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Abstract. Given a semi-ring with unit which satisfies some conditions,
we define an exponential functor on the category of sets and relations
which allows to define a denotational model of Differential Linear Logic
and of the lambda-calculus with resources. We show that, when the semi-
ring has an element which is infinite in the sense that it is equal to its
successor, this model does not validate the Taylor formula and that it
is possible to build, in the associated Kleisli cartesian closed category,
a model of the pure lambda-calculus which is not sensible. This is a
quantitative analogue of the standard graph model construction in the
category of Scott domains.
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Introduction

The category of sets and relations is a quite standard denotational model of
Linear Logic which underlies most denotational models of this system (coher-
ence spaces, hypercoherence spaces, totality spaces, finiteness spaces. .. ). In this
completely elementary setting, a formula is interpreted as a set, and a proof of
that formula is interpreted as a subset of the set interpreting the formula.

Logical connectives are interpreted very simply: tensor product, par and lin-
ear implication are interpreted as cartesian products whereas direct product
(with) and direct sums (plus) are interpreted as disjoint union. The linear nega-
tion of a set is the same set: it is a remarkable feature of Linear Logic that it
admits such a “degenerate” semantics of types, which is nonetheless non trivial
in the sense that proofs are not identified.

Exponentials are traditionally interpreted by the operation which maps a set
X to the set of all finite multisets of elements of X. One might be tempted to use
finite sets instead of finite multisets since, in the coherence space semantics, the
exponential can be interpreted by an operation which maps a coherence space to
the sets of its finite cliques (with a suitable coherence). In the relational model
however, such an interpretation of the exponentials based on finite sets is not
possible as it leads to a dereliction which is not natural (in the categorical sense).

With this standard multiset-based interpretation of exponentials, the rela-
tional model interprets also the differential extensions of Linear Logic and of
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the lambda-calculus presented in [ER03,ER04,EL09]. In this extension of the
lambda-calculus, terms can be derived (differentiated): a term M of type A — B
can be transformed into a term M’ of type A — (A — B) which is linear in its
second parameter of type A. The word “linear” can be taken here in its stan-
dard algebraic sense, or in its operational sense of “using its argument exactly
once”. This differentiation operation can be iterated, yielding a nth derivative
M®™) : A — (A" — B) which is n-linear in its n last arguments of type A. The
introduction of this new construction requires the possibility of freely adding
terms of the same type: in the model Rel, this addition operation is interpreted
as set union (remember that terms as interpreted as subsets of the interpreta-
tions of types). Also, each type has to contain a 0 element which, here, is the
empty set.

This strongly suggests to consider the following “Taylor series”, given a term
M of type A — B and a term N of type A: > %M(”)(O) -(N,...,N). For
simplifying the setting and for dealing easily with untyped terms, it is suitable
to consider a version of that formula where coefficients are all equal to one,
and where addition of terms is an idempotent operation: terms form a complete
l(a]m;c]tice anNd)the Taylor expansion of M can be written more simply \/>- ; M (™) (0)-
oy IN).

With Regnier, the second author studied this operation in [ER08,ER06a],
introducing a lambda-calculus with resources which can be seen as the differential
lambda-calculus where ordinary® application can be used only for applying a
term to 0: this is the only ordinary application needed if we want to Taylor
expand all the applications occurring in lambda-terms. In these two papers we
proved in an untyped setting that, Taylor expanding completely a lambda-term
M, one obtains a (generally infinite) linear combination of resource terms and
that, if one normalizes each resource term occurring in that formal sum*, one
obtains the Taylor expansion of the Béhm tree of M.

This result implies that, in a denotational model which validates the Taylor
expansion formula in the sense that the interpretation of a term M is equal to
the interpretation of its Taylor expansion, the interpretation of an unsolvable
lambda-term® is necessarily equal to 0. Since the multiset-based exponential of
Rel validates the Taylor expansion formula, any model of the pure lambda-
calculus in the corresponding cartesian closed category, such as the model pre-
sented in [BEM07,BEMO09], seems to be bound to be sensible (at least if differen-
tial operations are interpreted in the standard way). This seems to be a serious
limitation in the equational expressive power of this kind of semantics.

3 In the differential lambda-calculus, there are two kinds of application: the ordinary
application of a term to an argument, and the application of the nth derivative of
a term to a n-tuple of terms. This latter application is n-linear in its arguments
whereas the former is not linear.

* Resource terms are strongly normalizing, even if they are not typeable.

® We recall that a term is solvable iff its head reduction terminates.



This problem arised during a general investigation undertaken by the authors,
whose scope is to develop an algebraic setting for differential extensions of the
lambda-calculus, in the spirit of [PS98,MS09].

Content. The present paper proposes a solution to this problem, by introducing
new exponential operations on Rel. The idea is quite simple: we replace the set
N of natural numbers (which are used for counting multiplicities of elements in
multisets) by more general semi-rings which typically contain “infinite elements”
w such that w + 1 = w. Mutatis mutandis, the various structures of the expo-
nentials (functorial action, dereliction etc) are interpreted as with the ordinary
multiset-based exponentials. For these structures to satisfy the required equa-
tions, some rather restrictive conditions have to be satisfied by the considered
semi-ring: the semi-rings which satisfy these conditions are called “multiplicity
semi-rings”. We show that such a semi-ring must contain N and we exhibit mul-
tiplicity semi-rings with infinite elements.

In these models with infinite multiplicities, the differential constructions are
available, but the Taylor formula does not hold. It is possible to find morphisms
f A — B (in the associated cartesian closed category) which are # 0 but are
such that, for all n, the nth derivative f("(0) : A” — B is equal to 0. The
Taylor expansion of such a function is the 0 map, and hence the function is
different from its Taylor expansion. This is analogous to the well known smooth
(C*®) map f : R — R defined by f(0) = 0 and f(z) = e~ */I*l for  # 0: all
the derivatives of f at 0 are equal to 0 and hence there is no neighborhood of 0
where f coincides with its Taylor expansion at 0. In some sense, f is infinitely
flat at 0, and we obtain a similar effect with our infinite multiplicities.

For any multiplicity semi-ring which contains an infinite element, we build
a model of the pure lambda-calculus, which is not sensible and, more precisely,
where the term {2 = (Az () z) Az (z) « has a non-empty interpretation (we also
exhibit a non solvable term whose interpretation is distinct from that of (2).

Warning. Most omitted proofs can be found in the Appendix section.

1 The relational model of Linear Logic

Rel is the category whose objects are sets and with hom-sets Rel(X,Y) =
P(X xY). In this category, composition is the ordinary composition of relations:
if R € Rel(X,Y) and S € Rel(Y, Z), then

S R={(a,c) e X xZ|3beY (a,b) € Rand (b,c) € S}.

and identities are the diagonal relations: ldx = {(a,a) € X}.

