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X to the set of all �nite multisets of elements of X . One might be tempted to use�nite sets instead of �nite multisets sine, in the oherene spae semantis, theexponential an be interpreted by an operation whih maps a oherene spae tothe sets of its �nite liques (with a suitable oherene). In the relational modelhowever, suh an interpretation of the exponentials based on �nite sets is notpossible as it leads to a derelition whih is not natural (in the ategorial sense).With this standard multiset-based interpretation of exponentials, the rela-tional model interprets also the di�erential extensions of Linear Logi and of
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the lambda-alulus presented in [ER03,ER04,EL09℄. In this extension of thelambda-alulus, terms an be derived (di�erentiated): a termM of type A→ Ban be transformed into a term M ′ of type A → (A → B) whih is linear in itsseond parameter of type A. The word �linear� an be taken here in its stan-dard algebrai sense, or in its operational sense of �using its argument exatlyone�. This di�erentiation operation an be iterated, yielding a nth derivative
M (n) : A → (An → B) whih is n-linear in its n last arguments of type A. Theintrodution of this new onstrution requires the possibility of freely addingterms of the same type: in the model Rel, this addition operation is interpretedas set union (remember that terms as interpreted as subsets of the interpreta-tions of types). Also, eah type has to ontain a 0 element whih, here, is theempty set.This strongly suggests to onsider the following �Taylor series�, given a term
M of type A → B and a term N of type A: ∑∞

n=0
1
n!M

(n)(0) · (N, . . . , N). Forsimplifying the setting and for dealing easily with untyped terms, it is suitableto onsider a version of that formula where oe�ients are all equal to one,and where addition of terms is an idempotent operation: terms form a ompletelattie and the Taylor expansion ofM an be written more simply∨∞
n=0M

(n)(0)·
(N, . . . , N).With Regnier, the seond author studied this operation in [ER08,ER06a℄,introduing a lambda-alulus with resoures whih an be seen as the di�erentiallambda-alulus where ordinary3 appliation an be used only for applying aterm to 0: this is the only ordinary appliation needed if we want to Taylorexpand all the appliations ourring in lambda-terms. In these two papers weproved in an untyped setting that, Taylor expanding ompletely a lambda-term
M , one obtains a (generally in�nite) linear ombination of resoure terms andthat, if one normalizes eah resoure term ourring in that formal sum4, oneobtains the Taylor expansion of the Böhm tree of M .This result implies that, in a denotational model whih validates the Taylorexpansion formula in the sense that the interpretation of a term M is equal tothe interpretation of its Taylor expansion, the interpretation of an unsolvablelambda-term5 is neessarily equal to 0. Sine the multiset-based exponential of
Rel validates the Taylor expansion formula, any model of the pure lambda-alulus in the orresponding artesian losed ategory, suh as the model pre-sented in [BEM07,BEM09℄, seems to be bound to be sensible (at least if di�eren-tial operations are interpreted in the standard way). This seems to be a seriouslimitation in the equational expressive power of this kind of semantis.3 In the di�erential lambda-alulus, there are two kinds of appliation: the ordinaryappliation of a term to an argument, and the appliation of the nth derivative ofa term to a n-tuple of terms. This latter appliation is n-linear in its argumentswhereas the former is not linear.4 Resoure terms are strongly normalizing, even if they are not typeable.5 We reall that a term is solvable i� its head redution terminates.



This problem arised during a general investigation undertaken by the authors,whose sope is to develop an algebrai setting for di�erential extensions of thelambda-alulus, in the spirit of [PS98,MS09℄.Content. The present paper proposes a solution to this problem, by introduingnew exponential operations on Rel. The idea is quite simple: we replae the set
N of natural numbers (whih are used for ounting multipliities of elements inmultisets) by more general semi-rings whih typially ontain �in�nite elements�
ω suh that ω + 1 = ω. Mutatis mutandis, the various strutures of the expo-nentials (funtorial ation, derelition et) are interpreted as with the ordinarymultiset-based exponentials. For these strutures to satisfy the required equa-tions, some rather restritive onditions have to be satis�ed by the onsideredsemi-ring: the semi-rings whih satisfy these onditions are alled �multipliitysemi-rings�. We show that suh a semi-ring must ontain N and we exhibit mul-tipliity semi-rings with in�nite elements.In these models with in�nite multipliities, the di�erential onstrutions areavailable, but the Taylor formula does not hold. It is possible to �nd morphisms
f : A → B (in the assoiated artesian losed ategory) whih are 6= 0 but aresuh that, for all n, the nth derivative f (n)(0) : An → B is equal to 0. TheTaylor expansion of suh a funtion is the 0 map, and hene the funtion isdi�erent from its Taylor expansion. This is analogous to the well known smooth(C∞) map f : R → R de�ned by f(0) = 0 and f(x) = e−1/|x| for x 6= 0: allthe derivatives of f at 0 are equal to 0 and hene there is no neighborhood of 0where f oinides with its Taylor expansion at 0. In some sense, f is in�nitely�at at 0, and we obtain a similar e�et with our in�nite multipliities.For any multipliity semi-ring whih ontains an in�nite element, we builda model of the pure lambda-alulus, whih is not sensible and, more preisely,where the term Ω = (λx (x) x)λx (x) x has a non-empty interpretation (we alsoexhibit a non solvable term whose interpretation is distint from that of Ω).Warning. Most omitted proofs an be found in the Appendix setion.1 The relational model of Linear Logi
Rel is the ategory whose objets are sets and with hom-sets Rel(X,Y ) =
P(X × Y ). In this ategory, omposition is the ordinary omposition of relations:if R ∈ Rel(X,Y ) and S ∈ Rel(Y, Z), then

S · R = {(a, c) ∈ X × Z | ∃b ∈ Y (a, b) ∈ R and (b, c) ∈ S} .and identities are the diagonal relations: IdX = {(a, a) ∈ X}.This ategory has a well known symmetri monoidal struture (ompatlosed atually), with tensor produt given on objets by X1 ⊗X2 = X1 ×X2and on morphisms by
R1 ⊗R2 = {((a1, a2), (b1, b2)) | (ai, bi) ∈ Ri for i = 1, 2}



for any Ri ∈ Rel(Xi, Yi) (i = 1, 2). The assoiativity and symmetry isomor-phisms are the obvious bijetions, the neutral objet of the tensor produt is thesingleton set 1 = {∗}.This monoidal ategory is losed: the objet of morphisms from X to Y is
X ⊸ Y = X × Y , with evaluation morphism ev ∈ Rel((X ⊸ Y ) ⊗X,Y ) givenby ev = {(((a, b), a), b) | a ∈ X, b ∈ Y }. And, given R ∈ Rel(Z ⊗ X,Y ), thelinear urry�ation of R is cur(R) = Rel(Z,X ⊸ Y ). This ategory is star-autonomous, with dualizing objet ⊥ = 1.The ategory Rel is also artesian: the artesian produt of a family of ob-jets (Xi)i∈I is ∏i∈I Xi =

⋃

i∈I({i} × I). The binary artesian produt of Xand Y is denoted as X & Y and the terminal objet is ⊤ = ∅. The proje-tion πi ∈ Rel(
∏

i∈I Xi, Xi) is πi = {((i, a), a) | a ∈ Xi} and, given a family
(Ri)i∈I of morphisms Ri ∈ Rel(Y,Xi), the orresponding morphism 〈Ri〉i∈I ∈
Rel(Y,

