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Abstract. Symmetry breaking is commonly found in self-organized col-
lective decision making. It serves an important functional role, specifi-
cally in biological and bio-inspired systems. The analysis of symmetry
breaking is thus an important key to understanding self-organized deci-
sion making. However, in many systems of practical importance avail-
able analytic methods cannot be applied due to the complexity of the
scenario and consequentially the model. This applies specifically to self-
organization in bio-inspired engineering. We propose a new modeling
approach which allows us to formally analyze important properties of
such processes. The core idea of our approach is to infer a compact model
based on stochastic processes for a one-dimensional symmetry parameter.
This enables us to analyze the fundamental properties of even complex
collective decision making processes via Fokker–Planck theory. We are
able to quantitatively address the effectiveness of symmetry breaking,
the stability, the time taken to reach a consensus, and other parameters.
This is demonstrated with two examples from swarm robotics.

1 Introduction

Self-organization is one of the fundamental mechanism used in nature to achieve
flexible and adaptive behavior in unpredictable environments [1]. Particularly
collective decision making in social groups is often driven by self-organizing pro-
cesses. Some of the most prominent examples of this are found in social insects,
for example the choice of nest sites [2] and food sources [3, 4] by ant colonies and
the aggregation behavior of bees [5]. Countless other examples of self-organized
collective decision making exist in both biological and human social systems,
such as in quorum sensing in bacteria colonies [6] and in trend setting and follow-
ing in economic markets [7]. Despite this variability the fundamental principles
that govern self-organized collective behavior appear to be universal across the
range [8].
Understanding the fundamental properties of self-organized collective decision
making is thus of central importance in a broad spectrum of disciplines, ranging
from biology and social science to bio-inspired engineering.
An important property commonly found in self-organized collective decision
making is symmetry breaking. This refers to the fact that a system choosing



between a number of options may make a majority (or even an unanimous) de-
cision for one of these options even if all of them have the same utility. From a
biological perspective, symmetry breaking serves an important function. This is
immediately obvious when we think about decisions that must be unanimous,
such as the choice of a new nest site [9]. In other cases symmetry breaking
still serves an important function even though its benefit may be less obvious.
Consider food source exploitation by an ant colony. When faced with a choice
between two equally good food sources, many species will converge on only one
of them instead of exploiting both simultaneously [1]. There are several bene-
fits of concentrating the colony’s foragers on a single source. Arguably the most
important one is that it is significantly easier to defend a single source against po-
tential competition and aggressors. Further benefit may, for example, arise from
the fact that collaborative transport of large prey items can be an efficient form
of food retrieval [10] compared with the transport of small items by individual
foragers. Similar considerations transfer immediately to technical applications of
self-organized collective decision making, for example in swarm robotics.

Because of its central functional role, the analysis of symmetry breaking is one of
the keys to a better understanding of collective decision making. This is widely
accepted and a substantial body of work on the topics exists, much of which
is based on bifurcation analysis. Recruitment in ant colonies is a well-known
example where this approach has yielded a significant amount of insight [1].

Symmetry breaking in self-organized collective decision-making usually arises
from the interplay of positive and negative feedback loops. For example, in mass
recruiting ant colonies pheromone communication is the main mechanism for
guiding foragers to food sources. Roughly speaking, pheromones attract potential
foragers to a food source, and successful foragers deposit pheromones on paths
to good food sources. This positive feedback is counterbalanced by negative
feedbacks, namely the evaporation of pheromone and overcrowding. The balance
between these two influences leads to a stable yet flexible decision system [3, 4].

Arguably the most common approach to the analysis of such coupled feedback
systems is via differential equation systems. In sufficiently simple cases, bifurca-
tion analysis can then be used to establish properties of the symmetry breaking
process. However, as the complexity of the scenario and the individual behavior
increases, an analysis of the full differential equation model soon becomes ex-
tremely involved (see e.g. [11]) and often is simply impossible. Moreover, finding
such a model can be difficult in the first place, specifically in cases where the
behavior of individuals is relatively complex.