This category has a well known symmetric monoidal structure (compact
closed actually), with tensor product given on objects by X; ® Xo = X1 X X»
and on morphisms by

R ® Ry = {((al,ag), (bl,bg)) | (ai,bi) € R; for i = 1,2}



for any R; € Rel(X;,Y;) (i = 1,2). The associativity and symmetry isomor-
phisms are the obvious bijections, the neutral object of the tensor product is the
singleton set 1 = {x}.

This monoidal category is closed: the object of morphisms from X to Y is
X — Y = X x Y, with evaluation morphism ev € Rel((X —Y) ® X,Y) given
by ev = {(((a,b),a),b) | a € X, b € Y}. And, given R € Rel(Z ® X,Y), the
linear curryfication of R is cur(R) = Rel(Z, X — Y'). This category is star-
autonomous, with dualizing object 1 = 1.

The category Rel is also cartesian: the cartesian product of a family of ob-
jects (Xi)ier is [[;e; Xi = U;e; ({7} x I). The binary cartesian product of X
and Y is denoted as X & Y and the terminal object is T = (. The projec-
tion m; € Rel([[,c; Xi, Xi) is m; = {((4,a),a) | a € X;} and, given a family
(R;)icr of morphisms R; € Rel(Y, X;), the corresponding morphism (R;);cs €
Rel(Y, [[;c; Xi) is given by (Ri)ier = {(b, (i,a)) | i € [ and (b,a) € R;}.

2 Exponentials

We present a way of building exponential functors, once a notion of multiplicity
is given, as a semi-ring satisfying strong conditions.

2.1 Multiplicity semi-rings

Notational convention for indices. We shall use quite often multiple indices,
written as subscript as in “a;;;” which has three indices 7, j and k. When there
are no ambiguities, these indices will not be separated by commas. We insert
commas when we use multiplication on these indices, as in “a; 25" for instance.

A semi-ring M is a multiplicity semi-ring if it is commutative, has a multi-
plicative unit and satisfies

(MS1) Vni,ne € M n3+mno=0= n; =ny =0 (we say that M is positive)

(MS2) Vni,no € M ni+mns=1=mn; =0orny =0 (we say that M is discrete)

(MS3) Vni,n2,p1,p2 € M ny+ng = p1 + p2 = 31, 112,721,722 € M ny =
11+ T12, N2 = T21 + 722, P1 =111 + 721, P2 = T12 + o2 (We say that A has
the additive splitting property)

(MS4) Ym,p,ni,ne € M pm = ni+ne = Ip1,pa, Mi1, M1a, Ma1, Moy € M mq1+
Ma21 = Mi2 + Moz = M, P1M11+Pamiz = N1, PrMma1 +pPamaog = np and p; +
p2 = p (we say that M has the multiplicative splitting property).

Generalized splitting properties. The splitting conditions are expressed in
a binary way, we must generalize them to arbitrary arities. We first generalize
Condition (MS3).

Lemma 1. Let M be a semi-ring which has the splitting property. Letny,...,n; €
M and p1,...,pr € M be such that 22:1 n; = Z;lej. Then there is a fam-
ily (Sij)liiLj:l of elements of M such that Vi € {1,...,1} n; = > "

j=1 i and
. 1
Vie{l,....r} pj =32 sij-



Similarly, we generalize Condition (MS4).

Lemma 2. Let M be a semi-ring which has the multiplicative and the additive
splitting properties. Let k € N with k # 0. Let | = 271, For alln,,...,n;, m,p €
M, if ny + -+ ng = mp, then there exist (pj)é»zl €M and (mij)f;lm:l with

*pit-tpm=p
e myj+---+mp;=mforj=1,...,1
e and myp1+---+mypr=mn; fori=1,... k.

In particular, a multiplicity semi-ring cannot be finite.

Proposition 1. Any multiplicity semi-ring M contains an isomorphic copy of
N.

We shall simply say that M contains N, that is N C M. In particular, a
multiplicity semi-ring cannot be finite.

Examples of multiplicity semi-rings. The elements of a multiplicity semi-
ring should be considered as generalized natural numbers. We give here examples
of semi-ring satisfying these axioms.

Natural numbers. The most canonical example of multiplicity semi-ring is the
set N of natural numbers, with the ordinary addition and multiplication.

Proposition 2. N is a multiplicity semi-ring.

Completed natural numbers. Let N = NU {w} be the “completed set of natural
numbers”. We extend addition to this set by n+w = w+n = w, and multiplication
by Ow = w0 = 0 and nw = wn = w for n # 0.

Proposition 3. N is a multiplicity semi-ring.

A semi-ring with infinite and non-idempotent elements. A more interesting ex-
ample is Ny = (NT x N) U {0}.The element (n,d) of this set (with n # 0) will be
denoted as nw?. We extend this notation to the case where n = 0, identifying
Ow? with 0, which is quite natural with these notations. Addition is defined as
follows (0 being of course neutral for this operation)

(n+nw? ifd=d

nw® + n'w? = { nwl ifn#0and d <d
nw? ifn A#0and d < d’
and multiplication is defined by nwin’w? = nn/witd".

Proposition 4. Ny is a multiplicity semi-ring.

From now on, M denotes a multiplicity semi-ring.



2.2 The exponential functor

Given a set X, we define !y X as the free M-module M(X) generated by X, that
is, as the set of all functions p : X — M such that supp(p) = {a € X | pu(a) #
0} (the support of p) is finite. These functions will be called M-multisets (of
elements of X).

Given a € X, we denote as [a] € Iy X the function given by [a](b) = J45. We
use the standard algebraic notations for denoting the operations in the M-module
X. If € X, we define the cardinality of p by #u = Zaesupp(#) p(a) € M.

Given R € Rel(X,Y), we define IR € Rel(luX, 'mY") as the set of all pairs
(i, v) such that one can find o € M(X x Y') with supp(c) € R and

Vae X pla) = Z o(a,b) and v(b) = Z o(a,b).

bey aeX

We say then that o is a witness of (i, v) for R. Observe that all these sums are
finite because o € M(X x Y).
It is clear from this definition that !y 1d = Id.

Lemma 3. Let R € Rel(X,Y) and S € Rel(Y, Z). Then !y (S-R) = uS-uR.

Proof. This is essentially an application of Lemma 1, see the Appendix. o

Lemma 4. Let R C X x Y and let (u;,v;) € Rt and ¢ € M fori=1,....n.
Then (2?21 Pilti, Z?Zl pivi) € lmR.

Proof. For each i, choose a witness o; of (u;,v;) for R. Then > " | po; is a
witness of (3°7" | pipi, »iq Pivi) for R. O

2.3 Comonad structure of the exponential

We introduce the fundamental comonadic structure of the exponential functor,
which consists of two natural transformations usually called dereliction (the
counit of the comonad) and digging (the comultiplication of the comonad).

Dereliction. We set dy = {([a],a) | « € X} € Rel(luX, X).