∏

i∈I Xi) is given by 〈Ri〉i∈I = {(b, (i, a)) | i ∈ I and (b, a) ∈ Ri}.2 ExponentialsWe present a way of building exponential funtors, one a notion of multipliityis given, as a semi-ring satisfying strong onditions.2.1 Multipliity semi-ringsNotational onvention for indies. We shall use quite often multiple indies,written as subsript as in �aijk� whih has three indies i, j and k. When thereare no ambiguities, these indies will not be separated by ommas. We insertommas when we use multipliation on these indies, as in �ai,2j,k� for instane.A semi-ring M is a multipliity semi-ring if it is ommutative, has a multi-pliative unit and satis�es(MS1) ∀n1, n2 ∈M n1 + n2 = 0 ⇒ n1 = n2 = 0 (we say that M is positive)(MS2) ∀n1, n2 ∈M n1 + n2 = 1 ⇒ n1 = 0 or n2 = 0 (we say that M is disrete)(MS3) ∀n1, n2, p1, p2 ∈ M n1 + n2 = p1 + p2 ⇒ ∃r11, r12, r21, r22 ∈ M n1 =
r11 + r12, n2 = r21 + r22, p1 = r11 + r21, p2 = r12 + r22 (we say that M hasthe additive splitting property)(MS4) ∀m, p, n1, n2 ∈M pm = n1+n2 ⇒ ∃p1, p2,m11,m12,m21,m22 ∈M m11+
m21 = m12 +m22 = m, p1m11 + p2m12 = n1, p1m21 + p2m22 = n2 and p1 +
p2 = p (we say that M has the multipliative splitting property).Generalized splitting properties. The splitting onditions are expressed ina binary way, we must generalize them to arbitrary arities. We �rst generalizeCondition (MS3).Lemma 1. LetM be a semi-ring whih has the splitting property. Let n1, . . . , nl ∈

M and p1, . . . , pr ∈ M be suh that ∑l
i=1 ni =

∑r
j=1 pj. Then there is a fam-ily (sij)

l,r
i=1,j=1 of elements of M suh that ∀i ∈ {1, . . . , l} ni =

∑r
j=1 sij and

∀j ∈ {1, . . . , r} pj =
∑l

i=1 sij .



Similarly, we generalize Condition (MS4).Lemma 2. Let M be a semi-ring whih has the multipliative and the additivesplitting properties. Let k ∈ N with k 6= 0. Let l = 2k−1. For all n1, . . . , nk,m, p ∈
M , if n1 + · · · + nk = mp, then there exist (pj)

l
j=1 ∈M and (mij)

k,l
i=1,j=1 with

• p1 + · · · + pl = p
• m1j + · · · +mkj = m for j = 1, . . . , l
• and mi1p1 + · · · +milpl = ni for i = 1, . . . , k.In partiular, a multipliity semi-ring annot be �nite.Proposition 1. Any multipliity semi-ring M ontains an isomorphi opy of

N. We shall simply say that M ontains N, that is N ⊆ M . In partiular, amultipliity semi-ring annot be �nite.Examples of multipliity semi-rings. The elements of a multipliity semi-ring should be onsidered as generalized natural numbers. We give here examplesof semi-ring satisfying these axioms.Natural numbers. The most anonial example of multipliity semi-ring is theset N of natural numbers, with the ordinary addition and multipliation.Proposition 2. N is a multipliity semi-ring.Completed natural numbers. Let N = N ∪ {ω} be the �ompleted set of naturalnumbers�. We extend addition to this set by n+ω = ω+n = ω, and multipliationby 0ω = ω0 = 0 and nω = ωn = ω for n 6= 0.Proposition 3. N is a multipliity semi-ring.A semi-ring with in�nite and non-idempotent elements. A more interesting ex-ample is N2 = (N+ ×N)∪{0}.The element (n, d) of this set (with n 6= 0) will bedenoted as nωd. We extend this notation to the ase where n = 0, identifying
0ωd with 0, whih is quite natural with these notations. Addition is de�ned asfollows (0 being of ourse neutral for this operation)

nωd + n′ωd′

=











(n+ n′)ωd if d = d′

nωd if n 6= 0 and d′ < d

n′ωd′ if n′ 6= 0 and d < d′and multipliation is de�ned by nωdn′ωd′

= nn′ωd+d′ .Proposition 4. N2 is a multipliity semi-ring.From now on, M denotes a multipliity semi-ring.



2.2 The exponential funtorGiven a set X , we de�ne !MX as the free M-module M〈X〉 generated by X , thatis, as the set of all funtions µ : X → M suh that supp(µ) = {a ∈ X | µ(a) 6=
0} (the support of µ) is �nite. These funtions will be alled M-multisets (ofelements of X).Given a ∈ X , we denote as [a] ∈ !MX the funtion given by [a](b) = δa,b. Weuse the standard algebrai notations for denoting the operations in the M-module
!MX . If µ ∈ !MX , we de�ne the ardinality of µ by #µ =

∑

a∈supp(µ) µ(a) ∈ M.Given R ∈ Rel(X,Y ), we de�ne !MR ∈ Rel(!MX, !MY ) as the set of all pairs
(µ, ν) suh that one an �nd σ ∈ M〈X × Y 〉 with supp(σ) ⊆ R and

∀a ∈ X µ(a) =
∑

b∈Y

σ(a, b) and ν(b) =
∑

a∈X

σ(a, b) .We say then that σ is a witness of (µ, ν) for R. Observe that all these sums are�nite beause σ ∈ M〈X × Y 〉.It is lear from this de�nition that !M Id = Id.Lemma 3. Let R ∈ Rel(X,Y ) and S ∈ Rel(Y, Z). Then !M(S ·R) = !MS · !MR.Proof. This is essentially an appliation of Lemma 1, see the Appendix. 2Lemma 4. Let R ⊆ X × Y and let (µi, νi) ∈ !MR and qi ∈ M for i = 1, . . . , n.Then (
∑n

i=1 piµi,
∑n

i=1 piνi) ∈ !MR.Proof. For eah i, hoose a witness σi of (µi, νi) for R. Then ∑n
i=1 piσi is awitness of (

∑n
i=1 piµi,

∑n
i=1 piνi) for R. 22.3 Comonad struture of the exponentialWe introdue the fundamental omonadi struture of the exponential funtor,whih onsists of two natural transformations usually alled derelition (theounit of the omonad) and digging (the omultipliation of the omonad).Derelition. We set dX = {([a], a) | a ∈ X} ∈ Rel(!MX,X).Lemma 5. dX is a natural transformation from !M to Id.Proof. One applies Conditions (MS1) and (MS2), see the Appendix. 2Remark 1. One ould onsider taking M = {0, 1} with 1 + 1 = 1, and then wewould have !MX = Pfin(X), the set of all �nite subsets of X . But this semi-ring does not satisfy Condition (MS2) and, indeed, derelition is not natural asalready mentioned in the introdution.



Digging. This operation is more problemati and some preliminaries are re-quired.Lemma 6. Let X and Y be sets and let R ⊆ X × Y . Let ν1, ν2 ∈ !MY and
µ ∈ !MX. If (µ, ν1 + ν2) ∈ !MR, then one an �nd µ1, µ2 ∈ !MX suh that
µ1 + µ2 = µ and (µi, νi) ∈ !MR for i = 1, 2.Proof. We use Lemma 1, see the Appendix. 2Given M ∈ !M!MX , we set

Σ(M) =
∑

m∈!MX

M(m)m.Sine M has a �nite support, this sum is atually a �nite sum (the linear om-bination, with oe�ients M(m) ∈ M, is taken in the module !MX).We de�ne pX ∈ Rel(!MX, !M!MX) by
pX = {(Σ(M),M) | M ∈ !M!MX} .The next lemma is the main tool for proving the naturality of digging. Itombines the two generalized splitting properties of M.Lemma 7. Let X and Y be sets and let R ⊆ X × Y be �nite. There exists

q(R) ∈ N with the following property: for any µ ∈ !MX,π ∈ !MY and p ∈ M, if
(µ, pπ) ∈ !MR, then one an �nd p1, . . . , pq(R) ∈ M and µ1, . . . , µq(R) ∈ !MX suhthat ∑q(R)

j=1 pj = p, ∑q(R)
j=1 pjµj = µ and (µj , π) ∈ !MR for eah j = 1, . . . , q(R).Proof. Let I = {a ∈ X | ∃b ∈ Y (a, b) ∈ R} and J = {b ∈ Y | ∃a ∈ X (a, b) ∈ R}.Given b ∈ J , let degb(R) = #{a ∈ X | (a, b) ∈ R} − 1 ∈ N and let deg(R) =

∑

b∈J degb(R). We prove the result by indution on deg(R).Assume �rst that deg(R) = 0, so that, for any b ∈ J , there is exatly one
a ∈ I suh that (a, b) ∈ R, let us set a = g(b): g is a surjetive funtion from J to
I whose graph oinides with R (in the sense that R = {(g(b), b) | b ∈ J}). Let
σ be a witness of (µ, pπ) for R. For all b ∈ J we have pπ(b) =

∑

a∈X σ(a, b) =
σ(g(b), b) and for all a ∈ I we have µ(a) =

∑

g(b)=a σ(a, b) = p
∑

g(b)=a π(b). Let
τ ∈ M〈X × Y 〉 be de�ned by

τ(a, b) =

{

π(b) if g(b) = a

0 otherwise.then learly supp(τ) ⊆ R and τ is a witness of (µ′, π) for R, where µ′ ∈ !MX isgiven by µ′(a) =
∑

g(b)=a π(a). Sine pµ′ = µ, we obtained the required property(with q(R) = 1, p1 = p and µ1 = µ′).Assume now that deg(R) > 0 and let us pik some b ∈ J suh that k =
degb(R) + 1 > 1. Let a1, . . . , ak be a repetition-free enumeration of the elements
a of I suh that (a, b) ∈ R. We have

pπ(b) =

k
∑

i=1

σ(ai, b) .



