYNA
is built on top of SPITI. There are two main advantages to our approach. First, we
make profit of the learning method used in SDYNA to learn only a local model for
each option. As a result, the models are smaller and, therefore, easier to learn. Sec-
ond, introducing options in the planning stage results in the possibility to plan over



smaller partitions of the state-action space. In order to decompose hierarchically the
overall FMDP into sub-FMDPs represented by options, TeXDYNA builds a global tran-
sition function that represents the structure of the problem and uses this function to
build a hierarchy of options. For each option, TeXDYNA computes a local transition
function and a local policy. Therefore, TeXDYNA can be decomposed into two simul-
taneous processes: (1) Learning options: learning the transition function of the overall
FMDP (updating the FMDP model with (s,a,s′,r)) and adding or updating options (Al-
gorithm 1); (2) Planning with options: using a modified version of the SPITI algorithm
for model learning, planning and acting with options, i.e. updating hierarchical policy
π = 〈πo0 , πo1 , ...πon , 〉(Algorithm 2).

3.1 Defining options

The purpose of our approach is to decompose the overall FMDP into smaller subtasks or
mutually independent stand-alone policies. Our representation takes advantage of the
FMDP structure using temporal abstraction techniques. We use a specific options repre-
sentation inspired from the goal-oriented exit options of VISA [10] and HEXQ [4], where
options are defined by their exit states that can be seen as subgoals of the task. Our op-
tions are noted o: o = 〈I, π, e〉 where I ⊆ S is an initiation set, π is a policy executed
in o and e is the related exit. We do not use the usual termination function β since it is
defined by the exit and computed at each time step during the option execution.

An exit corresponds to changes of values of state variables linked to the reward
function, as in HEXQ. However, unlike HEXQ, where exits are state-action pairs, we
define exits as a tuple 〈v, a, vch, c〉, where v is the variable whose value is changed by
this exit, a is the exit action that makes the value of v change at the next state, vch is a
variable change, i.e. a pair of values 〈x, x′〉 where x is the value before a is executed
and x′ the value after a is executed. In the stochastic case, the variable change is a
probability distribution over vch and the highest probability is kept in the exit definition.
Finally, c = {x1, ..., xn} is the context, that is the set of constraints (i.e. assignment of
values to a subset of state variables) that makes this exit available. In this representation,
the primitive actions have an empty context. Thus, there is at most one exit per action
and per variable change. Thus, each option corresponds to a unique exit.

The initiation set Io of option o defines the state space where this option can be
executed. On the one hand, it determines if the resources necessary for the successful
execution of the option are available, and, on the other hand, it specifies the state space
from where the exit of the option is reachable. In practice, it is the union of its own exit
context and all the exit contexts of its sub-options. If a sub-option is a primitive action,
its exit variable is added to Io with all possible values. Otherwise, the exit variable
of the sub-option is added with its value change. By convention, a sub-option with
an empty initiation set is admissible everywhere. This is particularly true for primitive
actions. Therefore, all the values of the corresponding exit variables of these options are
accepted. Thus, Io contains all the states from which the exit of the option is reachable.
This property of direct reachability is ensured by the fact that the exit context copies
the constraints of the corresponding branch in the transition tree. In other words, the
nodes of the branch represent the variables of the context. When those variables can be



changed by a sub-option, the exit of the parent option becomes reachable from all the
states where its sub-options are accessible.

The hierarchical structure of the options set is determined by the variables interde-
pendencies expressed in the structure of the transition function. However, for the sake
of sound planning, a rank is assigned to each option as the highest rank of its sub-
options plus one. As a result, the planning algorithm chooses an option to execute at
each abstraction level in the hierarchy by going down from the most abstract options
to primitive actions. Transition model learning and options discovery are simultaneous.
Thus the options discovered first represent the transitions learned first and consequently
have less constraints as they represent the most accessible subgoals. If the problem
has a hierarchical structure, this gives a bottom-up direction to the options discovery.
First the options with the lowest abstraction level are discovered, then their execution
gives access to more constrained options. Defined this way, each option represents a
sub-FMDPMo = 〈So, Oo, Ψ, To, Ro〉 containing a reduced partition of the initial state-
action space, where So is a set of context variables, Oo is a set of sub-options, Ψ is a set
of admissible state-option pairs defined by the initiation set, To is the local transition
function and Ro is the local reward function. In this respect, when an option is created,
we initialize its local FMDP tree structure composed of the transition trees for its con-
text variables, as well as a local planning algorithm. Thus, when learning the internal
FMDP structure of the option, the states injected in the learning algorithm are reduced
to contain only variables xi such that ∀i, xi ∈ Xo.