Lemma 5. dx is a natural transformation from !y to Id.

Proof. One applies Conditions (MS1) and (MS2), see the Appendix. a

Remark 1. One could consider taking M = {0,1} with 1+ 1 = 1, and then we
would have hyX = Pg,n(X), the set of all finite subsets of X. But this semi-
ring does not satisfy Condition (MS2) and, indeed, dereliction is not natural as
already mentioned in the introduction.



Digging. This operation is more problematic and some preliminaries are re-
quired.

Lemma 6. Let X and Y be sets and let R C X X Y. Let v1,v5 € lyY and
w € WX, If (u,11 + 12) € R, then one can find u1,pe € WX such that
w1+ pe = poand (u;,v;) € R fori=1,2.

Proof. We use Lemma 1, see the Appendix. |

Given M € Iyl X, we set

me!lyX

Since M has a finite support, this sum is actually a finite sum (the linear com-
bination, with coefficients M (m) € M, is taken in the module ! X).
We define py € Rel(lmX, 'm!mX) by

px = {(X(M), M) | M € X} .

The next lemma is the main tool for proving the naturality of digging. It
combines the two generalized splitting properties of M.

Lemma 7. Let X and Y be sets and let R C X X Y be finite. There exists
q(R) € N with the following property: for any p € X, 7 € \mY and p € M, if
(1, pm) € R, then one can findpy,. .., pgr) € M and py, ..., pgry € 'mX such

that Zg—(j) Dj =D, Z?(j) pipj = p and (pj, ™) € lmR for each j =1,...,q(R).

Proof. Let I ={a€ X | I €Y (a,b) e R}and J={be Y |Ja € X (a,b) € R}.
Given b € J, let deg,(R) = #{a € X | (a,b) € R} —1 € N and let deg(R) =
> ey degy(R). We prove the result by induction on deg(R).

Assume first that deg(R) = 0, so that, for any b € J, there is exactly one
a € I such that (a,b) € R, let us set a = g(b): ¢ is a surjective function from J to
I whose graph coincides with R (in the sense that R = {(g(b),b) | b € J}). Let
o be a witness of (u,pr) for R. For all b € J we have pr(b) = > .y o(a,b) =
o(g(b),b) and for all a € I we have p(a) = >° 4y _, 0(a,b) =p>_ 4 _, m(b). Let
7 € M(X xY) be defined by

T(a,b){w(b) if g(b) = a

0 otherwise.

then clearly supp(7) C R and 7 is a witness of (¢/, ) for R, where ¢/ € Iy X is
given by p/(a) = Zg(b):a m(a). Since pu’ = u, we obtained the required property
(with ¢(R) =1, p1 = p and py = p').

Assume now that deg(R) > 0 and let us pick some b € J such that k =
deg,(R)+1 > 1. Let ay,...,a; be a repetition-free enumeration of the elements
a of I such that (a,b) € R. We have

pr(b) = Z o(a;,b).

i=1



k.l

1=

Let [ = 2%, By Lemma 2, there exist (p;)}_, € M’ and (m;;)
M with

1,j—1 elements of

epi+--+p=p
® m1j+~~+mk]—:7r(b) fOI‘j:L...,l
e and myp1 + - +mupr = o(a;,b) fori=1,... k.

Let b1, ..., b be pairwise distinct new elements, which do not belong to X nor
to Y, and let Y/ = (Y \ {b}) U{b1,...,br}. We define a new relation to which
we’ll be able to apply the inductive hypothesis as follows:

S={(ab)eR|V #b}U{(a;b)|i=1,...,k}.

Then we have deg(S) = deg(R) — k + 1 < deg(R). Let 7 € M(X x Y’) be given
by
ola,c) ifcg {by,...,bi}
T(a,c) =< o(a;,b) if c=b; and a = a;
0 otherwise.

It is clear that supp(r) C S. Moreover, T is a witness of (H,Z;lejﬂj) for S,
where 7; € ImY” is given by

w(c) ifcé {by,..., by
wj<c>={ () ied (b
mij lfC—bZ'.
for each j € {1,...,1}. Indeed, for a € X we have

k

Z T(a,c) = Z 7(a,c) + ZT(G, bi)

cey”’ c€Y'\{by,....bx} i=1

k
= Z o(a,c) + Z(Sa,aio—(aiab)
i=1

€Y\ {b,...b}

= Z o(a,c)+o(a,b) = Z o(a,b) = p(a)

ceY'\{ec1,...,cr } bey

and for c € Y'\ {b1,...,b;} we have

l ' =7(c
Z (a,c) = Z o(a,c) = pr(c) = ijﬂj(c) since {vjlﬂ-] () = ()

aceX acX Z]:lp] =P

and last, for ¢ = b; (with ¢ € {1,...,k}), we have

! 1
Z 7(a,c) = o(a;,b) = Zmijpj = Zpﬂrj(c) .

acX



By Lemma 6, since (%2221 pjwj) € uS, we can find pq,..., € X such

that 2221 p; = pand (uj,pjm;) € mS for each j € I. Since deg(S) < deg(R),
we can apply the inductive hypothesis for each j € I. So we can find a family

(pjs)é’i(f,gz:l of elements of M such that p; = Z(Zsl) p;s and we can find a family
is l»’z(s)_ of elements of X such that Q(,S)p's is = pj, and moreover
Hjs)j=1,n=1 s=1 Pisk;j My

(11js,m;) € hwS for each j € [ and s € ¢(S). We conclude the proof by showing
that (pjs,m) € lmR. Let 75, € M(X x Y’) be a witness of (ujs,7;) for S. Let
0js € M(X xY) be given by

(a,b) 7js(a, V') it #£b
ois(a,b) = :
’ Z§:1 Tjs(a,b;) if ¥ =b.

For v/ € Y\ {b}, we have }_ _y0js(a,0') = > cx 7js(a,b') = m;(') = w(V).
Next we have

k
Z ojs(a,b) = Z ZTjs(aabi)

acX acX i=1

k
= Z Z Tjs(a,bi)

1=1aeX
k k
= Zﬂj(bz) = Zmij = W(b) .
i=1 i=1
On the other hand we have

Z ojs(a,b’) = Z ojs(a,b') + ojs(a,b)

bey b ey \{bv}
k
= Z Tjs(a,b/)+z7’js(a,bi)
b eY \{b} i=1
=Y msla,e) = pysla).
ceY’

It remains to prove that supp(cjs) C R, but this results immediately from the
definition of 0,5 and from the fact that supp(7;s) C S.

Observe that we can take g(R) = lg(S), so that in general q(R) = 2d(%),

O

Lemma 8. px is a natural transformation from ly to 'nlm.