Let l = 2k. By Lemma 2, there exist (pj)
l
j=1 ∈ M

l and (mij)
k,l
i=1,j=1 elements of

M with
• p1 + · · · + pl = p
• m1j + · · · +mkj = π(b) for j = 1, . . . , l
• and mi1p1 + · · · +milpl = σ(ai, b) for i = 1, . . . , k.Let b1, . . . , bk be pairwise distint new elements, whih do not belong to X norto Y , and let Y ′ = (Y \ {b}) ∪ {b1, . . . , bk}. We de�ne a new relation to whihwe'll be able to apply the indutive hypothesis as follows:

S = {(a, b′) ∈ R | b′ 6= b} ∪ {(ai, bi) | i = 1, . . . , k} .Then we have deg(S) = deg(R) − k + 1 < deg(R). Let τ ∈ M〈X × Y ′〉 be givenby
τ(a, c) =











σ(a, c) if c /∈ {b1, . . . , bk}

σ(ai, b) if c = bi and a = ai

0 otherwise.It is lear that supp(τ) ⊆ S. Moreover, τ is a witness of (µ,
∑l

j=1 pjπj) for S,where πj ∈ !MY
′ is given by

πj(c) =

{

π(c) if c /∈ {b1, . . . , bk}

mij if c = bi.for eah j ∈ {1, . . . , l}. Indeed, for a ∈ X we have
∑

c∈Y ′

τ(a, c) =
∑

c∈Y ′\{b1,...,bk}

τ(a, c) +

k
∑

i=1

τ(a, bi)

=
∑

c∈Y ′\{b1,...,bk}

σ(a, c) +

k
∑

i=1

δa,ai
σ(ai, b)

=
∑

c∈Y ′\{c1,...,ck}

σ(a, c) + σ(a, b) =
∑

b∈Y

σ(a, b) = µ(a)and for c ∈ Y ′ \ {b1, . . . , bk} we have
∑

a∈X

τ(a, c) =
∑

a∈X

σ(a, c) = pπ(c) =

l
∑

j=1

pjπj(c) sine {

∀j πj(c) = π(c)
∑l

j=1 pj = pand last, for c = bi (with i ∈ {1, . . . , k}), we have
∑

a∈X

τ(a, c) = σ(ai, b) =
l
∑

j=1

mijpj =
l
∑

j=1

pjπj(c) .



By Lemma 6, sine (µ,∑l
j=1 pjπj

)

∈ !MS, we an �nd µ1, . . . , µl ∈ !MX suhthat ∑l
j=1 µj = µ and (µj , pjπj) ∈ !MS for eah j ∈ l. Sine deg(S) < deg(R),we an apply the indutive hypothesis for eah j ∈ l. So we an �nd a family

(pjs)
l,q(S)
j=1,s=1 of elements of M suh that pj =

∑q(S)
s=1 pjs and we an �nd a family

(µjs)
l,q(S)
j=1,h=1 of elements of !MX suh that ∑q(S)

s=1 pjsµjs = µj , and moreover
(µjs, πj) ∈ !MS for eah j ∈ l and s ∈ q(S). We onlude the proof by showingthat (µjs, π) ∈ !MR. Let τjs ∈ M〈X × Y ′〉 be a witness of (µjs, πj) for S. Let
σjs ∈ M〈X × Y 〉 be given by

σjs(a, b
′) =

{

τjs(a, b
′) if b′ 6= b

∑k
i=1 τjs(a, bi) if b′ = b.For b′ ∈ Y \ {b}, we have ∑a∈X σjs(a, b

′) =
∑

a∈X τjs(a, b
′) = πj(b

′) = π(b′).Next we have
∑

a∈X

σjs(a, b) =
∑

a∈X

k
∑

i=1

τjs(a, bi)

=
k
∑

i=1

∑

a∈X

τjs(a, bi)

=

k
∑

i=1

πj(bi) =

k
∑

i=1

mij = π(b) .On the other hand we have
∑

b′∈Y

σjs(a, b
′) =

∑

b′∈Y \{b}

σjs(a, b
′) + σjs(a, b)

=
∑

b′∈Y \{b}

τjs(a, b
′) +

k
∑

i=1

τjs(a, bi)

=
∑

c∈Y ′

τjs(a, c) = µjs(a) .It remains to prove that supp(σjs) ⊆ R, but this results immediately from thede�nition of σjs and from the fat that supp(τjs) ⊆ S.Observe that we an take q(R) = lq(S), so that in general q(R) = 2deg(R).
2Lemma 8. pX is a natural transformation from !M to !M!M.Proof. This is essentially an appliation of Lemma 7. See the Appendix. 2



Comonad equations We prove that d!MX · pX = Id!MX . Let (µ, µ′) ∈ !MX ×
!MX . Assume �rst that (µ, µ′) ∈ d!MX · pX . Then we an �nd M ∈ !M!MX suhthat (µ,M) ∈ pX and (M,µ′) ∈ d!MX . This means that M = [µ′] and hene
Σ(M) = µ′, hene µ = µ′. Conversely, for µ ∈ !MX we have (µ, [µ]) ∈ pX ,therefore (µ, µ) ∈ d!MX · pX .Next we prove that !M dX · pX = Id!MX . Let (µ, µ′) ∈ !M dX · pX . Let M ∈
!M!MX be suh that (µ,M) ∈ pX , that is Σ(M) = µ, and (M,µ′) ∈ !M dX .Let σ ∈ M〈!MX ×X〉 be a witness of (M,µ′) for dX . This means that µ′(a) =
∑

ν∈!MX σ(ν, a) = σ([a], a) sine supp(σ) ⊆ dX , and that M(ν) = σ([a], a) if
ν = [a], and M(ν) = 0 if #ν 6= 1. It follows that Σ(M) =

∑

ν∈!MX M(ν)ν =
∑

a∈X σ([a], a)[a] = µ′ and hene µ = µ′. Conversely, one has (µ, µ) ∈ !M dX · pX ,beause M ∈ !M!MX de�ned by M(ν) = µ(a) if ν = [a] and M(ν) = 0 if #ν 6= 0satis�es (µ,M) ∈ pX and (M,µ) ∈ !M dX .Lemma 9. Let M ∈ !M!M!MX. Then Σ(Σ(M)) =
∑

N∈!M!MX M(N)Σ(N).Proof. We have
Σ(Σ(M)) =

∑

ν∈!MX

Σ(M)(ν)ν

=
∑

ν∈!MX

(

∑

N∈!M!MX

M(N)N(ν)

)

ν

=
∑

N∈!M!MX

M(N)

(

∑

ν∈!MX

N(ν)ν

)and we are done. 2Lemma 10. The digging is natural, that is p!MX · pX = !M pX · pX , so let (µ,M) ∈
!MX × !M!M!MX.Proof. One applies Lemma 9, see the Appendix. 2Fundamental isomorphism. One of the most important property of the ex-ponential is that it maps artesian produts to tensor produts. Combined withthe monoidal losure of Rel, this property leads to the artesian losure of theKleisli ategory Rel!.Proposition 5. Given two sets X1 and X2, there is an natural bijetion nX1,X2

:
!MX1 ⊗ !MX2 → !M(X1 & X2) and a bijetion n0 : 1 → !M⊤.Strutural morphisms. They are used for interpreting the strutural rulesof linear logi, assoiated with the exponentials. The weakening morphism is
weakX : !MX → 1 is weakX = {([], ∗)}. The ontration morphism is contrX :
!MX → !MX ⊗ !MX is obtained by applying the !M funtor to the diagonal map
X → X & X , so that contrX = {(λ+ ρ, (λ, ρ)) | λ, ρ ∈ !MX}.There are other equations to hek for proving that we have de�ned a modelof Linear Logi (see [Bie95℄), the orresponding veri�ations are straightforward.



