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t. Given a semi-ring with unit whi
h satis�es some 
onditions,we de�ne an exponential fun
tor on the 
ategory of sets and relationswhi
h allows to de�ne a denotational model of Di�erential Linear Logi
and of the lambda-
al
ulus with resour
es. We show that, when the semi-ring has an element whi
h is in�nite in the sense that it is equal to itssu

essor, this model does not validate the Taylor formula and that itis possible to build, in the asso
iated Kleisli 
artesian 
losed 
ategory,a model of the pure lambda-
al
ulus whi
h is not sensible. This is aquantitative analogue of the standard graph model 
onstru
tion in the
ategory of S
ott domains.Keywords: lambda-
al
ulus, linear logi
, denotational semanti
s, di�er-ential lambda-
al
ulus, resour
e lambda-
al
ulus, non sensible models.Introdu
tionThe 
ategory of sets and relations is a quite standard denotational model ofLinear Logi
 whi
h underlies most denotational models of this system (
oher-en
e spa
es, hyper
oheren
e spa
es, totality spa
es, �niteness spa
es. . . ). In this
ompletely elementary setting, a formula is interpreted as a set, and a proof ofthat formula is interpreted as a subset of the set interpreting the formula.Logi
al 
onne
tives are interpreted very simply: tensor produ
t, par and lin-ear impli
ation are interpreted as 
artesian produ
ts whereas dire
t produ
t(with) and dire
t sums (plus) are interpreted as disjoint union. The linear nega-tion of a set is the same set: it is a remarkable feature of Linear Logi
 that itadmits su
h a �degenerate� semanti
s of types, whi
h is nonetheless non trivialin the sense that proofs are not identi�ed.Exponentials are traditionally interpreted by the operation whi
h maps a set

X to the set of all �nite multisets of elements of X . One might be tempted to use�nite sets instead of �nite multisets sin
e, in the 
oheren
e spa
e semanti
s, theexponential 
an be interpreted by an operation whi
h maps a 
oheren
e spa
e tothe sets of its �nite 
liques (with a suitable 
oheren
e). In the relational modelhowever, su
h an interpretation of the exponentials based on �nite sets is notpossible as it leads to a dereli
tion whi
h is not natural (in the 
ategori
al sense).With this standard multiset-based interpretation of exponentials, the rela-tional model interprets also the di�erential extensions of Linear Logi
 and of
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the lambda-
al
ulus presented in [ER03,ER04,EL09℄. In this extension of thelambda-
al
ulus, terms 
an be derived (di�erentiated): a termM of type A→ B
an be transformed into a term M ′ of type A → (A → B) whi
h is linear in itsse
ond parameter of type A. The word �linear� 
an be taken here in its stan-dard algebrai
 sense, or in its operational sense of �using its argument exa
tlyon
e�. This di�erentiation operation 
an be iterated, yielding a nth derivative
M (n) : A → (An → B) whi
h is n-linear in its n last arguments of type A. Theintrodu
tion of this new 
onstru
tion requires the possibility of freely addingterms of the same type: in the model Rel, this addition operation is interpretedas set union (remember that terms as interpreted as subsets of the interpreta-tions of types). Also, ea
h type has to 
ontain a 0 element whi
h, here, is theempty set.This strongly suggests to 
onsider the following �Taylor series�, given a term
M of type A → B and a term N of type A: ∑∞

n=0
1
n!M

(n)(0) · (N, . . . , N). Forsimplifying the setting and for dealing easily with untyped terms, it is suitableto 
onsider a version of that formula where 
oe�
ients are all equal to one,and where addition of terms is an idempotent operation: terms form a 
ompletelatti
e and the Taylor expansion ofM 
an be written more simply∨∞
n=0M

(n)(0)·
(N, . . . , N).With Regnier, the se
ond author studied this operation in [ER08,ER06a℄,introdu
ing a lambda-
al
ulus with resour
es whi
h 
an be seen as the di�erentiallambda-
al
ulus where ordinary3 appli
ation 
an be used only for applying aterm to 0: this is the only ordinary appli
ation needed if we want to Taylorexpand all the appli
ations o

urring in lambda-terms. In these two papers weproved in an untyped setting that, Taylor expanding 
ompletely a lambda-term
M , one obtains a (generally in�nite) linear 
ombination of resour
e terms andthat, if one normalizes ea
h resour
e term o

urring in that formal sum4, oneobtains the Taylor expansion of the Böhm tree of M .This result implies that, in a denotational model whi
h validates the Taylorexpansion formula in the sense that the interpretation of a term M is equal tothe interpretation of its Taylor expansion, the interpretation of an unsolvablelambda-term5 is ne
essarily equal to 0. Sin
e the multiset-based exponential of
Rel validates the Taylor expansion formula, any model of the pure lambda-
al
ulus in the 
orresponding 
artesian 
losed 
ategory, su
h as the model pre-sented in [BEM07,BEM09℄, seems to be bound to be sensible (at least if di�eren-tial operations are interpreted in the standard way). This seems to be a seriouslimitation in the equational expressive power of this kind of semanti
s.3 In the di�erential lambda-
al
ulus, there are two kinds of appli
ation: the ordinaryappli
ation of a term to an argument, and the appli
ation of the nth derivative ofa term to a n-tuple of terms. This latter appli
ation is n-linear in its argumentswhereas the former is not linear.4 Resour
e terms are strongly normalizing, even if they are not typeable.5 We re
all that a term is solvable i� its head redu
tion terminates.



This problem arised during a general investigation undertaken by the authors,whose s
ope is to develop an algebrai
 setting for di�erential extensions of thelambda-
al
ulus, in the spirit of [PS98,MS09℄.Content. The present paper proposes a solution to this problem, by introdu
ingnew exponential operations on Rel. The idea is quite simple: we repla
e the set
N of natural numbers (whi
h are used for 
ounting multipli
ities of elements inmultisets) by more general semi-rings whi
h typi
ally 
ontain �in�nite elements�
ω su
h that ω + 1 = ω. Mutatis mutandis, the various stru
tures of the expo-nentials (fun
torial a
tion, dereli
tion et
) are interpreted as with the ordinarymultiset-based exponentials. For these stru
tures to satisfy the required equa-tions, some rather restri
tive 
onditions have to be satis�ed by the 
onsideredsemi-ring: the semi-rings whi
h satisfy these 
onditions are 
alled �multipli
itysemi-rings�. We show that su
h a semi-ring must 
ontain N and we exhibit mul-tipli
ity semi-rings with in�nite elements.In these models with in�nite multipli
ities, the di�erential 
onstru
tions areavailable, but the Taylor formula does not hold. It is possible to �nd morphisms
f : A → B (in the asso
iated 
artesian 
losed 
ategory) whi
h are 6= 0 but aresu
h that, for all n, the nth derivative f (n)(0) : An → B is equal to 0. TheTaylor expansion of su
h a fun
tion is the 0 map, and hen
e the fun
tion isdi�erent from its Taylor expansion. This is analogous to the well known smooth(C∞) map f : R → R de�ned by f(0) = 0 and f(x) = e−1/|x| for x 6= 0: allthe derivatives of f at 0 are equal to 0 and hen
e there is no neighborhood of 0where f 
oin
ides with its Taylor expansion at 0. In some sense, f is in�nitely�at at 0, and we obtain a similar e�e
t with our in�nite multipli
ities.For any multipli
ity semi-ring whi
h 
ontains an in�nite element, we builda model of the pure lambda-
al
ulus, whi
h is not sensible and, more pre
isely,where the term Ω = (λx (x) x)λx (x) x has a non-empty interpretation (we alsoexhibit a non solvable term whose interpretation is distin
t from that of Ω).Warning. Most omitted proofs 
an be found in the Appendix se
tion.1 The relational model of Linear Logi

Rel is the 
ategory whose obje
ts are sets and with hom-sets Rel(X,Y ) =
P(X × Y ). In this 
ategory, 
omposition is the ordinary 
omposition of relations:if R ∈ Rel(X,Y ) and S ∈ Rel(Y, Z), then

S · R = {(a, c) ∈ X × Z | ∃b ∈ Y (a, b) ∈ R and (b, c) ∈ S} .and identities are the diagonal relations: IdX = {(a, a) ∈ X}.This 
ategory has a well known symmetri
 monoidal stru
ture (
ompa
t
losed a
tually), with tensor produ
t given on obje
ts by X1 ⊗X2 = X1 ×X2and on morphisms by
R1 ⊗R2 = {((a1, a2), (b1, b2)) | (ai, bi) ∈ Ri for i = 1, 2}



for any Ri ∈ Rel(Xi, Yi) (i = 1, 2). The asso
iativity and symmetry isomor-phisms are the obvious bije
tions, the neutral obje
t of the tensor produ
t is thesingleton set 1 = {∗}.This monoidal 
ategory is 
losed: the obje
t of morphisms from X to Y is
X ⊸ Y = X × Y , with evaluation morphism ev ∈ Rel((X ⊸ Y ) ⊗X,Y ) givenby ev = {(((a, b), a), b) | a ∈ X, b ∈ Y }. And, given R ∈ Rel(Z ⊗ X,Y ), thelinear 
urry�
ation of R is cur(R) = Rel(Z,X ⊸ Y ). This 
ategory is star-autonomous, with dualizing obje
t ⊥ = 1.The 
ategory Rel is also 
artesian: the 
artesian produ
t of a family of ob-je
ts (Xi)i∈I is ∏i∈I Xi =