3.2 Learning: Adding and updating options

To discover options, the overall task transition function is learned in a decision tree
form. The FMDP model provides the structure used for the options discovery process,
as this structure represents the dependencies between variables and constraints under
which those variables change their values.

Algorithm 1 describes the procedure for adding or updating options. An option is
introduced each time there is an action that can change one variable value. The sub-
options are the options available in the sub-FMDP represented by the corresponding
parent option. Sub-options are added in the following way: for each variable in the
context of the parent option, if the set of options E contains an option that modifies the
value of this variable, this option is added to the set of sub-options. Note that, when
computing the context of an exit, the exit variables are excluded from the context to
avoid cross-dependencies between options. This procedure supposes that there is one
option per variable change and that each option changes at most one variable value.
For instance, if some options change more than one variable, then one variable can
be changed by more than one option. As a consequence, these options would be sub-
options of one another, creating loops in the hierarchy. Nevertheless, this constraint
can be relaxed by reorganizing the hierarchy once the options have been added. The
procedure is the following: if a cross-dependency is detected between two options, the
hierarchical link between them is removed and both options are attributed the lowest
rank of the two. This way, more than one option may have the same exit variable.

The options are defined over the model of the problem while this model is learned.
Thus some are incomplete or erroneous, especially in the first stages of the learning



Algorithm 1: Add and update options
init : options set E = ∅
input: FMDP F = [∀xi ∈ X : Tree(P (x′|x))]

1 forall transition tree Tree(P (x′|x)) ∈ F do1
2 forall leaf l of the Tree(P (x′|x)) do2
3 if branch contains an action a & a modifies the value of the variable x in leaf l3

then
4 if if E does not contain a definition of option o with the exit corresponding to4

variable x and action a then
5 introduce new option o defined by exit e : 〈v, a, vch, c〉 with :5
6 • variable v ← x6
7 • action a← current action a7
8 • variable change vch ← 〈value in the branch, value in the leaf〉8
9 • context c← variables of the branch that leads to the leaf l9

10 else if E contains a partial definition of o then10
11 update o with new information11

process. To ensure the relevance of discovered options, they are updated every time
the model of transitions changes. The algorithm checks if the set of options E already
contains an option defined by the same action and variable, but with a different context
definition. If so, it updates it (line 10 in Algorithm 1) using the following procedure:

1. Update the exit context c of the option;
2. Update the transitions trees (add missing ones and discard irrelevant ones);
3. Update the sub-options list (add missing ones and discard irrelevant ones);
4. Re-compute the rank k of the option;
5. Re-compute the Initiation set Io.

As to incrementality, [6] proposes to re-initialize the value function each time the
reward function changes, mainly because the structure of the value function results from
the reward function. In the incremental options learning case, the value function tree is
reset each time the reward function changes in order to take into account every modi-
fication that changes the structure of the policy. There are exactly as many options as
possible variable value changes. Thus there is no need to remove incorrect options given
that as soon as their context is correct, they become accurate. Meanwhile, however, in-
accurate options can influence planning and exploration by building an erroneous policy
(see the next section).

3.3 Planning: FRL over options

The planning stage builds a hierarchical policy over options by incrementally improving
and modifying it simultaneously with the learning process. The planning algorithm,
built upon the ideas coming from HRL algorithms and FRL methods based on SPITI, is
given in Algorithm 2.