2.4 The Kleisli artesian losed ategoryThe objets of the Kleisli ategory Rel! of the omonad � !M� are the sets,and Rel!(X,Y ) = Rel(!MX,Y ). Identity in this ategory is derelition dX ∈
Rel!(X,X) and omposition is de�ned as follows: let R ∈ Rel!(X,Y ) and
S ∈ Rel!(Y, Z), then

S ◦ R = S · !MR · pX .We give a diret haraterization of this omposition law.Proposition 6. Let (µ, c) ∈ !MX × Y , we have (µ, c) ∈ S ◦ R i� there exist
b1, . . . , bn ∈ Y (not neessarily distint), p1, . . . , pn ∈ M and µ1, . . . , µn ∈ !MXsuh that

∀i ∈ {1, . . . , n} (µi, bi) ∈ R ,

(

n
∑

i=1

pi[bi], c

)

∈ S and µ =

n
∑

i=1

piµi .Proof. Assume �rst that (µ, c) ∈ S ◦ R. Let M ∈ !M!MX suh that (µ,M) ∈ pXand let ν ∈ !MY be suh that (ν, c) ∈ S and (M, ν) ∈ !MR. We have Σ(M) = µ.Let σ ∈ M〈!MX × Y 〉 be a witness of (M, ν) for R, and let (µ1, b1), . . . , (µn, bn)be a repetition-free enumeration of the set supp(σ) ⊆ R. Taking pi = σ(µi, bi),we have ∑n
i=1 pi[bi] = ν and ∑n

i=1 pi[µi] = M , and therefore µ =
∑n

i=1 piµi.Assume onversely that (µ, c) satis�es the onditions stated in the proposi-tion. Then we take ν =
∑n

i=1 pi[bi] and M =
∑n

i=1 pi[µi]. We have (ν, c) ∈ Sand (µ,M) ∈ pX and we have just to hek that (M, ν) ∈ !MR. We de�ne
σ =

∑n
i=1 pi[(µi, bi)]; this is a witness of (M, ν) for R, as easily heked. 2We reall that the artesian produt of X and Y in this ategory is X &

Y , with projetions obtained by omposing π1 and π2 with dX&Y in Rel.The funtion spae of X and Y is !MX ⊸ Y . Evaluation Ev ∈ Rel!(X &
(!MX ⊸ Y ), Y ) ≃ Rel(!MX ⊗ !M(!MX ⊸ Y ), Y ) is

Ev = {((µ, [(µ, b)]), b) | µ ∈ !MX and b ∈ Y } .Curry�ation is de�ned as follows: let R ∈ Rel!(Z & X,Y ) ≃ Rel(!MZ ⊗
!MX,Y ), then Cur(R) = {(π, (µ, b)) | ((π, µ), b) ∈ R} ∈ Rel!(Z, !MX ⊸ Y ).Di�erential struture and the Taylor expansion. We sketh very brie�ythe di�erential struture of this model, whih an be used for interpreting thedi�erential lambda-alulus introdued in [ER03,Vau05℄, or the various resourelambda-aluli based on this kind of di�erential strutures [ER08,Tra08℄.We introdue �rst the oderelition morphism ∂X ∈ Rel(X, !MX) by ∂X =
{(a, [a]) | a ∈ X}. Naturality is proved exatly as the naturality of dereli-tion in 2.3. Coweakening coweakX ∈ Rel(1, !MX) and oontration cocontrX ∈
Rel(!MX ⊗ !MX, !MX) are obtained by applying the !M funtor to the emptymorphism ∅ ∈ Rel(⊤, X) and to the �odiagonal� morphism π1 ∪π2 ∈ Rel(X &
X,X), and by using the fundamental isomorphism. The equations involvingderelition and oweakening and oontration (see [ER06b,BCS06,Fio07℄) are



satis�ed by naturality of derelition. Similarly for the equations involving odere-lition, weakening and ontration. One should hek that the hain rule holds:this is a bit long to express, but the proof is a simple veri�ation.Using oderelition and oontration, one de�nes easily a morphism δX ∈
Rel(!MX ⊗ X, !MX), with δX = {(µ, a, µ + [a])}. Given R ∈ Rel(X,Y ) =
Rel(!MX,Y ), one an de�ne R′ ∈ Rel!(X,X ⊸ Y ) (by linear urry�ationof R ·δX) whih an be onsidered as the �rst derivative of R: this operation sat-is�es all the usual rules of di�erential alulus (linearity, Leibniz rule, hain ruleet). Iterating this operation and using also derelition and ontration, one ande�ne the Taylor expansion of R as the in�nite union ⋃∞

n∈N
Rn where, for eah

n ∈ N ⊆ M the morphism Rn ∈ Rel!(X,Y ) is simply {(µ, a) ∈ R | #µ = n}.So if M has in�nite elements, it is not true in general that R oinides with itsTaylor expansion. As an example, let ω be an in�nite element of M and take
R = {(ω[∗], ∗)} ∈ Rel!(1, 1). Then Rn = ∅ for all n ∈ N.So we have de�ned a model of di�erential linear logi whih does not satisfythe Taylor formula.3 Graph models in RelGraph models [Bar84℄ have been isolated by Sott and Engeler in the ontinuoussemantis. We develop here a similar onstrution, in the relational semantis.Let A be a non-empty set whose elements will be alled atoms, and are not pairs.Let ι : A→ (!MA ⊸ A) be a partial injetive map.We de�ne a sequene (Dι

n)n∈N of sets as follows: Dι
0 = A and Dι

n+1 = Dι
n ∪

((!MD
ι
n ⊸ Dι

n) \ ι(A)). This sequene is monotone, and we set Dι =
⋃

n∈N
Dι

n.We have !MD
ι
⊸ Dι =

⋃

n∈N
(!MD

ι
n ⊸ Dι

n).We de�ne a funtion ϕ : Dι → (!MD
ι
⊸ Dι) by

ϕ(α) =

{

ι(a) if α = a ∈ A

α if α /∈ Aand a funtion ψ : (!MD
ι
⊸ Dι) → Dι by

ψ(µ, α) =

{

a if (µ, α) = ι(a) where a ∈ A

(µ, α) if (µ, α) /∈ ι(A) .This de�nition makes sense beause ι is injetive, and beause, if (µ, α) ∈
(!MD

ι
n ⊸ Dι

n) \ ι(A), then (µ, α) ∈ Dι
n+1 ⊆ Dι. Let (µ, α) ∈ !MD

ι
⊸ Dι.If (µ, α) ∈ ι(A), let a be the unique element of A suh that ι(a) = (µ, α). Wehave ϕ(ψ(µ, α)) = ϕ(a) = ι(a) = (µ, α). If (µ, α) /∈ ι(A), we have ϕ(ψ(µ, α)) =

ϕ(µ, α) = (µ, α) beause (µ, α) /∈ A, sine no element of A is a pair.It is lear that ϕ ◦ ψ = Id. We de�ne two morphisms App = {([α], ϕ(α)) | α ∈
Dι} ∈ Rel!(D

ι, !MD
ι

⊸ Dι) and Lam = {([(µ, α)], ψ(µ, α)) | (µ, α) ∈ !MD
ι

⊸

Dι} ∈ Rel!(!MD
ι
⊸ Dι, Dι). Then we have App ◦ Lam = Id!MDι

⊸Dι , so that Dιis a re�exive objet in Rel!, whatever be the hoie of the multipliity semi-ring
M.