⋃

i∈I({i} × I). The binary 
artesian produ
t of Xand Y is denoted as X & Y and the terminal obje
t is ⊤ = ∅. The proje
-tion πi ∈ Rel(
∏

i∈I Xi, Xi) is πi = {((i, a), a) | a ∈ Xi} and, given a family
(Ri)i∈I of morphisms Ri ∈ Rel(Y,Xi), the 
orresponding morphism 〈Ri〉i∈I ∈
Rel(Y,

∏

i∈I Xi) is given by 〈Ri〉i∈I = {(b, (i, a)) | i ∈ I and (b, a) ∈ Ri}.2 ExponentialsWe present a way of building exponential fun
tors, on
e a notion of multipli
ityis given, as a semi-ring satisfying strong 
onditions.2.1 Multipli
ity semi-ringsNotational 
onvention for indi
es. We shall use quite often multiple indi
es,written as subs
ript as in �aijk� whi
h has three indi
es i, j and k. When thereare no ambiguities, these indi
es will not be separated by 
ommas. We insert
ommas when we use multipli
ation on these indi
es, as in �ai,2j,k� for instan
e.A semi-ring M is a multipli
ity semi-ring if it is 
ommutative, has a multi-pli
ative unit and satis�es(MS1) ∀n1, n2 ∈M n1 + n2 = 0 ⇒ n1 = n2 = 0 (we say that M is positive)(MS2) ∀n1, n2 ∈M n1 + n2 = 1 ⇒ n1 = 0 or n2 = 0 (we say that M is dis
rete)(MS3) ∀n1, n2, p1, p2 ∈ M n1 + n2 = p1 + p2 ⇒ ∃r11, r12, r21, r22 ∈ M n1 =
r11 + r12, n2 = r21 + r22, p1 = r11 + r21, p2 = r12 + r22 (we say that M hasthe additive splitting property)(MS4) ∀m, p, n1, n2 ∈M pm = n1+n2 ⇒ ∃p1, p2,m11,m12,m21,m22 ∈M m11+
m21 = m12 +m22 = m, p1m11 + p2m12 = n1, p1m21 + p2m22 = n2 and p1 +
p2 = p (we say that M has the multipli
ative splitting property).Generalized splitting properties. The splitting 
onditions are expressed ina binary way, we must generalize them to arbitrary arities. We �rst generalizeCondition (MS3).Lemma 1. LetM be a semi-ring whi
h has the splitting property. Let n1, . . . , nl ∈

M and p1, . . . , pr ∈ M be su
h that ∑l
i=1 ni =

∑r
j=1 pj. Then there is a fam-ily (sij)

l,r
i=1,j=1 of elements of M su
h that ∀i ∈ {1, . . . , l} ni =

∑r
j=1 sij and

∀j ∈ {1, . . . , r} pj =
∑l

i=1 sij .



Similarly, we generalize Condition (MS4).Lemma 2. Let M be a semi-ring whi
h has the multipli
ative and the additivesplitting properties. Let k ∈ N with k 6= 0. Let l = 2k−1. For all n1, . . . , nk,m, p ∈
M , if n1 + · · · + nk = mp, then there exist (pj)

l
j=1 ∈M and (mij)

k,l
i=1,j=1 with

• p1 + · · · + pl = p
• m1j + · · · +mkj = m for j = 1, . . . , l
• and mi1p1 + · · · +milpl = ni for i = 1, . . . , k.In parti
ular, a multipli
ity semi-ring 
annot be �nite.Proposition 1. Any multipli
ity semi-ring M 
ontains an isomorphi
 
opy of

N. We shall simply say that M 
ontains N, that is N ⊆ M . In parti
ular, amultipli
ity semi-ring 
annot be �nite.Examples of multipli
ity semi-rings. The elements of a multipli
ity semi-ring should be 
onsidered as generalized natural numbers. We give here examplesof semi-ring satisfying these axioms.Natural numbers. The most 
anoni
al example of multipli
ity semi-ring is theset N of natural numbers, with the ordinary addition and multipli
ation.Proposition 2. N is a multipli
ity semi-ring.Completed natural numbers. Let N = N ∪ {ω} be the �
ompleted set of naturalnumbers�. We extend addition to this set by n+ω = ω+n = ω, and multipli
ationby 0ω = ω0 = 0 and nω = ωn = ω for n 6= 0.Proposition 3. N is a multipli
ity semi-ring.A semi-ring with in�nite and non-idempotent elements. A more interesting ex-ample is N2 = (N+ ×N)∪{0}.The element (n, d) of this set (with n 6= 0) will bedenoted as nωd. We extend this notation to the 
ase where n = 0, identifying
0ωd with 0, whi
h is quite natural with these notations. Addition is de�ned asfollows (0 being of 
ourse neutral for this operation)

nωd + n′ωd′

=











(n+ n′)ωd if d = d′

nωd if n 6= 0 and d′ < d

n′ωd′ if n′ 6= 0 and d < d′and multipli
ation is de�ned by nωdn′ωd′

= nn′ωd+d′ .Proposition 4. N2 is a multipli
ity semi-ring.From now on, M denotes a multipli
ity semi-ring.



2.2 The exponential fun
torGiven a set X , we de�ne !MX as the free M-module M〈X〉 generated by X , thatis, as the set of all fun
tions µ : X → M su
h that supp(µ) = {a ∈ X | µ(a) 6=
0} (the support of µ) is �nite. These fun
tions will be 
alled M-multisets (ofelements of X).Given a ∈ X , we denote as [a] ∈ !MX the fun
tion given by [a](b) = δa,b. Weuse the standard algebrai
 notations for denoting the operations in the M-module
!MX . If µ ∈ !MX , we de�ne the 
ardinality of µ by #µ =

∑

a∈supp(µ) µ(a) ∈ M.Given R ∈ Rel(X,Y ), we de�ne !MR ∈ Rel(!MX, !MY ) as the set of all pairs
(µ, ν) su
h that one 
an �nd σ ∈ M〈X × Y 〉 with supp(σ) ⊆ R and

∀a ∈ X µ(a) =
∑

b∈Y

σ(a, b) and ν(b) =
∑

a∈X

σ(a, b) .We say then that σ is a witness of (µ, ν) for R. Observe that all these sums are�nite be
ause σ ∈ M〈X × Y 〉.It is 
lear from this de�nition that !M Id = Id.Lemma 3. Let R ∈ Rel(X,Y ) and S ∈ Rel(Y, Z). Then !M(S ·R) = !MS · !MR.Proof. This is essentially an appli
ation of Lemma 1, see the Appendix. 2Lemma 4. Let R ⊆ X × Y and let (µi, νi) ∈ !MR and qi ∈ M for i = 1, . . . , n.Then (
∑n

i=1 piµi,
∑n

i=1 piνi) ∈ !MR.Proof. For ea
h i, 
hoose a witness σi of (µi, νi) for R. Then ∑n
i=1 piσi is awitness of (

∑n
i=1 piµi,

∑n
i=1 piνi) for R. 22.3 Comonad stru
ture of the exponentialWe introdu
e the fundamental 
omonadi
 stru
ture of the exponential fun
tor,whi
h 
onsists of two natural transformations usually 
alled dereli
tion (the
ounit of the 
omonad) and digging (the 
omultipli
ation of the 
omonad).Dereli
tion. We set dX = {([a], a) | a ∈ X} ∈ Rel(!MX,X).Lemma 5. dX is a natural transformation from !M to Id.Proof. One applies Conditions (MS1) and (MS2), see the Appendix. 2Remark 1. One 
ould 
onsider taking M = {0, 1} with 1 + 1 = 1, and then wewould have !MX = Pfin(X), the set of all �nite subsets of X . But this semi-ring does not satisfy Condition (MS2) and, indeed, dereli
tion is not natural asalready mentioned in the introdu
tion.