Algorithm 2: SPITI with options
input : FMDP F , hierarchy of options E
for each time step t

1 if no option is running then
option o←ChooseOption(s, Tree(π), E)

2 if terminal condition of o is satisfied then
2.1 execute exit action a; observe next state s′ and immediate reward r

2.2.a update local FMDP Fo with (s,a,s′,r)
2.2.b update parent FMDP Fparent(o) with (s,o,s′,r)
2.3.a update local policy πo with Fo

2.3.b update parent policy πparent(o) with Fparent(o)

3 else
sub-option i←ChooseOption(s, Tree(πo), E)
if sub-option i is primitive action then

3.1 execute i; observe s′ and r
3.2 update local FMDP Fo with (s,i,s′,r)
3.3 update local policy πo with Fo

3.4 return: i
4 else

call SPITI over sub-option i : i→SPITI (Fi, E)

To operate with options and take into account the hierarchical structure of the pol-
icy, we use a modified instance of SPITI for model learning, planning and acting with
options. The algorithm executes options recursively by going down the hierarchy of op-
tions up to primitive actions that can be executed by the agent in its environment, then
performs the updates by going up in the hierarchy. This upward update guarantees that
the model of transitions includes the changes that occur during the incremental learning
process. Thus, local planning is performed for each option with respect to the current
structure of its local model of the transition and reward functions. The inner loop of
SPITI is decomposed into three stages:

– Acting: choose an action using ε-greedy exploration;
– Learning: update the model of the transition and reward functions of the FMDP

from 〈X, a,X ′, R〉 observations using ITI;
– Planning: update Tree(V ) and Tree(π) using one sweep of SVI.

Then, in the learning stage, the ITI algorithm is modified to work with options by
replacing primitive actions by options in trees and allowing to remove or add new tran-
sition trees while learning. Moreover, ITI uses reduced states representations containing
only variables present in the context of the option, so that the local model is updated
with observations 〈So, a, So

′, R〉 where So is a set of local context variables.
Finally, in the planning stage, the adaptation of SDP algorithms like SVI to the op-

tions framework is straightforward. Since the action space is restricted by the number
of sub-options available on a given hierarchical level, the algorithm has an additional
argument that specifies the list of options to iterate through.



The primitive actions available in the environment are all initialized as options
with empty exit context and initiation set. TeXDYNA builds the hierarchical policy
π = 〈πo0 , πo1 , ...πon , 〉 where a higher level policy is based on a set of lower level
policies. Each option follows the policy of its FMDP, its sub-options follow their re-
spective policies and so on. Moreover, to propagate the external rewards to the local
policies of options, when a high level option is discovered, an additional reward, named
“internal reward” ro (by contrast with the external reward received from the environ-
ment) is assigned to its exit action. We set ro = Ro

2 , where Ro is the internal reward
of the parent option. For the options on the top level of the hierarchy, Ro is the maxi-
mal immediate external reward that the agent can get. This heuristics is inspired by the
“salient event” heuristics introduced in [13].

As mentioned above, in the first iterations, the hierarchy of options and often op-
tions themselves are inaccurate or irrelevant. This is why the procedure to choose op-
tions (Algorithm 3) must take inaccuracies into account and use a strategy that favors
exploration in the first steps and chooses the options at the right level of the hierarchy.

Algorithm 3: Choose Option
input: current state s, policy Tree(π), hierarchy of options E , level k

1 Get option o from to the current policy, o = maxo[leaf(Tree(π)|s)]
2 if o is null then

choose option o from E accessible in the current state s with current rank k
3 while o is null do

choose option o from E accessible in the current state s with rank k − 1
(if k = 0 choose random primitive action)

return o

The root node of the option hierarchy represents the overall FMDP. The first option
o is chosen according to the root policy while its initiation set contains the current
state s. The sub-options are selected according to the internal policy πo of the option
o augmented with an ε-greedy exploration policy. If the policy is incomplete and does
not contain any information about options available in a current state, then an option
is chosen randomly from the options set E on the current rank level with respect to its
initiation set. If no option is available with a given rank, the algorithm chooses from
options with lower rank and so forth. Thus, in the first stages of learning, only the
options with rank 0 are available, that is primitive actions chosen randomly and in the
end the preference always goes to the options with the higher level of abstraction. This
provides a high level of exploration at the beginning and then for unexplored parts of
the state space, therefore this speeds up the overall learning process.