Thus, alternative ways to model the symmetry breaking properties in such sys-
tems are required. In this paper we propose such a method. The core idea of our
approach is to dispense with complex mechanistic models which capture feedback
loops or even individual behavior explicitly. We replace these with significantly
simpler phenomenological models that focus exclusively on the description of
symmetry breaking. The advantage of doing this is that we obtain a compact
mathematical model which is amenable to a formal analysis. In this way we can
analytically obtain information about the fundamental properties of the process,



such as the stability of decisions. We will illustrate this approach and such an
analysis with two examples from swarm robotics. The first one is the aggrega-
tion behavior of a swarm whose control algorithms are modeled on honeybee
behavior [12–14], the second one is an emergent density classification task [15].

2 Overall approach

To introduce our approach we consider the simplest possible scenario of a binary
choice between two options A,B with equal utility. We will say that a system
with N individuals (agents) exhibits symmetry breaking, if a significant majority
of it decides for either A or B regardless of their equal utilities. We define a
symmetry parameter (w.l.o.g. with respect to option A) as s(t) = L(t)/N , where
L(t) is the number of agents that have chosen option A at time t. A majority
decision is any outcome in which the process has converged to a state where at
least L ≥ δN individuals have chosen option A with 0.5 ≪ δ ≤ 1.0. In terms of
s this simply means s ≥ δ. s(t) essentially captures all information required to
analyze the symmetry breaking properties of the process.
If s(t) converges we can in principle obtain the steady state probability density
function (PDF) for s(t). This steady state PDF ρ∗(s) tells us how likely it is
that a certain proportion of agents decides for option A. In a binary symmetry
breaking scenario, ρ∗(s) will be bimodal and (possibly) symmetric (see Fig. 3 for
the steady state PDFs of our two example scenarios). Given ρ∗(s) we can thus
calculate the expected proportion P of experiments in which a majority decision
with at least δ majority occurs as

∫ δ

0

ρ∗(s)ds+

∫ 1

1−δ

ρ∗(s)ds = P. (1)

Provided s(t) converges we can in principle always obtain ρ∗(s) at least approx-
imately by statistical evaluation of a large number of sample simulations. The
same is true of other properties of s(t), for example the time to convergence.
This is indeed the standard approach to the analysis of such systems if no ana-
lytic description is available: A symmetry parameter is defined, the full system
is simulated, and the statistics of the symmetry parameter is measured from the
results of these (typically high-dimensional) simulations. This approach has two
drawbacks: Firstly, it can be computationally extremely costly as obtaining nu-
merical values for individual properties requires the simulation of a large number
of sample developments. Secondly, this form of statistics only gives us numeric
results for individual properties and does not allow us to perform a more general
analysis of these properties.
An explicit representation of s(t) would obviously enable us to perform signifi-
cantly more powerful analysis provided it is simple enough to stay mathemati-
cally tractable. This idea is at the very center of our approach.
We simply and somewhat boldly postulate that the development of s(t) can be
described by a 1-d Langevin equation, a particular form of stochastic differential



equation:
ds

dt
= α(s, t) + β(s, t)ξ(t), (2)