Proof. This is essentially an application of Lemma 7. See the Appendix. ]



Comonad equations We prove that di, x -py = ld, x. Let (u,p') € X x
ImX . Assume first that (u,p’) € di,x -px. Then we can find M € Iyl X such
that (4, M) € px and (M, ') € di,x. This means that M = [i/] and hence
X(M) = p/, hence u = /. Conversely, for p € X we have (u,[u]) € px,
therefore (u, 1) € di, x -pyx-

Next we prove that lydx -py = ldi,x. Let (u, 1) € lydx -py. Let M €
Im!'mX be such that (u, M) € py, that is X(M) = u, and (M, p') € Iydx.
Let 0 € M{!yX x X) be a witness of (M, u') for dx. This means that p/(a) =
> venx 0w,a) = o([a,a) since supp(c) C dx, and that M(v) = o([a],a) if
v = la], and M(v) = 0 if #v # 1. It follows that X(M) = > o  M(v)r =
> ecx o([a],a)la] = i’ and hence p = . Conversely, one has (u1, 1) € 'wdx - px,
because M € ly!mX defined by M (v) = p(a) if v = [a] and M (v) =0if #v #0
satisfies (u, M) € px and (M, u) € lydx.

Lemma 9. Let M € lyly!mX. Then X(X(M)) =3 nepu,x MIN)Z(N).
Proof. We have
2EM) =Y DMy

=y (NZ M(N)N(u))y

velyX €mmX

= > M(N)(Z N(y)y)

NelhluX vEX

and we are done. O

Lemma 10. The digging is natural, that is p,, x -px = M px - Px, s0 let (u, M) €
!MX X !M!M!MX-

Proof. One applies Lemma 9, see the Appendix. ]

Fundamental isomorphism. One of the most important property of the ex-
ponential is that it maps cartesian products to tensor products. Combined with
the monoidal closure of Rel, this property leads to the cartesian closure of the
Kleisli category Rel,.

Proposition 5. Given two sets X1 and X5, there is an natural bijection nx, x, :
X1 @ wXe — (X1 & X2) and a bijection ng : 1 — Iy T.

Structural morphisms. They are used for interpreting the structural rules
of linear logic, associated with the exponentials. The weakening morphism is
weakx : ImX — 1 is weakx = {([],*)}. The contraction morphism is contrx :
IMX — Iy X ® Iy X is obtained by applying the !y functor to the diagonal map
X — X & X, so that contrx = {(A+ p, (A, p)) | A, p € lmX}.

There are other equations to check for proving that we have defined a model
of Linear Logic (see [Bie95]), the corresponding verifications are straightforward.



2.4 The Kleisli cartesian closed category

The objects of the Kleisli category Rel; of the comonad “ly” are the sets,
and Rel)(X,Y) = Rel(lyX,Y). Identity in this category is dereliction dx €
Reli(X,X) and composition is defined as follows: let R € Reli(X,Y) and
S e Rel|(Y, Z), then

SOR:S'!MR~pX.

We give a direct characterization of this composition law.

Proposition 6. Let (u,¢) € X X Y, we have (u,c) € S o R iff there exist
b1,...,bn €Y (not necessarily distinct), p1,...,pn € M and p1, ..., p, € X
such that

i=1

i=1

Proof. Assume first that (u,c) € S o R. Let M € !y X such that (u, M) € px
and let v € IyyY be such that (v,¢) € S and (M, v) € lyR. We have X (M) = p.
Let 0 € M{(!lyX x Y) be a witness of (M,v) for R, and let (p1,b1), ..., (fin,bn)
be a repetition-free enumeration of the set supp(c) C R. Taking p; = o(ui, b;),
we have Y0 | p;[bi] = v and Y. pi[pi] = M, and therefore = >"" | pifi;-
Assume conversely that (u,c) satisfies the conditions stated in the proposi-
tion. Then we take v = """ | p;[b;] and M = >"7 | pi[i;]. We have (v,¢) € S
and (u, M) € py and we have just to check that (M,v) € lyR. We define
o =21 pil(1s,bs)]; this is a witness of (M, v) for R, as easily checked. a

We recall that the cartesian product of X and Y in this category is X &
Y, with projections obtained by composing m; and me with dxgy in Rel.
The function space of X and Y is lyX —o Y. Evaluation Ev € Rel|(X &
(X —-Y),Y) ~Rel(lyX @ m(lmX — Y),Y) is

Ev = {((t [(1,)]),b) | 1 € 1y X and b€ V.

Curryfication is defined as follows: let R € Reli(Z & X,Y) ~ Rel(lyZ ®
'mX,Y), then Cur(R) = {(m, (1, 0)) | ((m,1n),b) € R} € Reli(Z,lmX — Y).

Differential structure and the Taylor expansion. We sketch very briefly
the differential structure of this model, which can be used for interpreting the
differential lambda-calculus introduced in [ER03,Vau05], or the various resource
lambda-calculi based on this kind of differential structures [ER08,Tra08].

We introduce first the codereliction morphism dx € Rel(X,!yX) by dx =
{(a,[a]) | @ € X}. Naturality is proved exactly as the naturality of derelic-
tion in 2.3. Coweakening coweakx € Rel(1, !y X) and cocontraction cocontry €
Rel(lyX ® X, yX) are obtained by applying the !y functor to the empty
morphism @) € Rel(T, X) and to the “codiagonal” morphism 7 Ums € Rel(X &
X, X), and by using the fundamental isomorphism. The equations involving
dereliction and coweakening and cocontraction (see [ER06b,BCS06,Fio07]) are



satisfied by naturality of dereliction. Similarly for the equations involving codere-
liction, weakening and contraction. One should check that the chain rule holds:
this is a bit long to express, but the proof is a simple verification.

Using codereliction and cocontraction, one defines easily a morphism dx €
Rel(luX ® X,IyX), with 0x = {(u,a,p + [a])}. Given R € Rel(X,Y) =
Rel(lyX,Y), one can define R' € Rel)(X,X — Y) (by linear curryfication
of R-dx) which can be considered as the first derivative of R: this operation sat-
isfies all the usual rules of differential calculus (linearity, Leibniz rule, chain rule
etc). Iterating this operation and using also dereliction and contraction, one can
define the Taylor expansion of R as the infinite union UZOGN R,, where, for each
n € N C M the morphism R, € Reli(X,Y) is simply {(u,a) € R | #p = n}.
So if M has infinite elements, it is not true in general that R coincides with its
Taylor expansion. As an example, let w be an infinite element of M and take
R = {(w[#],*)} € Reli(1,1). Then R, =0 for all n € N.

So we have defined a model of differential linear logic which does not satisfy
the Taylor formula.

3 Graph models in Rel

Graph models [Bar84] have been isolated by Scott and Engeler in the continuous
semantics. We develop here a similar construction, in the relational semantics.
Let A be a non-empty set whose elements will be called atoms, and are not pairs.
Let ¢ : A — (IyA — A) be a partial injective map.

We define a sequence (D}, )nen of sets as follows: Dy = A and D}, = D}, U
(("mD?, — D)\ t(A)). This sequence is monotone, and we set D* =, .y D5,
We have lyD* — D* =, cn('m Dy, — Dy,).