3.1 Interpreting termsGiven a lambda-term M and a repetition-free list of variables x = (x1, . . . , xn)whih ontains all free variables of M , the interpretation [M ]x ∈ Rel!(D
ιn, Dι)(where Dιn is the artesian produt of Dι with itself, n times) is de�ned byindution on M as follows

• [xi]x = πi (the ith projetion from Dιn to D)
• [λxN ]x = Lam ◦ Cur([M ]x,x)
• [(N)P ]x = Ev ◦ 〈App ◦ [N ]x, [P ]x〉Using the artesian loseness ofRel! and the fat that App ◦ Lam = Id!MDι

⊸Dι ,one proves that ifM andM ′ are beta-equivalent, and x is a repetition-free list ofvariables whih ontain all the free variables ofM andM ′, one has [M ]x = [M ′]x.This requires to prove �rst a substitution lemma, see [AC98℄.We present now this interpretation as a typing system (a variation of deCarvalhos's system R [DC08℄). A type is an element of Dι. Given µ ∈ !MD
ι and

α ∈ Dι, we set µ → α = ψ(µ, α). A typing ontext is a �nite partial funtionfrom variables to !MD
ι. If Γ1, . . . , Γk are ontexts with the same domain and

p1, . . . , pk ∈ M, the sum ∑k
i=1 piΓi is de�ned pointwise (using the addition of

!MD
ι). The typing rules are

x1 : [], . . . , xn : [], x : [α] ⊢ x : α
Γ, x : µ ⊢M : α

Γ ⊢ λxM : µ→ α
Γ ⊢M : (

∑n
i=1 pi[βi]) → α ∀i ∈ n Γi ⊢ N : βi

Γ +
∑n

i=1 piΓi ⊢ (M)N : αIn the last rule, all ontexts involved must have same domain.Proposition 7. The judgment Γ ⊢M : α is derivable i� (Γ (x1), . . . , Γ (xn), α) ∈
[M ]x where x = (x1, . . . , xn) is a repetition-free enumeration of the domain of
Γ , whih is assumed to ontain all the free variables of M .Proof. Straightforward indution on the judgment. 2We take for M a multipliity semi-ring whih ontains an element ω suhthat ω+ 1 = ω. Let A = {a}, ι : A→ (!MA ⊸ A) be de�ned by ι(a) = (ω[a], a),so that (ω[a] → a) = a. Let Ω = (δ) δ where δ = λx (x) x.Proposition 8. In the model Dι, we have [Ω] = {a}.Proof. We have the following dedution tree (we have inserted in this tree theequations between types or M-multisets of types that we use)

x : [a] ⊢ x : a = ω[a] → a x : [a] ⊢ x : a

x : [a] + ω[a] = ω[a] ⊢ (x) x : a

⊢ λx (x)x : ω[a] → a

(same derivation)
⊢ λx (x) x : ω[a] → a = a

⊢ (λx (x) x)λx (x) x : a



Therefore a ∈ [Ω].Conversely, let α ∈ Dι and assume that ⊢ Ω : α. There must exist µ ∈ !MD
ιsuh that ⊢ δ : µ → α and ∀β ∈ supp(µ) ⊢ δ : β. Form the �rst of these twojudgments we get x : µ ⊢ (x)x : α and hene there must exist ν ∈ !MD

ι suhthat µ = ν + [ν → α]. From the seond judgment we get ⊢ δ : ν → α and
∀β ∈ supp(ν) ⊢ δ : β. Iterating this proess, we build a sequene (µi)

∞
i=1 ofelements of !MD

ι suh that ⊢ δ : µi → α, ∀β ∈ supp(µi) ⊢ δ : β and µi =
µi+1 +[µi+1 → α] for all i. Let βi = µi → α, it follows that ∀i βi ∈ supp(µ1) andsine supp(µ1) is �nite, we an �nd i and n > 0 suh that βi+n = βi. We have
βi = (µi → α) = ((µi+1+[βi+1]) → α) = · · · = ((µi+n+[βi+1]+· · ·+[βi+n]) → α)and sine βi+n = (µi+n → α), we get µi+n = µi+n +[βi+1]+ · · ·+[βi+n] (beause
ψ is injetive) and hene βi+n ∈ supp(µi+n). But βi+n = (µi+n → α) and henewe must have βi+n = a. Indeed, if βi+n /∈ A then we have βi+n = (µi+n, α) and,if k is the least integer suh that βi+n ∈ Dι

k, we have k > 0 and β ∈ Dι
k−1 forall β ∈ supp(µi+n). This is impossible sine βi+n ∈ supp(µi+n). Sine (µi+n →

α) = a, we have α = a and we are done. 2Sine ([] → a) ∈ [λy Ω] and a 6= ([] → a), we have found two unsolvableterms (namely Ω and λy Ω) with distint interpretations in Dι and hene thismodel is not sensible.ConlusionWe have introdued the onept of multipliity semi-ring, whih an be usedfor generalizing the standard exponential onstrution of the relational model ofLinear Logi. Suh a semi-ring must ontain N as a sub-semi-ring but an alsohave in�nite elements ω suh that ω + 1 = ω. In that ase, the orrespondingmodel of Linear Logi is a model of the di�erential lambda-alulus whih doesnot satisfy the Taylor formula, and it is possible to build non sensible models ofthe lambda-alulus in the orresponding Kleisli artesian losed ategory. Thisshows that models of the pure di�erential lambda-alulus an have non sensibletheories and provides a new way of building models of the pure lambda-aluluswhere non termination is taking into aount in a quantitative way by means ofthese in�nite multipliities.Referenes[AC98℄ Roberto Amadio and Pierre-Louis Curien. Domains and lambda-aluli, vol-ume 46 of Cambridge Trats in Theoretial Computer Siene. CambridgeUniversity Press, 1998.[Bar84℄ Henk Barendregt. The Lambda Calulus, volume 103 of Studies in Logi andthe Foundations of Mathematis. North Holland, 1984.[BCS06℄ Rihard Blute, Robin Cokett, and Robert Seely. Di�erential ategories.Mathematial Strutures in Computer Siene, 16(6):1049�1083, 2006.
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property holds for r and let us prove it for r+1. Let q1 =
∑r

j=1 pj and q2 = pr+1.Then, applying Condition (MS3), we an �nd tik ∈ M for i = 1, 2 and k = 1, 2suh that n1 = t11 + t12, n2 = t21 + t22, q1 = t11 + t21 and q2 = t12 + t22. Byindutive hypothesis we an �nd a family (uij)
2,r
i=1,j=1 suh that t11 =

∑r
j=1 u1j ,

t21 =
∑r

j=1 u2j and pj = u1j + u2j for j = 1, . . . , r. Then we de�ne (sij)
2,r+1
i=1,j=1by setting sij = uij for i = 1, 2 and j = 1, . . . , r, and si,r+1 = ti2 for i = 1, 2.Now we prove the result for an arbitrary value of l, by indution on thisparameter. For l = 1, we set s1j = pj for j = 1, . . . , r. Assume that the resultholds for l and let us prove it for l+1. Letm1 =

∑l
i=1 ni andm2 = nl+1. We have

m1 +m2 =
∑r

j=1 pj so we an apply the property that we have just proved. Let
(tkj)

2,r
k=1,j=1 be a family of elements of M suh that mk =

∑r
j=1 tkj for k = 1, 2and pj = t1j + t2j for j = 1, . . . , r. By indutive hypothesis, we an �nd a family

(uij)
l,r
i=1,j=1 suh that ni =

∑r
j=1 uij for i = 1, . . . , l and pj =

∑l
i=1 uij . Then wede�ne a family (sij)

l+1,r
i=1,j=1 by setting sij = uij for i = 1, . . . , l and j = 1, . . . , r,and sl+1,j = t2j for j = 1, . . . , r, and we are done. 2Proof of Lemma 2. By indution on k. For k = 1, one has l = 1, and one takes

p1 = p and m11 = m.Assume that the result holds for k (and let l = 2k−1) and let us prove it for k+
1. Let n1, . . . , nk+1,m, p ∈M with n1+· · ·+nk+1 = mp. By indutive hypothesis,we an �nd (pj)

l
j=1 ∈M and (mij)

k,l
i=1,j=1 with the following properties

• p1 + · · · + pl = p
• m1j + · · · +mkj = m for j = 1, . . . , l
• mi1p1 + · · · +milpl = ni for i = 1, . . . , k − 1
• and mk1p1 + · · · +mklpl = nk + nk+1.By Lemma 1, we an �nd a family (rjh)l,1

j=1,h=0 of elements of M suh that
nk+h = r1h + · · · + rlh for h = 0, 1 and ∀j ∈ l mkjpj = rj0 + rj1. By Condi-tion (MS4), for eah j ∈ l, we an �nd pj1, pj2 ∈ M with pj1 + pj2 = pj and afamily (sjuh)2,1

u=1,h=0 of elements of M suh that mkj = sj10 + sj11 = sj20 + sj21and rjh = sj1hpj1 + sj2hpj2 for eah j ∈ l and h = 0, 1. For i ∈ k − 1 we have
ni = mi1p11 +mi1p12 + · · · +milpl1 +milpl2and for h = 0, 1, we have

nk+h = r1h + · · · + rlh

= s11hp11 + s12hp12 + · · · + sl1hpl1 + sl2hpl2 .Let us de�ne a family (p′j′ )
2l
j′=1 of elements of M by setting p′1 = p11, p