where α describes the deterministic development (so-called drift), ξ a Gaussian
noise |ξ(t)| = 1, with mean 〈ξ(t)〉 = 0, and uncorrelated in time 〈ξ(t)ξ(t′)〉 =
δ(t − t′), and β captures the fluctuation of the noise amplitude. Having a def-
inition of s(t) in this form unlocks a whole repertoire of formal tools for the
analysis of stochastic differential equations that allow us to calculate most of
the properties that we are interested in [16].
Two questions arise immediately: (1) Does this description indeed exist for a
given system, i.e. is it possible at all to correctly reduce the behavior of the
(potentially high-dimensional) system to a one-dimensional system? (2) Even if
it is possible, how can we infer α and β?
The first question cannot generally be answered, and some systems will not
admit such a description. However, our case studies give some indication that
it should be possible to approximate the behaviour of many interesting system
quite well. Our methodology approaches the question optimistically by assuming
the existence of such a description: We first attempt to infer α and β. This can
be done via a heuristic argument (as evidenced by the case studies) or with
standard numerical fitting techniques. Once candidates for α and β are obtained
the crucial step is their verification. This is performed by obtaining a large
number of sample developments for s(t) in two complementary ways: One set
of samples is generated by simulating the full original (mechanistic) model and
measuring s(t) at each simulation step, another set of samples is obtained by
numeric forward integration of s(t) according to Eq. 2 for given α and β. If
the two sample sets are not in statistical agreement we have to dismiss the
candidate functions α, β. However, if the sets agree statistically, we are justified
in our choice of α and β and the simplified model Eq. 2 captures the relevant
aspects of the process statistically correctly. In this case we may discard the full
model and simply proceed with an analysis of the simplified model.

3 Investigated Scenarios

We will now illustrate this approach with two example scenarios from swarm
robotics. Both are instances of homogeneous multi-agent systems (MAS), where
the agents move in a two dimensional rectangular arena surrounded by walls.
Our first scenario is collision-based adaptive aggregation. The task of the robot
swarm is to aggregate at the brightest spot in the arena. This is essentially a
physically embodied simulation of the behavior of young honeybees, that typi-
cally aggregate at areas of a certain temperature. The system and its distributed
control algorithm, termed BEECLUST, have been described in full detail in [13,
17], and we only give a brief summary here.
The robots are equipped with sensors for distance measurements as well as a
sensor that allows them to measure a special inhomogeneous property of the
arena (e.g., light). In addition, they are able to identify other robots as such. Each



robot moves in a straight line (with initial random heading) until it perceives
an obstacle Ω within sensor range. If Ω is a wall it turns away and moves
straight again. If Ω is another robot, it counts the number of other robots K
in the vicinity. If K ≥ σ the robot measures the local luminance. The higher
the luminance the longer the agent stays stopped. After the waiting period has
elapsed, the agent turns away from the other agent and moves straight again.

The collective aggregation at the brightest spot is a consequence of positive
feedback. Waiting times are longer at bright spots and the agent density is
increased through clustering in these regions. Negative feedback is induced by
the saturation of the limited space with high brightness.

Initially, the agents have random headings, are in the state ‘moving’, and are
random uniformly distributed in the whole arena (i.e., on average we have ini-
tially the same number of robots in the left and in the right half of the arena).
The luminance distribution in the test arena is bimodal with maxima of the same
value and shape in the left and right half of the arena (for details, see [12, 14]).
As a measure of symmetry we use sb(t) = L(t)/N (‘b’ for BEECLUST) where
L(t) is the number of robots in the left half of the arena, and N the swarm size.

Our second scenario is an emergent density classification task. Robots in the
swarm exist in two states ‘red’ and ‘green’. The task of the robot swarm is to
estimate whether there are initially more green or more red swarm members,
i.e. to converge on a majority decision. This problem is derived from a well
known example of emergent computation in cellular automata [18]. N robots
are randomly distributed in the arena and randomly initialized to be red or
green in a given proportion. The robots move and perform collision avoidance,
i.e. if another robot comes too close they turn away to increase the distance.
At each encounter the robots remember the color of each other. After five robot
encounters, each robot changes its color to the one it encountered most often. We
are interested in the question whether (a majority of) the swarm stably converges
on one color and whether this is the original majority color (for details, see [15]).

As a measure of symmetry we use sd(t) = R(t)/N (‘d’ for ‘density classification’)
where R(t) is the number of red robots and N the total swarm size.