Digging. This operation is more problemati
 and some preliminaries are re-quired.Lemma 6. Let X and Y be sets and let R ⊆ X × Y . Let ν1, ν2 ∈ !MY and
µ ∈ !MX. If (µ, ν1 + ν2) ∈ !MR, then one 
an �nd µ1, µ2 ∈ !MX su
h that
µ1 + µ2 = µ and (µi, νi) ∈ !MR for i = 1, 2.Proof. We use Lemma 1, see the Appendix. 2Given M ∈ !M!MX , we set

Σ(M) =
∑

m∈!MX

M(m)m.Sin
e M has a �nite support, this sum is a
tually a �nite sum (the linear 
om-bination, with 
oe�
ients M(m) ∈ M, is taken in the module !MX).We de�ne pX ∈ Rel(!MX, !M!MX) by
pX = {(Σ(M),M) | M ∈ !M!MX} .The next lemma is the main tool for proving the naturality of digging. It
ombines the two generalized splitting properties of M.Lemma 7. Let X and Y be sets and let R ⊆ X × Y be �nite. There exists

q(R) ∈ N with the following property: for any µ ∈ !MX,π ∈ !MY and p ∈ M, if
(µ, pπ) ∈ !MR, then one 
an �nd p1, . . . , pq(R) ∈ M and µ1, . . . , µq(R) ∈ !MX su
hthat ∑q(R)

j=1 pj = p, ∑q(R)
j=1 pjµj = µ and (µj , π) ∈ !MR for ea
h j = 1, . . . , q(R).Proof. Let I = {a ∈ X | ∃b ∈ Y (a, b) ∈ R} and J = {b ∈ Y | ∃a ∈ X (a, b) ∈ R}.Given b ∈ J , let degb(R) = #{a ∈ X | (a, b) ∈ R} − 1 ∈ N and let deg(R) =

∑

b∈J degb(R). We prove the result by indu
tion on deg(R).Assume �rst that deg(R) = 0, so that, for any b ∈ J , there is exa
tly one
a ∈ I su
h that (a, b) ∈ R, let us set a = g(b): g is a surje
tive fun
tion from J to
I whose graph 
oin
ides with R (in the sense that R = {(g(b), b) | b ∈ J}). Let
σ be a witness of (µ, pπ) for R. For all b ∈ J we have pπ(b) =

∑

a∈X σ(a, b) =
σ(g(b), b) and for all a ∈ I we have µ(a) =

∑

g(b)=a σ(a, b) = p
∑

g(b)=a π(b). Let
τ ∈ M〈X × Y 〉 be de�ned by

τ(a, b) =

{

π(b) if g(b) = a

0 otherwise.then 
learly supp(τ) ⊆ R and τ is a witness of (µ′, π) for R, where µ′ ∈ !MX isgiven by µ′(a) =
∑

g(b)=a π(a). Sin
e pµ′ = µ, we obtained the required property(with q(R) = 1, p1 = p and µ1 = µ′).Assume now that deg(R) > 0 and let us pi
k some b ∈ J su
h that k =
degb(R) + 1 > 1. Let a1, . . . , ak be a repetition-free enumeration of the elements
a of I su
h that (a, b) ∈ R. We have

pπ(b) =

k
∑

i=1

σ(ai, b) .



Let l = 2k. By Lemma 2, there exist (pj)
l
j=1 ∈ M

l and (mij)
k,l
i=1,j=1 elements of

M with
• p1 + · · · + pl = p
• m1j + · · · +mkj = π(b) for j = 1, . . . , l
• and mi1p1 + · · · +milpl = σ(ai, b) for i = 1, . . . , k.Let b1, . . . , bk be pairwise distin
t new elements, whi
h do not belong to X norto Y , and let Y ′ = (Y \ {b}) ∪ {b1, . . . , bk}. We de�ne a new relation to whi
hwe'll be able to apply the indu
tive hypothesis as follows:

S = {(a, b′) ∈ R | b′ 6= b} ∪ {(ai, bi) | i = 1, . . . , k} .Then we have deg(S) = deg(R) − k + 1 < deg(R). Let τ ∈ M〈X × Y ′〉 be givenby
τ(a, c) =











σ(a, c) if c /∈ {b1, . . . , bk}

σ(ai, b) if c = bi and a = ai

0 otherwise.It is 
lear that supp(τ) ⊆ S. Moreover, τ is a witness of (µ,
∑l

j=1 pjπj) for S,where πj ∈ !MY
′ is given by

πj(c) =

{

π(c) if c /∈ {b1, . . . , bk}

mij if c = bi.for ea
h j ∈ {1, . . . , l}. Indeed, for a ∈ X we have
∑

c∈Y ′

τ(a, c) =
∑

c∈Y ′\{b1,...,bk}

τ(a, c) +

k
∑

i=1

τ(a, bi)

=
∑

c∈Y ′\{b1,...,bk}

σ(a, c) +

k
∑

i=1

δa,ai
σ(ai, b)

=
∑

c∈Y ′\{c1,...,ck}

σ(a, c) + σ(a, b) =
∑

b∈Y

σ(a, b) = µ(a)and for c ∈ Y ′ \ {b1, . . . , bk} we have
∑

a∈X

τ(a, c) =
∑

a∈X

σ(a, c) = pπ(c) =

l
∑

j=1

pjπj(c) sin
e {

∀j πj(c) = π(c)
∑l

j=1 pj = pand last, for c = bi (with i ∈ {1, . . . , k}), we have
∑

a∈X

τ(a, c) = σ(ai, b) =
l
∑

j=1

mijpj =
l
∑

j=1

pjπj(c) .



By Lemma 6, sin
e (µ,∑l
j=1 pjπj

)

∈ !MS, we 
an �nd µ1, . . . , µl ∈ !MX su
hthat ∑l
j=1 µj = µ and (µj , pjπj) ∈ !MS for ea
h j ∈ l. Sin
e deg(S) < deg(R),we 
an apply the indu
tive hypothesis for ea
h j ∈ l. So we 
an �nd a family

(pjs)
l,q(S)
j=1,s=1 of elements of M su
h that pj =

∑q(S)
s=1 pjs and we 
an �nd a family

(µjs)
l,q(S)
j=1,h=1 of elements of !MX su
h that ∑q(S)

s=1 pjsµjs = µj , and moreover
(µjs, πj) ∈ !MS for ea
h j ∈ l and s ∈ q(S). We 
on
lude the proof by showingthat (µjs, π) ∈ !MR. Let τjs ∈ M〈X × Y ′〉 be a witness of (µjs, πj) for S. Let
σjs ∈ M〈X × Y 〉 be given by

σjs(a, b
′) =

{

τjs(a, b
′) if b′ 6= b

∑k
i=1 τjs(a, bi) if b′ = b.For b′ ∈ Y \ {b}, we have ∑a∈X σjs(a, b

′) =
∑

a∈X τjs(a, b
′) = πj(b

′) = π(b′).Next we have
∑

a∈X

σjs(a, b) =
∑

a∈X

k
∑

i=1

τjs(a, bi)

=
k
∑

i=1

∑

a∈X

τjs(a, bi)

=

k
∑

i=1

πj(bi) =

k
∑

i=1

mij = π(b) .On the other hand we have
∑

b′∈Y

σjs(a, b
′) =

∑

b′∈Y \{b}

σjs(a, b
′) + σjs(a, b)

=
∑

b′∈Y \{b}

τjs(a, b
′) +

k
∑

i=1

τjs(a, bi)

=
∑

c∈Y ′

τjs(a, c) = µjs(a) .It remains to prove that supp(σjs) ⊆ R, but this results immediately from thede�nition of σjs and from the fa
t that supp(τjs) ⊆ S.Observe that we 
an take q(R) = lq(S), so that in general q(R) = 2deg(R).
2Lemma 8. pX is a natural transformation from !M to !M!M.Proof. This is essentially an appli
ation of Lemma 7. See the Appendix. 2



Comonad equations We prove that d!MX · pX = Id!MX . Let (µ, µ′) ∈ !MX ×
!MX . Assume �rst that (µ, µ′) ∈ d!MX · pX . Then we 
an �nd M ∈ !M!MX su
hthat (µ,M) ∈ pX and (M,µ′) ∈ d!MX . This means that M = [µ′] and hen
e
Σ(M) = µ′, hen
e µ = µ′. Conversely, for µ ∈ !MX we have (µ, [µ]) ∈ pX ,therefore (µ, µ) ∈ d!MX · pX .Next we prove that !M dX · pX = Id!MX . Let (µ, µ′) ∈ !M dX · pX . Let M ∈
!M!MX be su
h that (µ,M) ∈ pX , that is Σ(M) = µ, and (M,µ′) ∈ !M dX .Let σ ∈ M〈!MX ×X〉 be a witness of (M,µ′) for dX . This means that µ′(a) =
∑

ν∈!MX σ(ν, a) = σ([a], a) sin
e supp(σ) ⊆ dX , and that M(ν) = σ([a], a) if
ν = [a], and M(ν) = 0 if #ν 6= 1. It follows that Σ(M) =

∑

ν∈!MX M(ν)ν =
∑

a∈X σ([a], a)[a] = µ′ and hen
e µ = µ′. Conversely, one has (µ, µ) ∈ !M dX · pX ,be
ause M ∈ !M!MX de�ned by M(ν) = µ(a) if ν = [a] and M(ν) = 0 if #ν 6= 0satis�es (µ,M) ∈ pX and (M,µ) ∈ !M dX .Lemma 9. Let M ∈ !M!M!MX. Then Σ(Σ(M)) =
∑