We define a function ¢ : D* — (lyD* — D*) by

_Jua) fa=acA
‘P(O‘){a ifagA

neN

and a function ¢ : (lyD* — D*) — D* by

a if (u, ) = t(a) where a € A
(1) if (p,a) ¢ o(A).

This definition makes sense because ¢ is injective, and because, if (u,a) €
("mD;, — D)\ t(A), then (u, ) € Dy .y C D*. Let (u,a) € D" — D"
If (1, ) € L(A), let a be the unique element of A such that t(a) = (u, ). We
have (1 (1,0)) = la) = 1(a) = (). TF (1,0) ¢ 1(4), we have @((u, a)) =
o(u, ) = (p, @) because (i, ) ¢ A, since no element of A is a pair.

Tt is clear that ¢ o ¢ = Id. We define two morphisms App = {([a], p(@)) | @ €
D'} € Rel|(D*, !y D" — D*) and Lam = {([(u, @)], ¥ (i, @) | (g, @) € lyD* —o
D'} € Rely(!yD* — D*, D*). Then we have App o Lam = Idy,, pc—op:, so that D*
is a reflexive object in Rel,, whatever be the choice of the multiplicity semi-ring
ML

Y(p, o) = {



3.1 Interpreting terms

Given a lambda-term M and a repetition-free list of variables @ = (21,...,2,)
which contains all free variables of M, the interpretation [M], € Rel,(D'", D*)
(where D'™ is the cartesian product of D* with itself, n times) is defined by
induction on M as follows

e [2;]z = m; (the ith projection from D'" to D)
e [A\x N], = Lam o Cur([M]z.2)
* [(N) Plz = Evo (App o [N]g, [Plz)

Using the cartesian closeness of Rel; and the fact that App o Lam = Idi,, p. s,
one proves that if M and M’ are beta-equivalent, and «x is a repetition-free list of
variables which contain all the free variables of M and M’, one has [M], = [M'],.
This requires to prove first a substitution lemma, see [AC98].

We present now this interpretation as a typing system (a variation of de
Carvalhos’s system R [DCO08]). A type is an element of D*. Given p € Iy D" and
a € D', we set 4 — a = (p, ). A typing context is a finite partial function
from variables to Iy D" If I,..., [} are contexts with the same domain and
P1,-..,pk € M, the sum Zlepil“i is defined pointwise (using the addition of
lmD"). The typing rules are

Lx:pkEM:a
R | P S | I RN 1) [ el e TEaaM ji—a
FEM: (X", pilB]) —a Viem LiFN:g
r+y,pliF (M)N :«

In the last rule, all contexts involved must have same domain.

Proposition 7. The judgment I' b M : « is derivable iff (I'(x1),...,I'(zn), @) €
[M), where @ = (x1,...,2,) is a repetition-free enumeration of the domain of
I, which is assumed to contain all the free variables of M.

Proof. Straightforward induction on the judgment. o

We take for M a multiplicity semi-ring which contains an element w such
that w+ 1 =w. Let A= {a}, t: A — (lyA — A) be defined by i(a) = (wlal,a),
so that (w[a] — a) = a. Let £2 = (§) 6 where § = Az (x) x.

Proposition 8. In the model D*, we have [{2] = {a}.

Proof. We have the following deduction tree (we have inserted in this tree the
equations between types or M-multisets of types that we use)

x:falFr:a=wla] —a x:falFxz:a
x:fal +wla] =wla]lF (z)x:a (same derivation)
FAx(z)z:wla] —a FAx(z)x:wla] —a=a
Fz(x)z) e (z)x:a



Therefore a € [£2].

Conversely, let a € D* and assume that F (2 : a. There must exist p € Iy D*
such that - 6 : p — o and V3 € supp(p) F § : 8. Form the first of these two
judgments we get x : u F (2)x : o and hence there must exist v € lyD* such
that © = v + [v — a]. From the second judgment we get - § : ¥ — « and
V3 € supp(v) F 0 : [. Iterating this process, we build a sequence (u;)$2, of
elements of !y D* such that - §:pu; — o, V8 € supp(u;) F 0 : 5 and p; =
fit1 + [piv1 — «] for all i. Let 3; = p; — «, it follows that Vi §; € supp(p1) and
since supp(p1) is finite, we can find ¢ and n > 0 such that 8;y, = ;. We have
Bi = (i — @) = (i1 +[Bit1]) — @) = - = ((Hin+[Biva]+ - +[Bign]) — @)
and since fi1n = (itn — @), We get firn = fitn+[Biy1]+- -+ [Biyn] (because
1 is injective) and hence B;4+n € supp(ititn)- But Biyrn = (ttitn — «) and hence
we must have 3,1, = a. Indeed, if 3,1, ¢ A then we have §;1, = (ftitn, @) and,
if k is the least integer such that 3,1, € Dj, we have k£ > 0 and 3 € Dj,_, for
all B € supp(pitn). This is impossible since B4, € supp(iitn). Since (firn, —
«) = a, we have o = a and we are done. a

Since ([] — a) € My 2] and a # ([] — a), we have found two unsolvable
terms (namely {2 and Ay 2) with distinct interpretations in D* and hence this
model is not sensible.

Conclusion

We have introduced the concept of multiplicity semi-ring, which can be used
for generalizing the standard exponential construction of the relational model of
Linear Logic. Such a semi-ring must contain N as a sub-semi-ring but can also
have infinite elements w such that w + 1 = w. In that case, the corresponding
model of Linear Logic is a model of the differential lambda-calculus which does
not satisfy the Taylor formula, and it is possible to build non sensible models of
the lambda-calculus in the corresponding Kleisli cartesian closed category. This
shows that models of the pure differential lambda-calculus can have non sensible
theories and provides a new way of building models of the pure lambda-calculus
where non termination is taking into account in a quantitative way by means of
these infinite multiplicities.
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Appendix: omitted proofs

Proof of Lemma 1. Assume first that [ = 2 and let us prove the result by
induction on r. For » = 1, one takes s;1 = n1 and so; = no. Assume that the



property holds for 7 and let us prove it for r+1. Let ¢; = 2;21 p; and g2 = pri1.
Then, applying Condition (MS3), we can find ¢;;, € M for i = 1,2 and k = 1,2
such that ny = t11 + t12, na = ta1 + ta2, ¢1 = t11 + t21 and g2 = t12 + ta2. By
inductive hypothesis we can find a family wii)?il,j:l such that t1; = Z;Zl uij,

t21 = Z;:l U2, and pj = Uiy + Uz for ] = 1, ceey T Then we define (Sij)?ifjlzl

by setting s;; = uy; fori =1,2and j =1,...,7, and s;,41 =t for i =1,2.
Now we prove the result for an arbitrary value of [, by induction on this

parameter. For [ = 1, we set s;; = p; for j = 1,...,r. Assume that the result

holds for [ and let us prove it for [+1. Let m; = 2221 n; and me = n;y1. We have
mi+mg = Z;:1 p; so we can apply the property that we have just proved. Let
(tkj)i’il j—1 be a family of elements of M such that my = Z;Zl ty; for k=1,2
and p; = t1; +1g; for j = 1,...,7. By inductive hypothesis, we can find a family
(uij)é£17j:1 such that n; = 37w fori=1,...,land p; = 22:1 u;;. Then we
define a family (Sij),i-i}:;zl by setting s;; = u;; fori=1,...,land j =1,...,7,
and s;41,5 = to; for j =1,...,r, and we are done. O

Proof of Lemma 2. By induction on k. For £k = 1, one has [ = 1, and one takes
p1 = p and my; = m.