In order to avoid an option from being stuck within an erroneous policy that fails
to achieve its exit, we introduce the notion of selection penalty that forbids one option
for a given number of time steps. In practical terms, when an option reaches its exit
state but fails to change the corresponding variable value, that means that its structure



is inaccurate. In this case we forbid this option selection for (max time steps per episode)
10

time steps in order to let the model of transitions of its parent option be improved.

4 Experimental study

Light Depends on

9 0 3 6
10 1 4 7
11 2 5 8
12 6 7 8
13 3 4 5
14 0 1 2
15 9 10
16 10 11
17 12 13
18 13 14
19 16 17

(a) (b)

Fig. 1. (a) The LIGHT BOX problem: number and color of “lights” with their dependencies. (b)
Internal dependencies of the LIGHT BOX problem.

Here, we have chosen to evaluate TeXDYNA on the LIGHT BOX domain [11], pre-
sented in Fig. 1. It consists of a set of twenty “lights”, each of which is a binary variable
corresponding to ON and OFF, named “0”, “1”, “2”, etc. Each light has a corresponding
action that toggles the light ON or OFF. Thus there are twenty actions, 220 ≈ 1 million
states, thus approximately 20 million state-action pairs. The 9 white lights are simple
toggle lights that can be turned ON or OFF by executing the 9 corresponding actions.
The green lights are toggled similarly, but only if certain configurations of white lights
are ON, with each green light having a different set of dependencies. Similarly, the blue
lights depend on certain configurations of green lights being ON, and the red light de-
pends on configurations of the blue lights. The goal is to turn the red light on, in which
case the agent receives a reward of 20.

The results presented below are averaged over 20 runs of 150 episodes where each
episode is limited to 300 steps. The curves are smoothed by computing the moving av-
erage weighted over ten neighboring values. The algorithms use the following parame-
ters: N = 300 in DYNA-Q and ε = 0.1 in ε-greedy. The ITI algorithm uses χ2 = 30 in
stochastic problems and χ2 = 0 in deterministic ones. The algorithms are coded in C#
and run on Intel Core2Duo 1.80GHz processor with 2Go RAM.

An example of hierarchy of options obtained on the LIGHT BOX problem is given
in Fig. 2. The complete state representation in the LIGHT BOX problem is given by 20
variables corresponding to 20 lights, but the states used to update the internal structure
of the FMDP corresponding to the option toggle16 contains only 2 variables “10” and



Fig. 2. Example of options discovered in the LIGHT BOX problem.

“11”. As a consequence, the sub-FMDP has 2 variables × 2 sub-options instead of 20
variables × 20 actions.

Fig. 3. (a) Convergence over episodes on the LIGHT BOX problem. (b) Policy size on the LIGHT

BOX problem.

Fig. 3 shows the performance in number of time steps required to complete one
episode of the LIGHT BOX problem within three experimental contexts: random policy,
TeXDYNA and DYNA-Q applied to both the deterministic version of the LIGHT BOX
problem and a stochastic version where the agent performs random actions with a 10%
probability. We could not obtain the convergence curve for SPITI because SPITI attempts
to build the complete value tree representing all possible combinations that is 1 million
leaves. This assertion is explained by the results presented in Table 1 that recaps the
average time in seconds per step and the size of the functions in the stochastic LIGHT
BOX problem. TeXDYNA requires less time to perform one step since it works on a
smaller representation. While SPITI is struggling to check if the red light is dependent on
the white light, the policy built by TeXDYNA goes straight to the goal state by achieving
subgoals one by one at each level.



TeXDYNA SPITI DYNA-Q

Transition function size 780 ± 14 790 ± 25 –
Value function size 240 ± 20 > 15000 > 10000
Policy function size 180 ± 8 > 15000 > 10000
Time/step(sec) 0.04 > 100 > 2

Table 1. Performance on the stochastic LIGHT BOX problem (Policy and value function size in
total number of nodes in decision trees).