′
2 =

p12, . . . , p
′
2l−1 = pl1, p

′
2l = pl2 and let use de�ne a family (m′

ij′ )
k+1,2l
i=1,j′=1 by setting

m′
i,2j−1 = m′

i,2j = mij for i ∈ k − 1 and j ∈ l, and by m′
k+h,2j−1 = sj1h and

m′
k+h,2j = sj2h for j ∈ l and h = 0, 1. With these de�nitions, we have



• p′1 + · · · + p′2l = p1 + · · · + pl = p
• m′

1,2j−1+· · ·+m′
k+1,2j−1 = m1,j+· · ·+mk−1,j+sj10+sj11 = m1j+· · ·+mkj =

m for j = 1, . . . , l
• m′

1,2j +· · ·+m′
k+1,2j = m1,j+· · ·+mk−1,j +sj20+sj21 = m1j +· · ·+mkj = mfor j = 1, . . . , l

• m′
i,1p

′
1 + · · · +m′

i,2lp
′
2l = ni for i = 1, . . . , k + 1and the lemma is proved. 2Proof of Proposition 1. One de�nes a map f : N → M by indution on naturalnumbers by f(0) = 0 and f(n + 1) = f(n) + 1, that is f(n) =

∑n
i=1 1; wedenote this sum as n · 1. This map is a semi-ring morphism as easily heked,by indution on natural numbers again. We prove that f is injetive, so let

p ∈ N and let us prove that f(n) = f(n + p) ⇒ p = 0 by indution on n. For
n = 0, assume that p · 1 = 0. Applying Condition (MS1) we get easily p = 0 (byindution on p atually). Assume now that (n + 1 + p) · 1 = (n + 1) · 1, that is
(n+ p) · 1 + 1 = n · 1 + 1. By Condition (MS3), one an �nd r11, r12, r21, r22 ∈ Msuh that n+ p = r11 + r12, 1 = r21 + r22, n = r11 + r21 and 1 = r12 + r22. ByCondition (MS2), there are two ases to onsider: either r22 = 1, and in thatase r21 = r12 = 0, or r22 = 0, and in that ase r21 = r12 = 1. In both ases wehave n+ p = n and hene p = 0 by indutive hypothesis. 2Proof of Proposition 2. Let us hek Condition (MS3), so let n1, n2, p1, p2 ∈ Nbe suh that n1 + n2 = p1 + p2 and let q be this ommon value. Pik arbitrarilysets I1, I2, J1, J2 ⊆ q of respetive ardinality n1, n2, p1 and p2. It su�es to take
rij = #(Ii ∩ Jj).We prove now Condition (MS4). We apply Eulidian division by p and weget n1 = q1p + r1 and n2 = q2p + r2 where r1, r2 < p. We have r1 + r2 =
p(m − q1 − q2), and sine r1, r2 < p, we must have m − q1 − q2 = 0 or m −
q1 − q2 = 1. In the �rst ase we have r1 = r2 = 0. Pik p1, p2 ∈ N suhthat p1 + p2 = p. Set m11 = m12 = q1 and m21 = m22 = q2. Then we have
m11 + m21 = m12 + m22 = m, p1m11 + p2m12 = p1q1 + p2q1 = pq1 = n1and p1m21 + p2m22 = p1q2 + p2q2 = pq2 = n2 as required. Assume now that
m − q1 − q2 = 1. We set p1 = r1, p2 = r2, m11 = q1 + 1, m12 = q1, m21 = q2and m22 = q2 + 1. We have m11 +m21 = m12 +m22 = q1 + q2 + 1 = m. Nextwe have p1m11 + p2m12 = r1(q1 + 1) + r2q1 = (r1 + r2)q1 + r1 = pq1 + r1 = n1.Similarly we have p1m21 + p2m22 = n2, as required. 2Proof of Proposition 3. We hek Condition (MS3), so assume that n1+n2 = p1+
p2 = q. If q 6= ω, then we have ni, pj ∈ N for eah i, j and we use Condition (MS3)for N. Assume that q = ω. Without loss of generality we an assume that n1 =
p1 = ω. We an take r11 = ω, r22 = 0, r12 = p2 and r21 = n2. Last we hekCondition (MS3), so assume that pm = n1 + n2 = q. Assume �rst that q ∈ N.If q 6= 0, we know that p,m, n1, n2 ∈ N and we an use Condition (MS4) in N.If q = 0, then n1 = n2 = 0 and we must have m = 0 or p = 0. If p = ω and



m = 0 then we an take p1 = ω, p2 = 0, m11 = m12 = m21 = m22 = 0. If p = 0and m = ω, we take p1 = p2 = 0, m11 = m21 = ω and m12 = m22 = 0. We areleft with the ase were q = ω. Without loss of generality we an assume that
n1 = ω, and of ourse we must have m 6= 0 and p 6= 0. Assume �rst that p = ω.Then we an take p1 = ω, p2 = n2, m11 = m, m21 = 0, m12 = m′ suh that
m′ + 1 = m and m22 = 1. Assume last that m = ω. Then we an take p1 = p′with p′ + 1 = p, p2 = 1, m11 = ω, m21 = ω, m12 = ω and m22 = n2. 2Proof of Proposition 4. A simple ase analysis shows that this addition is asso-iative, and it is obvious that it is ommutative. Distributivity is easily hekedas well, so that we have de�ned a semi-ring. Observe that ω + 1 = ω, but that
ω + ω = 2ω 6= ω and atually, unlike N, this semi-ring has no element n suhthat n+ n = n (apart from 0 of ourse).Let us hek the splitting property, so assume that n1ω

d1 +n2ω
d2 = p1ω

e1 +
p2ω

e2 and let us build a family (qijω
fij )2,2

i=1,j=1. If d1 = d2 and e1 = e2, weare redued to the splitting property of N. If d1 = d2 and e1 > e2, then wehave (n1 + n2)ω
d1 = p1ω

e1 . We an set for instane q11ωf11 = n1ω
d1, q12ωf12 =

p2ω
e2 , q21ωf21 = n2ω

d1 and q22ω
f22 = 0. Then we have q11ωf11 + q12ω

f12 =
n1ω

d1 + p2ω
e2 = n1ω

d1, q21ωf21 + q22ω
f22 = n2ω

d1, q11ωf11 + q21ω
f21 = n1ω

d1 +
n2ω

d1 = p1ω
e1 and q12ω

f12 + q22ω
f22 = p2ω

e2 . The last ase to onsider (upto ommutativity of addition) is d1 > d2 and e1 > e2. Then we know that
n1ω

d1 = p1ω
e1 . We an set q11ωf11 = n1ω

d1 , q12ωf12 = p2ω
e2 , q21ωf21 = n2ω

d2and q22ωf22 = 0.Let us hek Condition (MS4), so assume that mωcpωe = n1ω
d1 + n2ω

d2 .If d1 = d2 we are redued to Condition (MS4) in N, so assume that d2 < d1(and of ourse n1 6= 0 and n2 6= 0). So we have pmωe+c = n1ω
d1 . Our goal is to�nd (pjω

ej )2j=1 and (mijω
cij)2,2

i=1,j=1 with p1ω
e1 + p2ω

e2 = pωe, p1ω
e1mi1ω

ci1 +

p2ω
e2mi2ω

ci2 = niω
di for i = 1, 2 and m1jω

c1j +m2jω
c2j = mωc for j = 1, 2. Weonsider several ases. For the two �rst ases, we set p1ω

e1 = pωe, m11ω
c11 =

mωc and m21ω
c21 = 0, so that m11ω

c11 +m21ω
c21 = mωc holds trivially.