Assume that the result holds for k (and let | = 28=1) and let us prove it for k+
1.Let nq,...,nk41,m,p € M with ny+- - -+ngi+1 = mp. By inductive hypothesis,
we can find (pj)é»zl € M and (mij)f’:llﬁjzl with the following properties
pt--tp=p
my;+---+mpy=mforj=1,...,1
mi1p1+-~+milpl =N for i = 1,,k’71
and mgip1 + -+ mgpr = Nk + Ny

By Lemma 1, we can find a family (Tjh)?;,h:o of elements of M such that
Nk+h = T1p + - +my for b = 0,1 and Vj € | my;p; = rjo + r;1. By Condi-
tion (MS4), for each j € [, we can find pj1,pjo € M with p;1 + pjo = p; and a
famlly (Sjuh)i:ll,hzo of elements of M such that Mmr; = Sj10 + Sj11 = 5520 + Sj21
and 7;5, = sj1npj1 + Sjonpse for each j € [ and h =0,1. For i € k — 1 we have

n; = Mi1p11 + mapiz + -+ mygpp + mapie
and for h = 0,1, we have

Nk+h =T1h + -+ Tin
= S11nP11 + S120P12 + - - + SinPi1 + Si2nPi2 -

Let us define a family (p;-,)?,lzl of elements of M by setting pj = pi1,ph =

k41,21

P12y .-+ Doy = Pi1, Py = pi2 and let use deﬁne_a family (mj; );"; j/_, by setting
M oi 1 = Mg = my; fori € k—1and j € [, and by mj_;, ;| = sjin and

My p.o; = Sjon for j € Land h = 0,1. With these definitions, we have



et tpy=prttp=p

® M oi gt Mg 9 g =Mt Mot HS 10811 = Mgt g =
miforj=1,...,1

® M ot F Mg o =Mt M1, 820+ Sj21 = Mt Mg =m
fory=1,...,1

° m§71p§+---+m;721p’21 =n;fori=1,...,k+1

and the lemma is proved. a

Proof of Proposition 1. One defines a map f : N — M by induction on natural
numbers by f(0) = 0 and f(n + 1) = f(n) + 1, that is f(n) = >, 1; we
denote this sum as n - 1. This map is a semi-ring morphism as easily checked,
by induction on natural numbers again. We prove that f is injective, so let
p € N and let us prove that f(n) = f(n + p) = p = 0 by induction on n. For
n = 0, assume that p- 1 = 0. Applying Condition (MS1) we get easily p = 0 (by
induction on p actually). Assume now that (n+ 1+ p)-1= (n+ 1) -1, that is
(n+p)-14+1=mn-1+1.By Condition (MS3), one can find 711,712, 721,722 € M
such that n+p =711 +r12, 1 =191 + 792, n =111 + 721 and 1 = ryo + r92. By
Condition (MS2), there are two cases to consider: either 799 = 1, and in that
case 191 = r12 = 0, or 199 = 0, and in that case r2;1 = r12 = 1. In both cases we
have n 4+ p = n and hence p = 0 by inductive hypothesis. O

Proof of Proposition 2. Let us check Condition (MS3), so let ni,ns,p1,p2 € N
be such that ny; +ns = p1 + p2 and let ¢ be this common value. Pick arbitrarily
sets I, Is, J1, Jo C q of respective cardinality n1,no, p1 and po. It suffices to take
Tij = #(Iz n JJ)

We prove now Condition (MS4). We apply Euclidian division by p and we
get ny = qip + r1 and ne = qop + ro where 71,72 < p. We have r; + ro =
p(m — q1 — ¢2), and since r1,79 < p, we must have m — ¢ — ¢ = 0 or m —
@1 — ¢ = 1. In the first case we have r; = ro = 0. Pick p1,p2 € N such
that p; + p2 = p. Set my; = mi2 = ¢1 and my; = mgz = ¢2. Then we have
mi1 + Mo1 = Mmiz + Moy = M, p1mi1 + p2Miz = P1q1 + P2q1 = pq1 = N1
and pyma1 + pamae = pig2 + p2g2 = Pge = ng as required. Assume now that
m—q1—q =1 Weset py =711, p2 =72, m1 =q +1, m2 = q1, ma1 = g2
and mos = g2 + 1. We have mq1 + mo1 = mio + mas = q1 + ¢2 + 1 = m. Next
we have pymi1 + pamiz = r1(q1 + 1) +raqn = (11 +r2)q1 + 71 = pgr + 1 = ny.
Similarly we have pyma; + pamas = no, as required. O

Proof of Proposition 3. We check Condition (MS3), so assume that n1+ns = p1+
p2 = q.If ¢ # w, then we have n;, p; € N for each ¢, j and we use Condition (MS3)
for N. Assume that ¢ = w. Without loss of generality we can assume that ny =
p1 = w. We can take ri; = w, roo = 0, 112 = p2 and ro; = no. Last we check
Condition (MS3), so assume that pm = n; + no = ¢. Assume first that ¢ € N.
If ¢ # 0, we know that p, m,ny,ne € N and we can use Condition (MS4) in N.
If ¢g =0, then ny = ny = 0 and we must have m =0 or p = 0. If p = w and



m = 0 then we can take py = w, po =0, M1 = Mm1a =mo1 =mae =0.If p=20
and m = w, we take p; = ps = 0, m11 = mo; = w and M2 = Mmoo = 0. We are
left with the case were ¢ = w. Without loss of generality we can assume that
n1 = w, and of course we must have m # 0 and p # 0. Assume first that p = w.
Then we can take p;1 = w, p2 = na, mi1 = m, ma; = 0, mi2 = m’ such that
m' +1 = m and mgy = 1. Assume last that m = w. Then we can take p; = p’
with p’ +1=p, po =1, m11 = w, mo; = w, M2 = w and may = nNo. O

Proof of Proposition 4. A simple case analysis shows that this addition is asso-
ciative, and it is obvious that it is commutative. Distributivity is easily checked
as well, so that we have defined a semi-ring. Observe that w + 1 = w, but that
w+ w = 2w # w and actually, unlike N, this semi-ring has no element n such
that n +n = n (apart from 0 of course).