Both scenarios include a stochastic component. The density classification sce-
nario includes a stochastic component as we explicitly account for errors in
the color recognition. We assume that a robot recognizes the color of the en-
countered robot correctly only with a given probability γ = 0.8. While noise is
explicitly incorporated in the case of the density classification scenario, it implic-
itly enters the BEECLUST scenario. This is because the basic movement and
collision-avoidance mechanism is a billiard-like system that introduces pseudo-
randomness through deterministic chaos.

4 Dynamics of the Symmetry Parameter

As reported in [12], most macroscopic characteristics of the collective decision
processes of these systems can approximately be captured by two features of the



symmetry parameter s. First, the mean of the absolute changes

∆sabs(s, t) =
1

K

∑

i

|si(t) − si(t− 1)|, (3)

averaged over K samples si(t) obtained from many independent simulation runs.
Second, the mean of the relative changes

∆srel(s, t) =
1

K

∑

i

si(t) − si(t− 1), (4)

which is an approximation of the derivative. In Fig. 1, we show the results of
the measurements for both scenarios. Note that ∆srel at s = 0.5 averages to
∆srel(s = 0.5, t) ≈ 0 as expected (Fig. 1(b), 1(d)), while the converged absolute
changes keep a maximum at s = 0.5 (Fig. 1(a), 1(c)). Fig. 1 shows that ∆sabs

and ∆srel are indeed time-variant. ∆sabs basically keeps its shape and is simply
scaled down with time, whereas ∆srel even changes its shape. It only converges
after some time to a function that can cause multiple stable (or meta-stable)
decisions (as it exhibits multiple zero-crossings corresponding to fixpoints).
For numeric calculations we will subsequently simply use the (time-invariant)
values for∆sabs and∆srel which are reached with an error exponentially decreas-
ing in time as shown in Fig. 1. While this is clearly a rather drastic simplification,
our choice will be justified by the verification step of our basic methodology.
Based on ∆srel and ∆sabs we suggest the following heuristics to infer candidates
for α and β. Consider the development of s in the time-discrete simulation. We
suggest to approximate this as

st+1 = st +∆srel(st) + (∆sabs(st) − |∆srel(st)|)ξt, (5)

for ∆srel and ∆sabs as defined above, and for a Gaussian white noise ξn. The
assumption of Gaussian white noise is of course only an approximation which
could be improved by measuring the distributions of the ∆s for each time step.
To justify Eq. 5, we consider the three points s ∈ {0, 0.5, 1} in Fig. 1. At s = 0
and s = 1 we have |∆srel| = ∆sabs because changes are only possible in one
direction at the borders. Hence, the influence of the noise term should be zero
there. At s = 0.5 we have, as expected, ∆srel = 0. Hence, the only influence is
due to ∆sabs, which is fulfilled by Eq. 5.
We make the transition to a continuous time version by using Eq. 2 with drift
α(s) = ∆srel(s) and diffusion coefficient β(s) = ∆sabs(s) − |∆srel(s)|. For this
continuous model we can now use the Fokker–Planck equation

∂ρs

∂t
=

∂

∂s
(α(s, t)ρs) +

1

2

∂2

∂s2
(β2(s, t)ρs) (6)

to obtain the time development of the probability density function for s, and
specifically its steady-state PDF. As outlined earlier for our methodology, we
must verify whether this candidate model is valid by comparing two versions of
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Fig. 1. Measured dynamics of the symmetry parameter; 2× 105 samples per scenario.

the PDF for s(t) obtained in different ways: once by simulating the full system
and once by solving the Fokker–Planck equation for the 1-d system.

Fig. 2 shows the densities obtained via simulation and Fokker–Planck equation,
respectively, together with a typical sample trajectory. These plots were obtained
by solving Eq. 6 numerically for the initial value problem of an initial peak at
s = 0.5 for t = 0 and with the corresponding full simulation. It shows that
there is good qualitative correspondence between the two systems and thus that
the simplified model with the chosen α, β on this level adequately describes the
evolution of the symmetry parameter for these systems. We are thus justified in
dispensing with the full model and conducting an analysis of symmetry breaking
properties based only on the simplified model, which is amenable to a formal
analysis.