• Assume �rst that c ≤ d2. We set p2ω
e2 = n2ω

d2−c, m22ω
c22 = ωc and

m12ω
c12 = (m − 1)ωc. We have e + c = d1 > d2 and hene e1 = e >

d2 − c = e2 so that p1ω
e1 +p2ω

e2 = pωe. Next we have m12ω
c12 +m22ω

c22 =
(m − 1)ωc + ωc = mωc. And p1ω

e1m11ω
c11 + p2ω

e2m12ω
c12 = pmωe+c +

n2(m − 1)ωd2 = pmωd1 = n1ω
d1 sine e + c = d1 > d2. Last we have

p1ω
e1m21ω

c21 + p2ω
e2m22ω

c22 = 0 + n2ω
d2−cωc = n2ω

d2 .
• Assume now that c > d2 and that e > 0. We set p2ω

e2 = n2 (so e2 = 0),
m22ω

c22 = ωd2 , m12ω
c12 = mωc. Then we have p1ω

e1 + p2ω
e2 = pωe + n2 =

pωe sine e > 0. Also m12ω
c12 + m22ω

c22 = mωc + ωd2 = mωc sine wehave assumed that c > d2. Next we have p1ω
e1m11ω

c11 + p2ω
e2m12ω

c12 =
pωemωc+n2mω

c = mpωe+c = n1ω
d1 sine e > 0. Last we have p1ω

e1m21ω
c21+

p2ω
e2m22ω

c22 = 0 + n2ω
d2 .

• Last, assume that c > d2 and e = 0, so that c = d1. We take p1ω
e1 = 1,

p2ω
e2 = p − 1. We set m11ω

c11 = mωc, m12ω
c12 = mωc, m21ω

c21 = n2ω
d2



and m22ω
c22 = 0. We have m11ω

c11 +m21ω
c21 = mωc + n2ω

d2 = mωc sine
c > d2 and m12ω

c12 + m22ω
c22 = mωc. Next, we have p1ω

e1m11ω
c11 +

p2ω
e2m12ω

c12 = mωc + (p − 1)mωc = n1ω
d1 and last p1ω

e1m21ω
c21 +

p2ω
e2m22ω

c22 = n2ω
d2 . 2Proof of Lemma 3. First, let (µ, π) ∈ !M(S ·R). Let ϕ be a witness of (µ, π) for

S ·R. For eah (a, c) ∈ S ·R, let us hoose f(a, c) ∈ Y suh that (a, f(a, c)) ∈ Rand (f(a, c), c) ∈ S. Let ν ∈ M〈Y 〉 be given by
ν(b) =

∑

f(a,c)=b

ϕ(a, c) .This sum is �nite, beause ϕ has �nite support. Moreover, if b ∈ supp(ν) then wemust have b = f(a, c) for some (a, c) ∈ supp(ϕ) and there are only �nitely manysuh pairs (a, c), so ν has �nite support: ν ∈ !MY . We hek that (µ, ν) ∈ !MR,and for this we exhibit a witness, namely σ ∈ M〈X × Y 〉 given by
σ(a, b) =

∑

f(a,c)=b

ϕ(a, c) .Indeed, we have
∀a ∈ X

∑

b∈Y σ(a, b) =
∑

b∈Y

∑

f(a,c)=b ϕ(a, c) =
∑

(a,c)∈R ϕ(a, c) = µ(a)

∀b ∈ Y
∑

a∈X σ(a, b) =
∑

a∈X

∑

f(a,c)=b ϕ(a, c) =
∑

f(a,c)=b ϕ(a, c) = ν(b)One heks similarly that (ν, π) ∈ !MS, and hene (µ, π) ∈ !MS · !MR.Conversely, let (µ, π) ∈ !MS · !MR. Let ν ∈ !MY be suh that (µ, ν) ∈ !MRand (ν, π) ∈ !MS and let σ ∈ M〈X × Y 〉 and τ ∈ M〈Y × Z〉 be orrespondingwitnesses. Let b ∈ Y . We have
∑

a∈X

σ(a, b) =
∑

c∈Z

τ(b, c) = ν(b) .By Lemma 1, we an �nd ϕb ∈ M〈X × Z〉 suh that
∀a ∈ X σ(a, b) =

∑

c∈Z

ϕb(a, c) and ∀a ∈ X τ(b, c) =
∑

a∈X

ϕb(a, c) .Let ϕ =
∑

b∈supp(ν) ϕ
b. Let a ∈ X , we have

µ(a) =
∑

b∈Y

σ(a, b) =
∑

b∈Y

∑

c∈Z

ϕb(a, c) =
∑

c∈Z

∑

b∈Y

ϕb(a, c) =
∑

c∈Z

ϕ(a, c) .Similarly one show that π(c) =
∑

a∈X ϕ(a, c). Last observe that if (a, c) ∈

supp(ϕ), one has (a, c) ∈ supp(ϕb) for some b. For suh a b we have (a, b) ∈
supp(σ) ⊆ R and (b, c) ∈ supp(τ) ⊆ S. This shows that supp(ϕ) ⊆ S · R, so that
ϕ is a witness of (µ, π) for S · R, and hene (µ, π) ∈ !MS ·R. 2



Proof of Lemma 5. Let R ∈ Rel(X,Y ). We must show that R · dX = dY ·!MR.Let µ ∈ !MX and b ∈ Y . Assume �rst that (µ, b) ∈ R · dX ; this means that thereexists a ∈ X suh that (µ, a) ∈ dX and (a, b) ∈ R. Hene we have µ = [a]. Wehave ([a], [b]) ∈ !MR and hene also (µ, b) ∈ dY ·!MR.Conversely assume that (µ, b) ∈ dY ·!MR, so that (µ, [b]) ∈ !MR, and let
σ ∈ M〈X × Y 〉 be a witness. We have ∑a∈X σ(a, b′) = [b](b′) for eah b′ ∈ Y .By Conditions (MS1) and (MS2), one has ∀a ∈ X σ(a, b′) = 0 for eah b′ 6= b,and there exists a ∈ X suh that σ(a, b) = 1 and σ(a′, b) = 0 for all a′ 6= a. Wehave therefore µ = [a]. Sine (a, b) ∈ R, this shows that (µ, b) ∈ R · dX beause
([a], a) ∈ dX . 2Proof of Lemma 6. Let σ ∈ M〈X × Y 〉 be a witness of (µ, ν) for R. Let b ∈ Y .We have ν1(b)+ν2(b) =

∑

a∈X σ(a, b). By Lemma 1 we an �nd ϕb
i ∈ M〈X〉 (for

i = 1, 2) suh that νi(b) =
∑

a∈X ϕb
i (a) (for i = 1, 2) and σ(a, b) = ϕb

1(a)+ϕ
b
2(a).Let σi(a, b) = ϕb

i (a). Then σ1(a, b) + σ2(a, b) = σ(a, b) and this shows that
supp(σi) ⊆ R for i = 1, 2 (using Condition (MS1)). We have ∑a∈X σi(a, b) =
νi(b) for eah i ∈ {1, 2} and b ∈ Y . We set µi(a) =

∑

b∈Y σi(a, b). Then µi ∈ !MXfor i = 1, 2 sine σi has �nite support. Moreover (µi, νi) ∈ !MR with witness σifor i = 1, 2. We onlude beause µ1(a) + µ2(a) =
∑

b∈Y (σ1(a, b) + σ2(a, b)) =
∑

b∈Y σ(a, b) = µ(a). 2Proof of Lemma 8. Let X and Y be sets and let R ⊆ X × Y . Let (µ,Π) ∈
!MX × !M!MY .Assume �rst that (µ,Π) ∈ !M!MR·pX . LetM ∈ !M!MX be suh that (M,Π) ∈
!M!MR and (µ,M) ∈ pX , that is Σ(M) = µ. Let Θ ∈ M〈!MX × !MY 〉 be a witnessof (M,Π) for !MR. This means that

∀µ′ ∈ !MX M(µ′) =
∑

π′∈!MY

Θ(µ′, π′)

∀π′ ∈ !MY Π(π′) =
∑

µ′∈!MX

Θ(µ′, π′))Sine supp(Θ) ⊆ !MR, by Lemma 4, we have




∑

µ′∈!MX, π′∈!MY

Θ(µ′, π′)µ′,
∑

µ′∈!MX, π′∈!MY

Θ(µ′, π′)π′



 ∈ !MR,that is (Σ(M), Σ(Π)) ∈ !MR. Therefore (µ,Π) ∈ pY ·!MR, sine (Σ(Π), Π) ∈
pY .Conversely, assume that (µ,Π) ∈ pY ·!MR, that is (µ,Σ(Π)) ∈ !MR, that is
(µ,
∑

π∈!MY Π(π)π) ∈ !MR. Let R0 ⊆ R be �nite and suh that
(µ,

∑

π∈!MY

Π(π)π) ∈ !MR0 .