Let us check the splitting property, so assume that njw? 4 now?® = pjw® +
pow®? and let us build a family (qijwfif)?fl =1 If di = dy and e = ea, we
are reduced to the splitting property of N. if d; = do and e; > es, then we
have (n; 4 no)w® = p1we. We can set for instance qjwf1' = njw®, gowfz =
paw®?, qglwf21 = now® and qggwf” = 0. Then we have quwf“ + Q12u}f12 =
nlwdl +p2w€2 — nlwdl, q21wf21 + q22wf22 — n2wd1, Q11wf“ + q21wf21 — nlwdl +
now® = pw® and qraw’? + goow’?? = pow®. The last case to consider (up
to commutativity of addition) is d; > dy and e; > es. Then we know that
niw® = p1w®. We can set qriwf1 = njw, graw’? = pow®, guw/? = now
and QQQWf22 =0.

Let us check Condition (MS4), so assume that mwpw® = njw® + naw
If dy = ds we are reduced to Condition (MS4) in N, so assume that do < d;
(and of course n; # 0 and ny # 0). So we have pmw®t® = nyjw?. Our goal is to
find (pjw® )?:1 and (mijwcif)fflyjzl with p1w® + pow® = pwé, prw mijwt +

do

Pawmisw®? = nyw® for i = 1,2 and mijw +mojw® = mwfor j =1,2. We
consider several cases. For the two first cases, we set pjw® = pw®, mpwt =
mw® and mojw®t = 0, so that m11w! + maw®' = mw® holds trivially.

e Agsume first that ¢ < dp. We set pow® = now®™ ¢, Mmaosw®? = w® and
myaw? = (m — 1)w®. We have e + ¢ = di > d and hence e; = ¢ >
dsy — ¢ = e5 80 that p1w + pow® = pw®. Next we have miow2 + mogw? =
(m — Dw® + w° = mw®. And p1wmw? + paw®miaw? = pmw®te +
na(m — DNw® = pmwh = njw? since e + ¢ = d; > dy. Last we have
P1w mo1w? 4 paw@meosw? = 0 + Now® e = now2.

e Assume now that ¢ > ds and that e > 0. We set pow® = ng (so e3 = 0),
Moow? = w2 misw®? = mw®. Then we have DLW + pow®? = pw€ + no =
pw® since e > 0. Also miaw™? + Mmoaw®? = mw® + w? = mw® since we
have assumed that ¢ > ds. Next we have piwmiiwt + pow®?miow? =
Pwlmw+namw® = mpwte = niw® since e > 0. Last we have pPrwtmoiw +
Paw?mosw? = 0 + now®.

e Last, assume that ¢ > ds and e = 0, so that ¢ = d;. We take pjw® =1,
pow® = p — 1. We set m11w !t = mw®, mpaw? = mw®, mojw®! = now2



and masw©? = 0. We have mq1w! + maijw! = mw® + now® = mw® since

¢ > do and myow? + moow®? = mwc. Next, we have piwmipjw?! +
P2wmiaw? = mw® + (p — I)mw® = nyw® and last pywmaiw® +
Paw?mosw? = nowz, O

Proof of Lemma 3. First, let (u,7) € Im(S - R). Let ¢ be a witness of (i, w) for
S - R. For each (a,c) € S- R, let us choose f(a,c) € Y such that (a, f(a,c)) € R
and (f(a,c),c) € S. Let v € M(Y) be given by

v(b) = Z o(a,c).
fla.c)=b

This sum is finite, because ¢ has finite support. Moreover, if b € supp(v) then we
must have b = f(a, c) for some (a,c) € supp(p) and there are only finitely many
such pairs (a, c), so v has finite support: v € Y. We check that (u,v) € luR,
and for this we exhibit a witness, namely o € M(X X Y) given by

o(a,b) = Z e(a,c).
f(a,c)=b

Indeed, we have

VaeX  Yeyo(ab) =3 ey Zf(a7c):b p(a,c) = Z(a,c)eR ¢(a,c) = p(a)
YVoeY 3 exolab) =3 cx Zf(a,c):b p(a,c) = Zf(a,c):b p(a,c) = v(b)
One checks similarly that (v, 7) € uS, and hence (p,7) € uS - lmR.
Conversely, let (u,7) € yS - ImR. Let v € lyY be such that (u,v) € MR

and (v,m) € IyS and let 0 € M(X xY) and 7 € M(Y x Z) be corresponding
witnesses. Let b € Y. We have

> olab) =Y r(bc) =v(b).

acX ceZ
By Lemma 1, we can find ¢* € M(X x Z) such that

Vae X o(a,b) = Z ¢(a,c) and Vae€ X 7(bc)= Z ©’(a,c).
ceZ aeX

Let © = 3 cappn) ¢ Let a € X, we have

pla) = ola,b) =3 ¢'la,c) = > ¢'lac) =) pla,c).

bey beY ceZ ceZ beY ce”Z

Similarly one show that m(c) = > .y ¢(a,c). Last observe that if (a,c) €
supp(¢), one has (a,c) € supp(p®) for some b. For such a b we have (a,b) €
supp(c) C R and (b,c¢) € supp(r) C S. This shows that supp(¢) C S - R, so that
¢ is a witness of (u,7) for S - R, and hence (p, 7) € 'mS - R. |



Proof of Lemma 5. Let R € Rel(X,Y). We must show that R-dx = dy IyR.
Let p € X and b € Y. Assume first that (4, b) € R-dx; this means that there
exists @ € X such that (u,a) € dx and (a,b) € R. Hence we have u = [a]. We
have ([a], [b]) € !mR and hence also (,b) € dy -ImR.

Conversely assume that (u,b) € dy -IqR, so that (u,[b]) € uR, and let
o € M(X xY) be a witness. We have ) _ o(a,b') = [b](0') for each b’ € Y.
By Conditions (MS1) and (MS2), one has Va € X o(a,b’) = 0 for each b’ # b,
and there exists @ € X such that o(a,b) = 1 and o(a’,b) = 0 for all a’ # a. We
have therefore = [a]. Since (a,b) € R, this shows that (u,b) € R-dx because
([a],a) € dx. |

Proof of Lemma 6. Let 0 € M(X x Y) be a witness of (u,v) for R. Let b € Y.
We have v1(b) +v2(b) = Y ,cx 0(a,b). By Lemma 1 we can find ¢? € M(X) (for
i =1,2) such that v;(b) = 3 .y ¥'(a) (for i = 1,2) and o(a, b) = ¢4 (a)+¢5(a).
Let oi(a,b) = ¢l(a). Then o1(a,b) + o2(a,b) = o(a,b) and this shows that
supp(oi) € R for i = 1,2 (using Condition (MS1)). We have 3 _ 0i(a,b) =
vi(b) for each i € {1,2} and b € Y. We set pi(a) = >,y 0i(a,b). Then p; € !y X
for i = 1,2 since o; has finite support. Moreover (u;, ;) € lyR with witness o;
for i = 1,2. We conclude because p1(a) + p2(a) = > oy (01(a,b) + o2(a, b)) =
EbeY o(a,b) = p(a). o