N∈!M!MX M(N)Σ(N).Proof. We have
Σ(Σ(M)) =

∑

ν∈!MX

Σ(M)(ν)ν

=
∑

ν∈!MX

(

∑

N∈!M!MX

M(N)N(ν)

)

ν

=
∑

N∈!M!MX

M(N)

(

∑

ν∈!MX

N(ν)ν

)and we are done. 2Lemma 10. The digging is natural, that is p!MX · pX = !M pX · pX , so let (µ,M) ∈
!MX × !M!M!MX.Proof. One applies Lemma 9, see the Appendix. 2Fundamental isomorphism. One of the most important property of the ex-ponential is that it maps 
artesian produ
ts to tensor produ
ts. Combined withthe monoidal 
losure of Rel, this property leads to the 
artesian 
losure of theKleisli 
ategory Rel!.Proposition 5. Given two sets X1 and X2, there is an natural bije
tion nX1,X2

:
!MX1 ⊗ !MX2 → !M(X1 & X2) and a bije
tion n0 : 1 → !M⊤.Stru
tural morphisms. They are used for interpreting the stru
tural rulesof linear logi
, asso
iated with the exponentials. The weakening morphism is
weakX : !MX → 1 is weakX = {([], ∗)}. The 
ontra
tion morphism is contrX :
!MX → !MX ⊗ !MX is obtained by applying the !M fun
tor to the diagonal map
X → X & X , so that contrX = {(λ+ ρ, (λ, ρ)) | λ, ρ ∈ !MX}.There are other equations to 
he
k for proving that we have de�ned a modelof Linear Logi
 (see [Bie95℄), the 
orresponding veri�
ations are straightforward.



2.4 The Kleisli 
artesian 
losed 
ategoryThe obje
ts of the Kleisli 
ategory Rel! of the 
omonad � !M� are the sets,and Rel!(X,Y ) = Rel(!MX,Y ). Identity in this 
ategory is dereli
tion dX ∈
Rel!(X,X) and 
omposition is de�ned as follows: let R ∈ Rel!(X,Y ) and
S ∈ Rel!(Y, Z), then

S ◦ R = S · !MR · pX .We give a dire
t 
hara
terization of this 
omposition law.Proposition 6. Let (µ, c) ∈ !MX × Y , we have (µ, c) ∈ S ◦ R i� there exist
b1, . . . , bn ∈ Y (not ne
essarily distin
t), p1, . . . , pn ∈ M and µ1, . . . , µn ∈ !MXsu
h that

∀i ∈ {1, . . . , n} (µi, bi) ∈ R ,

(

n
∑

i=1

pi[bi], c

)

∈ S and µ =

n
∑

i=1

piµi .Proof. Assume �rst that (µ, c) ∈ S ◦ R. Let M ∈ !M!MX su
h that (µ,M) ∈ pXand let ν ∈ !MY be su
h that (ν, c) ∈ S and (M, ν) ∈ !MR. We have Σ(M) = µ.Let σ ∈ M〈!MX × Y 〉 be a witness of (M, ν) for R, and let (µ1, b1), . . . , (µn, bn)be a repetition-free enumeration of the set supp(σ) ⊆ R. Taking pi = σ(µi, bi),we have ∑n
i=1 pi[bi] = ν and ∑n

i=1 pi[µi] = M , and therefore µ =
∑n

i=1 piµi.Assume 
onversely that (µ, c) satis�es the 
onditions stated in the proposi-tion. Then we take ν =
∑n

i=1 pi[bi] and M =
∑n

i=1 pi[µi]. We have (ν, c) ∈ Sand (µ,M) ∈ pX and we have just to 
he
k that (M, ν) ∈ !MR. We de�ne
σ =

∑n
i=1 pi[(µi, bi)]; this is a witness of (M, ν) for R, as easily 
he
ked. 2We re
all that the 
artesian produ
t of X and Y in this 
ategory is X &

Y , with proje
tions obtained by 
omposing π1 and π2 with dX&Y in Rel.The fun
tion spa
e of X and Y is !MX ⊸ Y . Evaluation Ev ∈ Rel!(X &
(!MX ⊸ Y ), Y ) ≃ Rel(!MX ⊗ !M(!MX ⊸ Y ), Y ) is

Ev = {((µ, [(µ, b)]), b) | µ ∈ !MX and b ∈ Y } .Curry�
ation is de�ned as follows: let R ∈ Rel!(Z & X,Y ) ≃ Rel(!MZ ⊗
!MX,Y ), then Cur(R) = {(π, (µ, b)) | ((π, µ), b) ∈ R} ∈ Rel!(Z, !MX ⊸ Y ).Di�erential stru
ture and the Taylor expansion. We sket
h very brie�ythe di�erential stru
ture of this model, whi
h 
an be used for interpreting thedi�erential lambda-
al
ulus introdu
ed in [ER03,Vau05℄, or the various resour
elambda-
al
uli based on this kind of di�erential stru
tures [ER08,Tra08℄.We introdu
e �rst the 
odereli
tion morphism ∂X ∈ Rel(X, !MX) by ∂X =
{(a, [a]) | a ∈ X}. Naturality is proved exa
tly as the naturality of dereli
-tion in 2.3. Coweakening coweakX ∈ Rel(1, !MX) and 
o
ontra
tion cocontrX ∈
Rel(!MX ⊗ !MX, !MX) are obtained by applying the !M fun
tor to the emptymorphism ∅ ∈ Rel(⊤, X) and to the �
odiagonal� morphism π1 ∪π2 ∈ Rel(X &
X,X), and by using the fundamental isomorphism. The equations involvingdereli
tion and 
oweakening and 
o
ontra
tion (see [ER06b,BCS06,Fio07℄) are



satis�ed by naturality of dereli
tion. Similarly for the equations involving 
odere-li
tion, weakening and 
ontra
tion. One should 
he
k that the 
hain rule holds:this is a bit long to express, but the proof is a simple veri�
ation.Using 
odereli
tion and 
o
ontra
tion, one de�nes easily a morphism δX ∈
Rel(!MX ⊗ X, !MX), with δX = {(µ, a, µ + [a])}. Given R ∈ Rel(X,Y ) =
Rel(!MX,Y ), one 
an de�ne R′ ∈ Rel!(X,X ⊸ Y ) (by linear 
urry�
ationof R ·δX) whi
h 
an be 
onsidered as the �rst derivative of R: this operation sat-is�es all the usual rules of di�erential 
al
ulus (linearity, Leibniz rule, 
hain ruleet
). Iterating this operation and using also dereli
tion and 
ontra
tion, one 
ande�ne the Taylor expansion of R as the in�nite union ⋃∞

n∈N
Rn where, for ea
h

n ∈ N ⊆ M the morphism Rn ∈ Rel!(X,Y ) is simply {(µ, a) ∈ R | #µ = n}.So if M has in�nite elements, it is not true in general that R 
oin
ides with itsTaylor expansion. As an example, let ω be an in�nite element of M and take
R = {(ω[∗], ∗)} ∈ Rel!(1, 1). Then Rn = ∅ for all n ∈ N.So we have de�ned a model of di�erential linear logi
 whi
h does not satisfythe Taylor formula.3 Graph models in RelGraph models [Bar84℄ have been isolated by S
ott and Engeler in the 
ontinuoussemanti
s. We develop here a similar 
onstru
tion, in the relational semanti
s.Let A be a non-empty set whose elements will be 
alled atoms, and are not pairs.Let ι : A→ (!MA ⊸ A) be a partial inje
tive map.We de�ne a sequen
e (Dι

n)n∈N of sets as follows: Dι
0 = A and Dι

n+1 = Dι
n ∪

((!MD
ι
n ⊸ Dι

n) \ ι(A)). This sequen
e is monotone, and we set Dι =
⋃

n∈N
Dι

n.We have !MD
ι
⊸ Dι =

⋃

n∈N
(!MD

ι
n ⊸ Dι

n).We de�ne a fun
tion ϕ : Dι → (!MD
ι
⊸ Dι) by

ϕ(α) =

{

ι(a) if α = a ∈ A

α if α /∈ Aand a fun
tion ψ : (!MD
ι
⊸ Dι) → Dι by

ψ(µ, α) =

{

a if (µ, α) = ι(a) where a ∈ A

(µ, α) if (µ, α) /∈ ι(A) .This de�nition makes sense be
ause ι is inje
tive, and be
ause, if (µ, α) ∈
(!MD

ι
n ⊸ Dι

n) \ ι(A), then (µ, α) ∈ Dι
n+1 ⊆ Dι. Let (µ, α) ∈ !MD

ι
⊸ Dι.If (µ, α) ∈ ι(A), let a be the unique element of A su
h that ι(a) = (µ, α). Wehave ϕ(ψ(µ, α)) = ϕ(a) = ι(a) = (µ, α). If (µ, α) /∈ ι(A), we have ϕ(ψ(µ, α)) =

ϕ(µ, α) = (µ, α) be
ause (µ, α) /∈ A, sin
e no element of A is a pair.It is 
lear that ϕ ◦ ψ = Id. We de�ne two morphisms App = {([α], ϕ(α)) | α ∈
Dι} ∈ Rel!(D

ι, !MD
ι

⊸ Dι) and Lam = {([(µ, α)], ψ(µ, α)) | (µ, α) ∈ !MD
ι

⊸

Dι} ∈ Rel!(!MD
ι
⊸ Dι, Dι). Then we have App ◦ Lam = Id!MDι

⊸Dι , so that Dιis a re�exive obje
t in Rel!, whatever be the 
hoi
e of the multipli
ity semi-ring
M.