5 Deriving Properties of the Collective Decision System

The simplified model can now be used to analyze the symmetry breaking prop-
erties of the system. To begin, consider the effectivity of symmetry breaking. It
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Fig. 2. Density classification scenario; PDF measured in the simulation (ρ̂s, based on
2 × 105 samples) and obtained by solving Eq. 6 (using the converged measurements)
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Eq. 2.

can be quantified via the steady state of the Fokker–Planck equation. Assuming
reflecting boundaries at s = 0 and s = 1, the steady state ρ∗(s) is given by

ψ(s) = exp

(
∫ s

0

2
α(y)

β2(y)
dy

)

, ρ∗(s) = C
ψ(s)

β(s)
, (7)

with a normalization constant C [16, 4]. In Fig. 3(a), the results obtained from
Eq. 7 are shown for both scenarios using the functions α and β as defined above
in Eq. 2 and with the data shown in Fig. 1 (with noise). In addition, the positions
of δ as defined by Eq. 1 are given and the associated areas are marked in gray. For
both scenarios ρ∗(s) is clearly bimodal and exhibits very low densities around
s ≈ 0.5, hence the symmetry breaking is effective.
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Fig. 3. Analytically and numerically obtained measures of symmetry breaking.

As a further example of a possible analysis we quantifying the stability of deci-
sions. An appropriate measure for this is the probability of revising a majority
decision. This is similar to the concept of ‘splitting probabilities’ [16]. The split-



ting probability πw(x) gives the probability that the system initialized at s = x
will reach the state s = w before the state s = u, i.e. it will make a majority
decision for w. The corresponding probability πu(x) is defined symmetrically.
The splitting probability can be calculated as

πw(x) =

∫ x

u

ρ∗(s)−1ds

(
∫ w

u

ρ∗(s)−1ds

)

−1

, (8)

if we take u and w to correspond to the positions of the two peaks in the PDF (i.e.
the decision states), we can immediately read off various important properties
from a plot of πw(x) particularly how likely it is that the system reaches a given
decision from a given start state and thus also how likely it is that a decision,
once made, will be reversed giving a measure of the stability of the decision
process.

The numerically obtained results for πw(x) are shown in Fig. 3(b). Based on this,
the stability of the density classification scenario has to be classified as higher
than that of the BEECLUST scenario, because its slope around the center point
(π = 0.5) is steeper and it reaches saturation (π = 0 or π = 1) more quickly.

In the same way a host of other properties can be analyzed using the Fokker–
Planck equation. In some cases, such as for the convergence time, a full analytic
treatment may be difficult, particularly for time-variant functions α and β. How-
ever, a numeric estimate can still be obtained as shown in Fig. 2(b).

6 Conclusion

We have proposed a generalized approach to analyzing symmetry breaking in
collective decision making. It is based on a simple stochastic process model
that describes the development of a one-dimensional symmetry parameter. The
model and its parameters are inferred by measurements from (real or virtual)
experiments. The models obtained are simple enough to be amenable to powerful
analytic techniques using Fokker-Planck equations. This allows us to calculate
important properties, such as the effectiveness of the decision process, likelihood
of decisions to be reached and to be revised, time to reach a consensus etc.
without having to rely on further simulations. We suspect that our heuristics for
inferring the model parameters (drift and diffusion coefficients) based on ∆srel

also applies to other self-organized collective decision making processes. This
assumption receives some support from their successful use in the analysis of the
two substantially different example scenarios. It is crucial where this heuristics
cannot be used, the core of our approach remains applicable as it allows us to use
a range of other methods to identify and verify candidates for α and β. We thus
expect our approach to be in principle useful for a wide range of self-organized
collective decision making scenarios.
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