The algorithm finds the same structure in the stochastic case as in the deterministic
one. One can notice that it takes more time to the algorithm to learn a stochastic tran-
sition function, but in the end it discovers the same hierarchy of options and the same
policy and value functions. Similarly, stochastic DYNA-Q needs more episodes than
its deterministic counterpart to converge. Furthermore, as shown in Table 1, TeXDYNA
builds much smaller representations than its competitors in the stochastic case.

In order to explain the lesser performance of SPITI compared to TeXDYNA, we
record the policy function size for SPITI and TeXDYNA, and the number of state-action
pairs in DYNA, at the end of each episode. Fig. 3(b) shows the evolution of the cor-
responding functions size over episodes. TeXDYNA quickly reaches a plateau on its
optimal policy size, while the policy discovered by DYNA continues to grow up until
representing all possible states. Therefore, DYNA results given in Fig. 3(a) are biased by
the fact that even if it discovered a kind of sub-optimal policy in a reasonable time, the
algorithm is unable to perform the complete policy computation. As to SPITI, the sys-
tem fails to achieve convergence because of a too strong memory requirement. Indeed,
as soon as one tree size exceeds 15000 nodes, the system runs out of memory. Further
code optimization might reduce this limitation, but the main point is that exponential
task structure simplification allows TeXDYNA to scales much better. Indeed, local mod-
els combined with state reduction to the set of context variables ignoring anything else
provides a significant state-action space reduction within the structure of each option.

5 Discussion

TeXDYNA ideas are first inspired by Sutton’s DYNA architecture [8], enriched and adapted
to FMDPs by [6]. Second, as to the exit oriented options representation, some ideas come
from the HEXQ [4] and VISA [10, 5] frameworks, where the exit definition proposed
in HEXQ is extended to include variable change and context in order to address more
complex structures. TeXDYNA builds a hierarchy of options online and directly from the
transition trees taking advantage of their structure, whereas VISA builds a variable influ-
ence graph from the given DBNs and then builds transition graphs and reachability trees
to determine the initiation sets of the options. Furthermore, it only discovers options
linked to the variables directly connected to reward, while TeXDYNA backpropagates
the reward among subgoals.

Finally, Incremental-VISA [11, 12] is adapting VISA to the case where the model
of the problem is not known in advance. Like TeXDYNA, it attempts to simultaneously



learn the hierarchical (options discovery) and factored (DBN learning) structure of the
MDP. The approach learns incrementally and autonomously both the causal structure of
the environment and useful skills that exploit this structure. It uses DBN structure learn-
ing techniques to learn the environment structure and SDP algorithms like SVI to build
hierarchical policies online. The authors propose an active learning scheme to improve
the efficiency with which this structure is acquired that bootstraps on existing struc-
tural and procedural knowledge. As new structure is discovered, more complex skills
are learned, which in turn allow the agent to discover more structure, and so on. The
major differences between TeXDYNA and Incremental-VISA is, for the moment, that
the latter is limited to the deterministic case, whereas TeXDYNA is adapted to stochastic
problems. The second difference lies in the way of introducing options into planning:
Incremental-VISA waits the option to be “mature enough” before introducing it in the
hierarchy by using a measure of entropy on the transition functions whereas TeXDYNA
inserts options directly in the hierarchy in order to accelerate its completion. In the same
way as VISA, Incremental-VISA uses the DBNs to discover dependencies between state
variables. Therefore, it needs to build intermediate graphs and trees to catch the inter-
nal hierarchical structure, while TeXDYNA operates on decision trees and discovers the
structural links directly. Unfortunately, we were not able to compare the performance
mainly because of the absence of a common metrics. Indeed, the experimental results
published in [12, 11] are based on the number of value changes and the time to compute
the policy without giving the corresponding metrics criteria.

At this point in time, the algorithm presents some limitations. Firstly, instead of
using “internal reward” to propagate the external reward to local policies so that all op-
tions have fixed interest, the options discovery algorithm could be combined with task-
specific knowledge to identify useful, salient or challenging subroutines. Secondly, we
consider that there is at most one option per variable value change. This assumption
simplifies computations within the algorithms, but can be relaxed. More importantly,
as to the problem representation, our option-specific state abstraction is strongly goal-
oriented, that is reaching a unique exit context. This can result in the creation of exces-
sive number of options in problems where an action can change more than one variable
at the same time. Finally, the hierarchy of options is strictly ordered, that means that we
cannot address problems where the FMDP structure includes synchronic arcs or post-
action variable dependencies, because it would introduce cross-dependencies between
options and cycles in the hierarchy of options.