3.1 Interpreting termsGiven a lambda-term M and a repetition-free list of variables x = (x1, . . . , xn)whi
h 
ontains all free variables of M , the interpretation [M ]x ∈ Rel!(D
ιn, Dι)(where Dιn is the 
artesian produ
t of Dι with itself, n times) is de�ned byindu
tion on M as follows

• [xi]x = πi (the ith proje
tion from Dιn to D)
• [λxN ]x = Lam ◦ Cur([M ]x,x)
• [(N)P ]x = Ev ◦ 〈App ◦ [N ]x, [P ]x〉Using the 
artesian 
loseness ofRel! and the fa
t that App ◦ Lam = Id!MDι

⊸Dι ,one proves that ifM andM ′ are beta-equivalent, and x is a repetition-free list ofvariables whi
h 
ontain all the free variables ofM andM ′, one has [M ]x = [M ′]x.This requires to prove �rst a substitution lemma, see [AC98℄.We present now this interpretation as a typing system (a variation of deCarvalhos's system R [DC08℄). A type is an element of Dι. Given µ ∈ !MD
ι and

α ∈ Dι, we set µ → α = ψ(µ, α). A typing 
ontext is a �nite partial fun
tionfrom variables to !MD
ι. If Γ1, . . . , Γk are 
ontexts with the same domain and

p1, . . . , pk ∈ M, the sum ∑k
i=1 piΓi is de�ned pointwise (using the addition of

!MD
ι). The typing rules are

x1 : [], . . . , xn : [], x : [α] ⊢ x : α
Γ, x : µ ⊢M : α

Γ ⊢ λxM : µ→ α
Γ ⊢M : (

∑n
i=1 pi[βi]) → α ∀i ∈ n Γi ⊢ N : βi

Γ +
∑n

i=1 piΓi ⊢ (M)N : αIn the last rule, all 
ontexts involved must have same domain.Proposition 7. The judgment Γ ⊢M : α is derivable i� (Γ (x1), . . . , Γ (xn), α) ∈
[M ]x where x = (x1, . . . , xn) is a repetition-free enumeration of the domain of
Γ , whi
h is assumed to 
ontain all the free variables of M .Proof. Straightforward indu
tion on the judgment. 2We take for M a multipli
ity semi-ring whi
h 
ontains an element ω su
hthat ω+ 1 = ω. Let A = {a}, ι : A→ (!MA ⊸ A) be de�ned by ι(a) = (ω[a], a),so that (ω[a] → a) = a. Let Ω = (δ) δ where δ = λx (x) x.Proposition 8. In the model Dι, we have [Ω] = {a}.Proof. We have the following dedu
tion tree (we have inserted in this tree theequations between types or M-multisets of types that we use)

x : [a] ⊢ x : a = ω[a] → a x : [a] ⊢ x : a

x : [a] + ω[a] = ω[a] ⊢ (x) x : a

⊢ λx (x)x : ω[a] → a

(same derivation)
⊢ λx (x) x : ω[a] → a = a

⊢ (λx (x) x)λx (x) x : a



Therefore a ∈ [Ω].Conversely, let α ∈ Dι and assume that ⊢ Ω : α. There must exist µ ∈ !MD
ιsu
h that ⊢ δ : µ → α and ∀β ∈ supp(µ) ⊢ δ : β. Form the �rst of these twojudgments we get x : µ ⊢ (x)x : α and hen
e there must exist ν ∈ !MD

ι su
hthat µ = ν + [ν → α]. From the se
ond judgment we get ⊢ δ : ν → α and
∀β ∈ supp(ν) ⊢ δ : β. Iterating this pro
ess, we build a sequen
e (µi)

∞
i=1 ofelements of !MD

ι su
h that ⊢ δ : µi → α, ∀β ∈ supp(µi) ⊢ δ : β and µi =
µi+1 +[µi+1 → α] for all i. Let βi = µi → α, it follows that ∀i βi ∈ supp(µ1) andsin
e supp(µ1) is �nite, we 
an �nd i and n > 0 su
h that βi+n = βi. We have
βi = (µi → α) = ((µi+1+[βi+1]) → α) = · · · = ((µi+n+[βi+1]+· · ·+[βi+n]) → α)and sin
e βi+n = (µi+n → α), we get µi+n = µi+n +[βi+1]+ · · ·+[βi+n] (be
ause
ψ is inje
tive) and hen
e βi+n ∈ supp(µi+n). But βi+n = (µi+n → α) and hen
ewe must have βi+n = a. Indeed, if βi+n /∈ A then we have βi+n = (µi+n, α) and,if k is the least integer su
h that βi+n ∈ Dι

k, we have k > 0 and β ∈ Dι
k−1 forall β ∈ supp(µi+n). This is impossible sin
e βi+n ∈ supp(µi+n). Sin
e (µi+n →

α) = a, we have α = a and we are done. 2Sin
e ([] → a) ∈ [λy Ω] and a 6= ([] → a), we have found two unsolvableterms (namely Ω and λy Ω) with distin
t interpretations in Dι and hen
e thismodel is not sensible.Con
lusionWe have introdu
ed the 
on
ept of multipli
ity semi-ring, whi
h 
an be usedfor generalizing the standard exponential 
onstru
tion of the relational model ofLinear Logi
. Su
h a semi-ring must 
ontain N as a sub-semi-ring but 
an alsohave in�nite elements ω su
h that ω + 1 = ω. In that 
ase, the 
orrespondingmodel of Linear Logi
 is a model of the di�erential lambda-
al
ulus whi
h doesnot satisfy the Taylor formula, and it is possible to build non sensible models ofthe lambda-
al
ulus in the 
orresponding Kleisli 
artesian 
losed 
ategory. Thisshows that models of the pure di�erential lambda-
al
ulus 
an have non sensibletheories and provides a new way of building models of the pure lambda-
al
uluswhere non termination is taking into a

ount in a quantitative way by means ofthese in�nite multipli
ities.Referen
es[AC98℄ Roberto Amadio and Pierre-Louis Curien. Domains and lambda-
al
uli, vol-ume 46 of Cambridge Tra
ts in Theoreti
al Computer S
ien
e. CambridgeUniversity Press, 1998.[Bar84℄ Henk Barendregt. The Lambda Cal
ulus, volume 103 of Studies in Logi
 andthe Foundations of Mathemati
s. North Holland, 1984.[BCS06℄ Ri
hard Blute, Robin Co
kett, and Robert Seely. Di�erential 
ategories.Mathemati
al Stru
tures in Computer S
ien
e, 16(6):1049�1083, 2006.
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property holds for r and let us prove it for r+1. Let q1 =
∑r

j=1 pj and q2 = pr+1.Then, applying Condition (MS3), we 
an �nd tik ∈ M for i = 1, 2 and k = 1, 2su
h that n1 = t11 + t12, n2 = t21 + t22, q1 = t11 + t21 and q2 = t12 + t22. Byindu
tive hypothesis we 
an �nd a family (uij)
2,r
i=1,j=1 su
h that t11 =

∑r
j=1 u1j ,

t21 =
∑r

j=1 u2j and pj = u1j + u2j for j = 1, . . . , r. Then we de�ne (sij)
2,r+1
i=1,j=1by setting sij = uij for i = 1, 2 and j = 1, . . . , r, and si,r+1 = ti2 for i = 1, 2.Now we prove the result for an arbitrary value of l, by indu
tion on thisparameter. For l = 1, we set s1j = pj for j = 1, . . . , r. Assume that the resultholds for l and let us prove it for l+1. Letm1 =

∑l
i=1 ni andm2 = nl+1. We have

m1 +m2 =
∑r

j=1 pj so we 
an apply the property that we have just proved. Let
(tkj)

2,r
k=1,j=1 be a family of elements of M su
h that mk =

∑r
j=1 tkj for k = 1, 2and pj = t1j + t2j for j = 1, . . . , r. By indu
tive hypothesis, we 
an �nd a family