Proof of Lemma 8. Let X and Y be sets and let R C X x Y. Let (u,II) €
!MX X !M!MY-

Assume first that (u, IT) € R -pyx. Let M € !X be such that (M, IT) €
Im'mR and (p, M) € py, that is (M) = p. Let © € M(IyX X IyY) be a witness
of (M, IT) for Iy R. This means that

Vi elwX M= Y e\, )
7' ewY
vr' e Y IH(n') = Z o', 7'))

peMX

Since supp(©) C !y R, by Lemma 4, we have

Z oW, 7", Z o, | € luR,
peEyX, ey peyX, ey
that is (X(M), X (II)) € mR. Therefore (u, IT) € py -\mR, since (X(I1),II) €

Py-
Conversely, assume that (u, IT) € py -ImR, that is (u, 2 (IT)) € 'mR, that is
(1, > ren,y H(m)m) € uR. Let Ro C R be finite and such that

(1, > H(m)r) € mRo.

TEeY



Such an Ry exists because p and I1 have finite support. By Lemma 6, one can
find a family (u™)rcsupp(ir) Of elements of !y X such that p = Zﬁesupp m 1™ and
V€ supp(IT), (p™, II(m)7) € !mRy. Applying Lemma 7, for each 7 € supp(I1),
we can find a family (uf)fgf“) of elements of Iy X and a family (p] )z(?o) of

elements of M such that
» Sy T = H(m)

o S pipr =
e and Vz € q(Ro) (pF,m) € luR.

We define M € M'"X by setting

M= Y Pl

wesupp(IT)
i€q(Ro)

This sum is finite because supp(I7) is a finite set.

We have
SMy= > piuf
mesupp(IT)
i€q(Ro)
q(Ro)
= > o= ), u = u,
mesupp(IT) =1 wEsupp (11

so that (u, M) € py. Moreover we have Vr € supp(II) Vi € g(Ro) (1T, 7) € lmR
and hence by Lemma 4 we have

M, > pfla]| € mluR
wesupp(IT)
i€q(Ro)

and hence (M, IT) € ! R because

Soopflal= Y H(m)rl=11.

wesupp(IT) wesupp(IT)
i€q(Ro)

]

This shows that (i, IT) € MR - py as announced.

Proof of Lemma 10. We prove that p, yx-pxy = MPx-Px, so let (u ./\/l)
X x v'v!mX. Assume first that (u, M) € py, x -py, that is X(X(M ))
We define M € M™X as follows:

Mw)= > M(N).
NelyluX
Y(N)=v



Then M € ly!yX. Indeed, for each v € supp(M) we can find N € supp(M) such
that v € supp(N), hence supp(M) C UNGSUPP(M) supp(N) and this latter set is
finite. We have

> > M) |v

veluX \ X(N)=v

= ) M©N)Z(N)
= X(EM)) =n

and hence (u, X(M)) € px. Let © € M{(!lqX x ly!mX) be defined by

O, N) = {M(N) if S(N) = v

0 otherwise.
Then clearly supp(©) C px. Moreover, we have ) o, + O(v,N) = M(N) for all
N € vlwX and 3o ney 1, x OW N) =3 5 (vy=y M(NV) = M(v) for all v € Iy X,
by definition of M. This shows that © is a witness of (M, M) for py. So we have
shown that (M, M) € Iy py and therefore (u, M) € lmpx -px-

Assume conversely that (1, M) € lmpx -px. Solet M € !y X be such that
(u, M) € px and (M, M) € lypy. Let © € M{lyX X ly!mX) be a witness of
(M, M) for py. Since supp(©@) C py, there is a map H : lyyyX — M such that

O, N) {H(N) if Y(N)=v

0 otherwise.

For any N € ly!mX we must have M(N) =3 ., +O(r,N)) = H(N) so that
H = M. Therefore we have M(v) = > 5 y)_, M(N) for all v € lyX. By
Lemma 9 we have

2EM)= Y MN)ZW)

Nely'mX

S D M

velyX \X(N)=v
= Z M(v)v since M (v) = Z M(N)
veluX X(N)=v
=X(M) =p

Therefore (pu, M) € py, x - Px- .



Proof of Proposition 5. The second bijection is n = {(x,[])}. The first one is

nx, X, = {((11, p2),ing (1) +ina(p2) | p1 € X1 and po € yXo}

where in; (1) = >, cx, #(a)[(i, a)]. Let us check that this isomorphism is natural,
solet R; C X; xY; for i = 1,2. We must check that ny, y, - (IMR1 ® lmR2) =
'M(Rl & RQ) ‘NX, X, So let i € 'mX; and v; € yY; for i = 1,2.

Assume first that ((,U,l,ug), inl(yl) + ing(VQ)) S nNy;,,v, - ('MRI ® 'MRQ) This
means that one can find v) € lyY; for i = 1,2 such that (u;,v)) € mR; for
i =1,2, and ((v1,v4),in1(v1) + ina(v2)) € ny, y,. This means that v; = v} for
i = 1,2. Since (u1,v1) € Ry, we have (inq(p1),in1(11)) € 'm(R1 & Rs) and
similarly (in2(p2),in2(2)) € lm(R1 & Rz) and hence (ing(p1) +ina(pz),ing(v1) +
in2(l/2)) S 'M(Rl & RQ) by Lemma 4. But ((ul,ug),inl(ul) + in2(‘u2)) S nx, x,
and we have therefore ((u1, p2),in1(v1) +in2(12)) € m(R1 & R2) - nx, x,-

Assume conversely that ((u1, u2),in1 (1) +inz(v2)) € m(R1 & Ra)-nx, x,, S0
that there exist u € X, for i = 1,2 with ((p1, p2),in1 (1) +in2(u)) € nx, x,
and (ing(p)) + in2(ph),ing (1) + ina(r2)) € (R1 & Rz). Therefore p) = p;
for i = 1,2 and hence (iny(u1) + ina(p2),ini(v1) + ina(12)) € (R & Ra).
Let ¢ be a witness of (iny(p1) + in2(p2),in1(v1) + ina(12)) for Ry & Ra. Since
supp(p) € Ry & Ry, we have (,ul,ul € IyR; for i = 1,2: take ¢; € M(X; x Y;)
defined by ¢;(a;, b;) = o((i,a;), (i,b;)), then ¢; is a witness of (u;,v;) for R;. Tt
follows that ((p1, p2), (v1,12)) € 'MR1 ® 'mR2 and therefore ((u1, u2),ing(v1) +
ing(l/g)) €Ny, v, - ('MRl X 'MRQ) O