6 Conclusion

We have presented TeXDYNA, a powerful framework that combines factored and hier-
archical reinforcement learning. This framework is built on three main ideas:

– The use of the transition function structure represented as decision trees to discover
options results in efficient learning and planning capabilities that are integrated into
the (factored) model-based RL framework.

– The localization of the models results in an exponential reduction of the state-action
space of each option. Instead of taking transition trees from the global structure,



the models of transitions are learned locally for each option. This accelerates the
solution process.

– The immediate use of the just discovered options in the planning process speeds up
the learning of its internal structure and of its parent option structure.

We have evaluated on the LIGHT BOX problem the capability of TeXDYNA to efficiently
generate hierarchical policies and shown that it performs better than its non factored
and non hierarchical ancestors. The main issue for future work consists in replacing
the basic ε-greedy exploration strategy by a more sophisticated policy, either along the
“optimism in the face of uncertainty” line [14] or based on adding internal motivations
such as an artificial curiosity process [15, 13] into the framework. Then the application
of TeXDYNA to a robotics problem will be the matter of a more experimental work.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA (1998)

2. Boutilier, C., Dearden, R., Goldszmidt, M.: Exploiting structure in policy construction.
In: Proceedings of the 14th International Joint Conference on Artificial Intelligence. (1995)
1104–1111

3. Barto, A., Mahadevan, S.: Recent advances in hierarchical reinforcement learning. Discrete
Event Systems Journal 13 (2003) 41–77 Special Issue on Reinforcement Learning.

4. Hengst, B.: Discovering hierarchy in reinforcement learning with HEXQ. In: Proceedings
of the 19th International Conference on Machine Learning. (2002) 243–250

5. Jonsson, A., Barto, A.: Causal graph based decomposition of factored MDPs. Journal of
Machine Learning Research 7 (2006) 2259–2301

6. Degris, T., Sigaud, O., Wuillemin, P.H.: Learning the structure of factored markov decision
processes in reinforcement learning problems. In: Proceedings of the 23rd International
Conference on Machine Learning, Pittsburgh, Pennsylvania, ACM (2006) 257–264

7. Boutilier, C., Dearden, R., Goldszmidt, M.: Stochastic dynamic programming with factored
representations. Artificial Intelligence 121(1-2) (2000) 49–10

8. Sutton, R.S.: DYNA, an integrated architecture for learning, planning and reacting. In: Work-
ing Notes of the AAAI Spring Symposium on Integrated Intelligent Architectures. (1991)

9. Sutton, R., Precup, D., Singh, S.: Between MDPs and semi-MDPs: A framework for tempo-
ral abstraction in reinforcement learning. Artificial Intelligence 112 (1999) 181–211

10. Jonsson, A.: A causal approach to hierarchical decomposition in reinforcement learning.
PhD thesis, University of Massachusetts Amherst (2006)

11. Vigorito, C.M., Barto, A.G.: Autonomous Hierarchical Skill Acquisition in Factored MDPs.
In: Yale Workshop on Adaptive and Learning Systems, New Haven, Connecticut (2008)

12. Vigorito, C., Barto, A.: Hierarchical Representations of Behavior for Efficient Creative
Search. In: AAAI Spring Symposium on Creative Intelligent Systems, Palo Alto, CA. (2008)

13. Singh, S., Barto, A., Chentanez, N.: Intrinsically motivated reinforcement learning. Ad-
vances in Neural Information Processing Systems 18 (2004) 1281–1288

14. Szita, I., Lörincz, A.: The many faces of optimism: a unifying approach. In: Proceedings of
the 25th International Conference on Machine Learning, New York, NY, USA, ACM (2008)
1048–1055

15. Oudeyer, P.Y., Kaplan, F., Hafner, V.: Intrinsic motivation systems for autonomous mental
development. IEEE Transactions on Evolutionary Computation 11 (2007)