(uij)
l,r
i=1,j=1 su
h that ni =

∑r
j=1 uij for i = 1, . . . , l and pj =

∑l
i=1 uij . Then wede�ne a family (sij)

l+1,r
i=1,j=1 by setting sij = uij for i = 1, . . . , l and j = 1, . . . , r,and sl+1,j = t2j for j = 1, . . . , r, and we are done. 2Proof of Lemma 2. By indu
tion on k. For k = 1, one has l = 1, and one takes

p1 = p and m11 = m.Assume that the result holds for k (and let l = 2k−1) and let us prove it for k+
1. Let n1, . . . , nk+1,m, p ∈M with n1+· · ·+nk+1 = mp. By indu
tive hypothesis,we 
an �nd (pj)

l
j=1 ∈M and (mij)

k,l
i=1,j=1 with the following properties

• p1 + · · · + pl = p
• m1j + · · · +mkj = m for j = 1, . . . , l
• mi1p1 + · · · +milpl = ni for i = 1, . . . , k − 1
• and mk1p1 + · · · +mklpl = nk + nk+1.By Lemma 1, we 
an �nd a family (rjh)l,1

j=1,h=0 of elements of M su
h that
nk+h = r1h + · · · + rlh for h = 0, 1 and ∀j ∈ l mkjpj = rj0 + rj1. By Condi-tion (MS4), for ea
h j ∈ l, we 
an �nd pj1, pj2 ∈ M with pj1 + pj2 = pj and afamily (sjuh)2,1

u=1,h=0 of elements of M su
h that mkj = sj10 + sj11 = sj20 + sj21and rjh = sj1hpj1 + sj2hpj2 for ea
h j ∈ l and h = 0, 1. For i ∈ k − 1 we have
ni = mi1p11 +mi1p12 + · · · +milpl1 +milpl2and for h = 0, 1, we have

nk+h = r1h + · · · + rlh

= s11hp11 + s12hp12 + · · · + sl1hpl1 + sl2hpl2 .Let us de�ne a family (p′j′ )
2l
j′=1 of elements of M by setting p′1 = p11, p

′
2 =

p12, . . . , p
′
2l−1 = pl1, p

′
2l = pl2 and let use de�ne a family (m′

ij′ )
k+1,2l
i=1,j′=1 by setting

m′
i,2j−1 = m′

i,2j = mij for i ∈ k − 1 and j ∈ l, and by m′
k+h,2j−1 = sj1h and

m′
k+h,2j = sj2h for j ∈ l and h = 0, 1. With these de�nitions, we have



• p′1 + · · · + p′2l = p1 + · · · + pl = p
• m′

1,2j−1+· · ·+m′
k+1,2j−1 = m1,j+· · ·+mk−1,j+sj10+sj11 = m1j+· · ·+mkj =

m for j = 1, . . . , l
• m′

1,2j +· · ·+m′
k+1,2j = m1,j+· · ·+mk−1,j +sj20+sj21 = m1j +· · ·+mkj = mfor j = 1, . . . , l

• m′
i,1p

′
1 + · · · +m′

i,2lp
′
2l = ni for i = 1, . . . , k + 1and the lemma is proved. 2Proof of Proposition 1. One de�nes a map f : N → M by indu
tion on naturalnumbers by f(0) = 0 and f(n + 1) = f(n) + 1, that is f(n) =

∑n
i=1 1; wedenote this sum as n · 1. This map is a semi-ring morphism as easily 
he
ked,by indu
tion on natural numbers again. We prove that f is inje
tive, so let

p ∈ N and let us prove that f(n) = f(n + p) ⇒ p = 0 by indu
tion on n. For
n = 0, assume that p · 1 = 0. Applying Condition (MS1) we get easily p = 0 (byindu
tion on p a
tually). Assume now that (n + 1 + p) · 1 = (n + 1) · 1, that is
(n+ p) · 1 + 1 = n · 1 + 1. By Condition (MS3), one 
an �nd r11, r12, r21, r22 ∈ Msu
h that n+ p = r11 + r12, 1 = r21 + r22, n = r11 + r21 and 1 = r12 + r22. ByCondition (MS2), there are two 
ases to 
onsider: either r22 = 1, and in that
ase r21 = r12 = 0, or r22 = 0, and in that 
ase r21 = r12 = 1. In both 
ases wehave n+ p = n and hen
e p = 0 by indu
tive hypothesis. 2Proof of Proposition 2. Let us 
he
k Condition (MS3), so let n1, n2, p1, p2 ∈ Nbe su
h that n1 + n2 = p1 + p2 and let q be this 
ommon value. Pi
k arbitrarilysets I1, I2, J1, J2 ⊆ q of respe
tive 
ardinality n1, n2, p1 and p2. It su�
es to take
rij = #(Ii ∩ Jj).We prove now Condition (MS4). We apply Eu
lidian division by p and weget n1 = q1p + r1 and n2 = q2p + r2 where r1, r2 < p. We have r1 + r2 =
p(m − q1 − q2), and sin
e r1, r2 < p, we must have m − q1 − q2 = 0 or m −
q1 − q2 = 1. In the �rst 
ase we have r1 = r2 = 0. Pi
k p1, p2 ∈ N su
hthat p1 + p2 = p. Set m11 = m12 = q1 and m21 = m22 = q2. Then we have
m11 + m21 = m12 + m22 = m, p1m11 + p2m12 = p1q1 + p2q1 = pq1 = n1and p1m21 + p2m22 = p1q2 + p2q2 = pq2 = n2 as required. Assume now that
m − q1 − q2 = 1. We set p1 = r1, p2 = r2, m11 = q1 + 1, m12 = q1, m21 = q2and m22 = q2 + 1. We have m11 +m21 = m12 +m22 = q1 + q2 + 1 = m. Nextwe have p1m11 + p2m12 = r1(q1 + 1) + r2q1 = (r1 + r2)q1 + r1 = pq1 + r1 = n1.Similarly we have p1m21 + p2m22 = n2, as required. 2Proof of Proposition 3. We 
he
k Condition (MS3), so assume that n1+n2 = p1+
p2 = q. If q 6= ω, then we have ni, pj ∈ N for ea
h i, j and we use Condition (MS3)for N. Assume that q = ω. Without loss of generality we 
an assume that n1 =
p1 = ω. We 
an take r11 = ω, r22 = 0, r12 = p2 and r21 = n2. Last we 
he
kCondition (MS3), so assume that pm = n1 + n2 = q. Assume �rst that q ∈ N.If q 6= 0, we know that p,m, n1, n2 ∈ N and we 
an use Condition (MS4) in N.If q = 0, then n1 = n2 = 0 and we must have m = 0 or p = 0. If p = ω and



m = 0 then we 
an take p1 = ω, p2 = 0, m11 = m12 = m21 = m22 = 0. If p = 0and m = ω, we take p1 = p2 = 0, m11 = m21 = ω and m12 = m22 = 0. We areleft with the 
ase were q = ω. Without loss of generality we 
an assume that
n1 = ω, and of 
ourse we must have m 6= 0 and p 6= 0. Assume �rst that p = ω.Then we 
an take p1 = ω, p2 = n2, m11 = m, m21 = 0, m12 = m′ su
h that
m′ + 1 = m and m22 = 1. Assume last that m = ω. Then we 
an take p1 = p′with p′ + 1 = p, p2 = 1, m11 = ω, m21 = ω, m12 = ω and m22 = n2. 2Proof of Proposition 4. A simple 
ase analysis shows that this addition is asso-
iative, and it is obvious that it is 
ommutative. Distributivity is easily 
he
kedas well, so that we have de�ned a semi-ring. Observe that ω + 1 = ω, but that
ω + ω = 2ω 6= ω and a
tually, unlike N, this semi-ring has no element n su
hthat n+ n = n (apart from 0 of 
ourse).Let us 
he
k the splitting property, so assume that n1ω

d1 +n2ω
d2 = p1ω

e1 +
p2ω

e2 and let us build a family (qijω
fij )2,2

i=1,j=1. If d1 = d2 and e1 = e2, weare redu
ed to the splitting property of N. If d1 = d2 and e1 > e2, then wehave (n1 + n2)ω
d1 = p1ω

e1 . We 
an set for instan
e q11ωf11 = n1ω
d1, q12ωf12 =

p2ω
e2 , q21ωf21 = n2ω

d1 and q22ω
f22 = 0. Then we have q11ωf11 + q12ω

f12 =
n1ω

d1 + p2ω
e2 = n1ω

d1, q21ωf21 + q22ω
f22 = n2ω

d1, q11ωf11 + q21ω
f21 = n1ω

d1 +
n2ω

d1 = p1ω
e1 and q12ω

f12 + q22ω
f22 = p2ω

e2 . The last 
ase to 
onsider (upto 
ommutativity of addition) is d1 > d2 and e1 > e2. Then we know that
n1ω

d1 = p1ω
e1 . We 
an set q11ωf11 = n1ω

d1 , q12ωf12 = p2ω
e2 , q21ωf21 = n2ω

d2and q22ωf22 = 0.Let us 
he
k Condition (MS4), so assume that mωcpωe = n1ω
d1 + n2ω

d2 .If d1 = d2 we are redu
ed to Condition (MS4) in N, so assume that d2 < d1(and of 
ourse n1 6= 0 and n2 6= 0). So we have pmωe+c = n1ω
d1 . Our goal is to�nd (pjω

ej )2j=1 and (mijω
cij)2,2

i=1,j=1 with p1ω
e1 + p2ω

e2 = pωe, p1ω
e1mi1ω

ci1 +

p2ω
e2mi2ω

ci2 = niω
di for i = 1, 2 and m1jω

c1j +m2jω
c2j = mωc for j = 1, 2. We
onsider several 
ases. For the two �rst 
ases, we set p1ω

e1 = pωe, m11ω
c11 =

mωc and m21ω
c21 = 0, so that m11ω

c11 +m21ω
c21 = mωc holds trivially.