Suh an R0 exists beause µ and Π have �nite support. By Lemma 6, one an�nd a family (µπ)π∈supp(Π) of elements of !MX suh that µ =
∑

π∈supp(Π) µ
π and

∀π ∈ supp(Π), (µπ, Π(π)π) ∈ !MR0. Applying Lemma 7, for eah π ∈ supp(Π),we an �nd a family (µπ
i )

q(R0)
i=1 of elements of !MX and a family (pπ

i )
q(R0)
i=1 ofelements of M suh that

•
∑q(R0)

i=1 pπ
i = Π(π)

•
∑q(R0)

i=1 piµ
π
i = µπ

• and ∀i ∈ q(R0) (µπ
i , π) ∈ !MR.We de�ne M ∈ M

!MX by setting
M =

∑

π∈supp(Π)

i∈q(R0)

pπ
i [µπ

i ] .This sum is �nite beause supp(Π) is a �nite set.We have
Σ(M) =

∑

π∈supp(Π)
i∈q(R0)

pπ
i µ

π
i

=
∑

π∈supp(Π)

q(R0)
∑

i=1

pπ
i µ

π
i =

∑

π∈supp(Π)

µπ = µ ,so that (µ,M) ∈ pX . Moreover we have ∀π ∈ supp(Π)∀i ∈ q(R0) (µπ
i , π) ∈ !MRand hene by Lemma 4 we have











M,
∑

π∈supp(Π)

i∈q(R0)

pπ
i [π]











∈ !M!MRand hene (M,Π) ∈ !M!MR beause
∑

π∈supp(Π)

i∈q(R0)

pπ
i [π] =

∑

π∈supp(Π)

Π(π)[π] = Π .This shows that (µ,Π) ∈ !M!MR · pX as announed. 2Proof of Lemma 10. We prove that p!MX · pX = !M pX · pX , so let (µ,M) ∈
!MX × !M!M!MX . Assume �rst that (µ,M) ∈ p!MX · pX , that is Σ(Σ(M)) = µ.We de�ne M ∈ M

!MX as follows:
M(ν) =

∑

N∈!M!MX
Σ(N)=ν

M(N) .



ThenM ∈ !M!MX . Indeed, for eah ν ∈ supp(M) we an �nd N ∈ supp(M) suhthat ν ∈ supp(N), hene supp(M) ⊆
⋃

N∈supp(M) supp(N) and this latter set is�nite. We have
Σ(M) =

∑

ν∈!MX

M(ν)ν

=
∑

ν∈!MX





∑

Σ(N)=ν

M(N)



 ν

=
∑

N∈!M!MX

M(N)Σ(N)

= Σ(Σ(M)) = µand hene (µ,Σ(M)) ∈ pX . Let Θ ∈ M〈!MX × !M!MX〉 be de�ned by
Θ(ν,N) =

{

M(N) if Σ(N) = ν

0 otherwise.Then learly supp(Θ) ⊆ pX . Moreover, we have∑ν∈!MX Θ(ν,N) = M(N) for all
N ∈ !M!MX and∑N∈!M!MX Θ(ν,N) =

∑

Σ(N)=ν M(N) = M(ν) for all ν ∈ !MX ,by de�nition ofM . This shows that Θ is a witness of (M,M) for pX . So we haveshown that (M,M) ∈ !M pX and therefore (µ,M) ∈ !M pX · pX .Assume onversely that (µ,M) ∈ !M pX · pX . So letM ∈ !M!MX be suh that
(µ,M) ∈ pX and (M,M) ∈ !M pX . Let Θ ∈ M〈!MX × !M!MX〉 be a witness of
(M,M) for pX . Sine supp(Θ) ⊆ pX , there is a map H : !M!MX → M suh that

Θ(ν,N) =

{

H(N) if Σ(N) = ν

0 otherwise.For any N ∈ !M!MX we must have M(N) =
∑

ν∈!MX Θ(ν,N)) = H(N) so that
H = M. Therefore we have M(ν) =

∑

Σ(N)=ν M(N) for all ν ∈ !MX . ByLemma 9 we have
Σ(Σ(M)) =

∑

N∈!M!MX

M(N)Σ(N)

=
∑

ν∈!MX





∑

Σ(N)=ν

M(N)ν





=
∑

ν∈!MX

M(ν)ν sine M(ν) =
∑

Σ(N)=ν

M(N)

= Σ(M) = µTherefore (µ,M) ∈ p!MX · pX . 2



Proof of Proposition 5. The seond bijetion is n = {(∗, [])}. The �rst one is
nX1,X2

= {((µ1, µ2), in1(µ1) + in2(µ2) | µ1 ∈ !MX1 and µ2 ∈ !MX2}where ini(µ) =
∑

a∈Xi
µ(a)[(i, a)]. Let us hek that this isomorphism is natural,so let Ri ⊆ Xi × Yi for i = 1, 2. We must hek that nY1,Y2

· (!MR1 ⊗ !MR2) =
!M(R1 & R2) · nX1,X2

. So let µi ∈ !MXi and νi ∈ !MYi for i = 1, 2.Assume �rst that ((µ1, µ2), in1(ν1) + in2(ν2)) ∈ nY1,Y2
· (!MR1 ⊗ !MR2). Thismeans that one an �nd ν′i ∈ !MYi for i = 1, 2 suh that (µi, ν

′
i) ∈ !MRi for

i = 1, 2, and ((ν′1, ν
′
2), in1(ν1) + in2(ν2)) ∈ nY1,Y2

. This means that νi = ν′i for
i = 1, 2. Sine (µ1, ν1) ∈ !MR1, we have (in1(µ1), in1(ν1)) ∈ !M(R1 & R2) andsimilarly (in2(µ2), in2(ν2)) ∈ !M(R1 & R2) and hene (in1(µ1)+ in2(µ2), in1(ν1)+
in2(ν2)) ∈ !M(R1 & R2) by Lemma 4. But ((µ1, µ2), in1(µ1) + in2(µ2)) ∈ nX1,X2and we have therefore ((µ1, µ2), in1(ν1) + in2(ν2)) ∈ !M(R1 & R2) · nX1,X2

.Assume onversely that ((µ1, µ2), in1(ν1)+ in2(ν2)) ∈ !M(R1 & R2)·nX1,X2
, sothat there exist µ′

i ∈ !MXi for i = 1, 2 with ((µ1, µ2), in1(µ
′
1) + in2(µ

′
2)) ∈ nX1,X2and (in1(µ

′
1) + in2(µ

′
2), in1(ν1) + in2(ν2)) ∈ !M(R1 & R2). Therefore µ′

i = µifor i = 1, 2 and hene (in1(µ1) + in2(µ2), in1(ν1) + in2(ν2)) ∈ !M(R1 & R2).Let ϕ be a witness of (in1(µ1) + in2(µ2), in1(ν1) + in2(ν2)) for R1 & R2. Sine
supp(ϕ) ⊆ R1 & R2, we have (µi, νi) ∈ !MRi for i = 1, 2: take ϕi ∈ M〈Xi × Yi〉de�ned by ϕi(ai, bi) = ϕ((i, ai), (i, bi)), then ϕi is a witness of (µi, νi) for Ri. Itfollows that ((µ1, µ2), (ν1, ν2)) ∈ !MR1 ⊗ !MR2 and therefore ((µ1, µ2), in1(ν1) +
in2(ν2)) ∈ nY1,Y2

· (!MR1 ⊗ !MR2). 2