• Assume �rst that c ≤ d2. We set p2ω
e2 = n2ω

d2−c, m22ω
c22 = ωc and

m12ω
c12 = (m − 1)ωc. We have e + c = d1 > d2 and hen
e e1 = e >

d2 − c = e2 so that p1ω
e1 +p2ω

e2 = pωe. Next we have m12ω
c12 +m22ω

c22 =
(m − 1)ωc + ωc = mωc. And p1ω

e1m11ω
c11 + p2ω

e2m12ω
c12 = pmωe+c +

n2(m − 1)ωd2 = pmωd1 = n1ω
d1 sin
e e + c = d1 > d2. Last we have

p1ω
e1m21ω

c21 + p2ω
e2m22ω

c22 = 0 + n2ω
d2−cωc = n2ω

d2 .
• Assume now that c > d2 and that e > 0. We set p2ω

e2 = n2 (so e2 = 0),
m22ω

c22 = ωd2 , m12ω
c12 = mωc. Then we have p1ω

e1 + p2ω
e2 = pωe + n2 =

pωe sin
e e > 0. Also m12ω
c12 + m22ω

c22 = mωc + ωd2 = mωc sin
e wehave assumed that c > d2. Next we have p1ω
e1m11ω

c11 + p2ω
e2m12ω

c12 =
pωemωc+n2mω

c = mpωe+c = n1ω
d1 sin
e e > 0. Last we have p1ω

e1m21ω
c21+

p2ω
e2m22ω

c22 = 0 + n2ω
d2 .

• Last, assume that c > d2 and e = 0, so that c = d1. We take p1ω
e1 = 1,

p2ω
e2 = p − 1. We set m11ω

c11 = mωc, m12ω
c12 = mωc, m21ω

c21 = n2ω
d2



and m22ω
c22 = 0. We have m11ω

c11 +m21ω
c21 = mωc + n2ω

d2 = mωc sin
e
c > d2 and m12ω

c12 + m22ω
c22 = mωc. Next, we have p1ω

e1m11ω
c11 +

p2ω
e2m12ω

c12 = mωc + (p − 1)mωc = n1ω
d1 and last p1ω

e1m21ω
c21 +

p2ω
e2m22ω

c22 = n2ω
d2 . 2Proof of Lemma 3. First, let (µ, π) ∈ !M(S ·R). Let ϕ be a witness of (µ, π) for

S ·R. For ea
h (a, c) ∈ S ·R, let us 
hoose f(a, c) ∈ Y su
h that (a, f(a, c)) ∈ Rand (f(a, c), c) ∈ S. Let ν ∈ M〈Y 〉 be given by
ν(b) =

∑

f(a,c)=b

ϕ(a, c) .This sum is �nite, be
ause ϕ has �nite support. Moreover, if b ∈ supp(ν) then wemust have b = f(a, c) for some (a, c) ∈ supp(ϕ) and there are only �nitely manysu
h pairs (a, c), so ν has �nite support: ν ∈ !MY . We 
he
k that (µ, ν) ∈ !MR,and for this we exhibit a witness, namely σ ∈ M〈X × Y 〉 given by
σ(a, b) =

∑

f(a,c)=b

ϕ(a, c) .Indeed, we have
∀a ∈ X

∑

b∈Y σ(a, b) =
∑

b∈Y

∑

f(a,c)=b ϕ(a, c) =
∑

(a,c)∈R ϕ(a, c) = µ(a)

∀b ∈ Y
∑

a∈X σ(a, b) =
∑

a∈X

∑

f(a,c)=b ϕ(a, c) =
∑

f(a,c)=b ϕ(a, c) = ν(b)One 
he
ks similarly that (ν, π) ∈ !MS, and hen
e (µ, π) ∈ !MS · !MR.Conversely, let (µ, π) ∈ !MS · !MR. Let ν ∈ !MY be su
h that (µ, ν) ∈ !MRand (ν, π) ∈ !MS and let σ ∈ M〈X × Y 〉 and τ ∈ M〈Y × Z〉 be 
orrespondingwitnesses. Let b ∈ Y . We have
∑

a∈X

σ(a, b) =
∑

c∈Z

τ(b, c) = ν(b) .By Lemma 1, we 
an �nd ϕb ∈ M〈X × Z〉 su
h that
∀a ∈ X σ(a, b) =

∑

c∈Z

ϕb(a, c) and ∀a ∈ X τ(b, c) =
∑

a∈X

ϕb(a, c) .Let ϕ =
∑

b∈supp(ν) ϕ
b. Let a ∈ X , we have

µ(a) =
∑

b∈Y

σ(a, b) =
∑

b∈Y

∑

c∈Z

ϕb(a, c) =
∑

c∈Z

∑

b∈Y

ϕb(a, c) =
∑

c∈Z

ϕ(a, c) .Similarly one show that π(c) =
∑

a∈X ϕ(a, c). Last observe that if (a, c) ∈

supp(ϕ), one has (a, c) ∈ supp(ϕb) for some b. For su
h a b we have (a, b) ∈
supp(σ) ⊆ R and (b, c) ∈ supp(τ) ⊆ S. This shows that supp(ϕ) ⊆ S · R, so that
ϕ is a witness of (µ, π) for S · R, and hen
e (µ, π) ∈ !MS ·R. 2



Proof of Lemma 5. Let R ∈ Rel(X,Y ). We must show that R · dX = dY ·!MR.Let µ ∈ !MX and b ∈ Y . Assume �rst that (µ, b) ∈ R · dX ; this means that thereexists a ∈ X su
h that (µ, a) ∈ dX and (a, b) ∈ R. Hen
e we have µ = [a]. Wehave ([a], [b]) ∈ !MR and hen
e also (µ, b) ∈ dY ·!MR.Conversely assume that (µ, b) ∈ dY ·!MR, so that (µ, [b]) ∈ !MR, and let
σ ∈ M〈X × Y 〉 be a witness. We have ∑a∈X σ(a, b′) = [b](b′) for ea
h b′ ∈ Y .By Conditions (MS1) and (MS2), one has ∀a ∈ X σ(a, b′) = 0 for ea
h b′ 6= b,and there exists a ∈ X su
h that σ(a, b) = 1 and σ(a′, b) = 0 for all a′ 6= a. Wehave therefore µ = [a]. Sin
e (a, b) ∈ R, this shows that (µ, b) ∈ R · dX be
ause
([a], a) ∈ dX . 2Proof of Lemma 6. Let σ ∈ M〈X × Y 〉 be a witness of (µ, ν) for R. Let b ∈ Y .We have ν1(b)+ν2(b) =

∑

a∈X σ(a, b). By Lemma 1 we 
an �nd ϕb
i ∈ M〈X〉 (for

i = 1, 2) su
h that νi(b) =
∑

a∈X ϕb
i (a) (for i = 1, 2) and σ(a, b) = ϕb

1(a)+ϕ
b
2(a).Let σi(a, b) = ϕb

i (a). Then σ1(a, b) + σ2(a, b) = σ(a, b) and this shows that
supp(σi) ⊆ R for i = 1, 2 (using Condition (MS1)). We have ∑a∈X σi(a, b) =
νi(b) for ea
h i ∈ {1, 2} and b ∈ Y . We set µi(a) =

∑

b∈Y σi(a, b). Then µi ∈ !MXfor i = 1, 2 sin
e σi has �nite support. Moreover (µi, νi) ∈ !MR with witness σifor i = 1, 2. We 
on
lude be
ause µ1(a) + µ2(a) =
∑

b∈Y (σ1(a, b) + σ2(a, b)) =
∑

b∈Y σ(a, b) = µ(a). 2Proof of Lemma 8. Let X and Y be sets and let R ⊆ X × Y . Let (µ,Π) ∈
!MX × !M!MY .Assume �rst that (µ,Π) ∈ !M!MR·pX . LetM ∈ !M!MX be su
h that (M,Π) ∈
!M!MR and (µ,M) ∈ pX , that is Σ(M) = µ. Let Θ ∈ M〈!MX × !MY 〉 be a witnessof (M,Π) for !MR. This means that

∀µ′ ∈ !MX M(µ′) =
∑

π′∈!MY

Θ(µ′, π′)

∀π′ ∈ !MY Π(π′) =
∑

µ′∈!MX

Θ(µ′, π′))Sin
e supp(Θ) ⊆ !MR, by Lemma 4, we have




∑

µ′∈!MX, π′∈!MY

Θ(µ′, π′)µ′,
∑

µ′∈!MX, π′∈!MY

Θ(µ′, π′)π′



 ∈ !MR,that is (Σ(M), Σ(Π)) ∈ !MR. Therefore (µ,Π) ∈ pY ·!MR, sin
e (Σ(Π), Π) ∈
pY .Conversely, assume that (µ,Π) ∈ pY ·!MR, that is (µ,Σ(Π)) ∈ !MR, that is
(µ,
∑

π∈!MY Π(π)π) ∈ !MR. Let R0 ⊆ R be �nite and su
h that
(µ,

∑

π∈!MY

Π(π)π) ∈ !MR0 .



Su
h an R0 exists be
ause µ and Π have �nite support. By Lemma 6, one 
an�nd a family (µπ)π∈supp(Π) of elements of !MX su
h that µ =
∑

π∈supp(Π) µ
π and

∀π ∈ supp(Π), (µπ, Π(π)π) ∈ !MR0. Applying Lemma 7, for ea
h π ∈ supp(Π),we 
an �nd a family (µπ
i )

q(R0)
i=1 of elements of !MX and a family (pπ

i )
q(R0)
i=1 ofelements of M su
h that

•
∑q(R0)

i=1 pπ
i = Π(π)

•
∑q(R0)

i=1 piµ
π
i = µπ

• and ∀i ∈ q(R0) (µπ
i , π) ∈ !MR.We de�ne M ∈ M

!MX by setting
M =

∑

π∈supp(Π)

i∈q(R0)

pπ
i [µπ

i ] .This sum is �nite be
ause supp(Π) is a �nite set.We have
Σ(M) =

∑

π∈supp(Π)
i∈q(R0)

pπ
i µ

π
i

=
∑

π∈supp(Π)

q(R0)
∑

i=1

pπ
i µ

π
i =

∑

π∈supp(Π)

µπ = µ ,so that (µ,M) ∈ pX . Moreover we have ∀π ∈ supp(Π)∀i ∈ q(R0) (µπ
i , π) ∈ !MRand hen
e by Lemma 4 we have











M,
∑

π∈supp(Π)

i∈q(R0)

pπ
i [π]











∈ !M!MRand hen
e (M,Π) ∈ !M!MR be
ause
∑

π∈supp(Π)

i∈q(R0)

pπ
i [π] =

∑

π∈supp(Π)

Π(π)[π] = Π .This shows that (µ,Π) ∈ !M!MR · pX as announ
ed. 2Proof of Lemma 10. We prove that p!MX · pX = !M pX · pX , so let (µ,M) ∈
!MX × !M!M!MX . Assume �rst that (µ,M) ∈ p!MX · pX , that is Σ(Σ(M)) = µ.We de�ne M ∈ M

!MX as follows:
M(ν) =

∑

N∈!M!MX
Σ(N)=ν

M(N) .



ThenM ∈ !M!MX . Indeed, for ea
h ν ∈ supp(M) we 
an �nd N ∈ supp(M) su
hthat ν ∈ supp(N), hen
e supp(M) ⊆
⋃

N∈supp(M) supp(N) and this latter set is�nite. We have
Σ(M) =

∑

ν∈!MX

M(ν)ν

=
∑

ν∈!MX





∑

Σ(N)=ν

M(N)



 ν

=
∑

N∈!M!MX

M(N)Σ(N)

= Σ(Σ(M)) = µand hen
e (µ,Σ(M)) ∈ pX . Let Θ ∈ M〈!MX × !M!MX〉 be de�ned by
Θ(ν,N) =

{

M(N) if Σ(N) = ν

0 otherwise.Then 
learly supp(Θ) ⊆ pX . Moreover, we have∑ν∈!MX Θ(ν,N) = M(N) for all
N ∈ !M!MX and∑N∈!M!MX Θ(ν,N) =

∑

Σ(N)=ν M(N) = M(ν) for all ν ∈ !MX ,by de�nition ofM . This shows that Θ is a witness of (M,M) for pX . So we haveshown that (M,M) ∈ !M pX and therefore (µ,M) ∈ !M pX · pX .Assume 
onversely that (µ,M) ∈ !M pX · pX . So letM ∈ !M!MX be su
h that
(µ,M) ∈ pX and (M,M) ∈ !M pX . Let Θ ∈ M〈!MX × !M!MX〉 be a witness of
(M,M) for pX . Sin
e supp(Θ) ⊆ pX , there is a map H : !M!MX → M su
h that

Θ(ν,N) =

{

H(N) if Σ(N) = ν

0 otherwise.For any N ∈ !M!MX we must have M(N) =
∑

ν∈!MX Θ(ν,N)) = H(N) so that
H = M. Therefore we have M(ν) =

∑

Σ(N)=ν M(N) for all ν ∈ !MX . ByLemma 9 we have
Σ(Σ(M)) =

∑

N∈!M!MX

M(N)Σ(N)

=
∑

ν∈!MX





∑

Σ(N)=ν

M(N)ν





=
∑

ν∈!MX

M(ν)ν sin
e M(ν) =
∑

Σ(N)=ν

M(N)

= Σ(M) = µTherefore (µ,M) ∈ p!MX · pX . 2



Proof of Proposition 5. The se
ond bije
tion is n = {(∗, [])}. The �rst one is
nX1,X2

= {((µ1, µ2), in1(µ1) + in2(µ2) | µ1 ∈ !MX1 and µ2 ∈ !MX2}where ini(µ) =
∑

a∈Xi
µ(a)[(i, a)]. Let us 
he
k that this isomorphism is natural,so let Ri ⊆ Xi × Yi for i = 1, 2. We must 
he
k that nY1,Y2

· (!MR1 ⊗ !MR2) =
!M(R1 & R2) · nX1,X2

. So let µi ∈ !MXi and νi ∈ !MYi for i = 1, 2.Assume �rst that ((µ1, µ2), in1(ν1) + in2(ν2)) ∈ nY1,Y2
· (!MR1 ⊗ !MR2). Thismeans that one 
an �nd ν′i ∈ !MYi for i = 1, 2 su
h that (µi, ν

′
i) ∈ !MRi for

i = 1, 2, and ((ν′1, ν
′
2), in1(ν1) + in2(ν2)) ∈ nY1,Y2

. This means that νi = ν′i for
i = 1, 2. Sin
e (µ1, ν1) ∈ !MR1, we have (in1(µ1), in1(ν1)) ∈ !M(R1 & R2) andsimilarly (in2(µ2), in2(ν2)) ∈ !M(R1 & R2) and hen
e (in1(µ1)+ in2(µ2), in1(ν1)+
in2(ν2)) ∈ !M(R1 & R2) by Lemma 4. But ((µ1, µ2), in1(µ1) + in2(µ2)) ∈ nX1,X2and we have therefore ((µ1, µ2), in1(ν1) + in2(ν2)) ∈ !M(R1 & R2) · nX1,X2

.Assume 
onversely that ((µ1, µ2), in1(ν1)+ in2(ν2)) ∈ !M(R1 & R2)·nX1,X2
, sothat there exist µ′

i ∈ !MXi for i = 1, 2 with ((µ1, µ2), in1(µ
′
1) + in2(µ

′
2)) ∈ nX1,X2and (in1(µ

′
1) + in2(µ

′
2), in1(ν1) + in2(ν2)) ∈ !M(R1 & R2). Therefore µ′

i = µifor i = 1, 2 and hen
e (in1(µ1) + in2(µ2), in1(ν1) + in2(ν2)) ∈ !M(R1 & R2).Let ϕ be a witness of (in1(µ1) + in2(µ2), in1(ν1) + in2(ν2)) for R1 & R2. Sin
e
supp(ϕ) ⊆ R1 & R2, we have (µi, νi) ∈ !MRi for i = 1, 2: take ϕi ∈ M〈Xi × Yi〉de�ned by ϕi(ai, bi) = ϕ((i, ai), (i, bi)), then ϕi is a witness of (µi, νi) for Ri. Itfollows that ((µ1, µ2), (ν1, ν2)) ∈ !MR1 ⊗ !MR2 and therefore ((µ1, µ2), in1(ν1) +
in2(ν2)) ∈ nY1,Y2

· (!MR1 ⊗ !MR2). 2


